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Hydrodynamic separation of colloidal particles in tubes: Effective one-dimensional approach
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We investigate diffusion of colloidal particles carried by flow in tubes of variable diameter and under the
influence of an external field. We generalize the method mapping the three-dimensional confined diffusion onto
an effective one-dimensional problem to the case of nonconservative forces and use this mapping for the problem
in question. We show that in the presence of hydrodynamic drag, the lowest approximation (the Fick-Jacobs
approximation) may be insufficient, and inclusion of at least the first-order correction is desirable to obtain more
reliable results. As a practical application, we use the method for investigation of separation of colloidal particles
carried by a fluid flow according to their size, using flotation and centrifugation.
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I. INTRODUCTION

When dealing with colloidal particles suspended in a fluid,
we frequently face the problem of sorting them according
to their physical properties, like density, size, shape, surface
charge, or chirality [1–6]. A natural choice is to use a mi-
crofluidic equipment [7–9], where colloids flow through com-
plex geometries, including channels, tubes, arrays of obsta-
cles, and others. The sorting is then achieved by the interplay
of hydrodynamic forces, diffusion, and external forces.

External forces typically include gravity, electric and mag-
netic fields, or centrifugal forces, if the equipment is set
into rotation [6]. In a free space, or at least in a large
container, hydrodynamic forces acting on a colloid particle
are relatively easy to understand, as they include essentially
just the Stokes drag, with a correction proportional to the
second spatial derivative of the velocity field of the carrying
fluid [10]. However, in confined geometry of the microflu-
idic apparatus, inertial effects and hydrodynamic interactions
with walls play an important role. A prominent example is
the Segre-Silberberg effect [11–13], which is often used for
inertial segregation of particles, with applications, e.g., in
blood filtration [14–20]. In this method, channels and tubes
of various curved shapes and contraction-expansion arrays are
used [21–23]. In a series of papers, we showed how the inertial
hydrodynamic effects can be applied to form a hydrodynamic
ratchet [24,25]. In this setting, colloidal suspension flows
through a tube of periodically varying diameter. Direction
of flow is also periodically altered, so that the net flow of
the fluid is zero. However, the movement of the colloids is
rectified, and their average velocity strongly depends on their
size. Experimental realization of deterministic microfluidic
ratchets was shown, e.g., in Ref. [26]. Another widely used
method of hydrodynamic sorting is the deterministic lateral
displacement method [27]. Here the flow goes through a
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two-dimensional (2D) array of obstacles or through optical
[28] or acoustical [29] latices.

For submicrometer particles, Brownian motion plays a
decisive role, besides hydrodynamics. Sorting of particles by
a combination of diffusion and hydrodynamics was demon-
strated in the classical experiment [30], which was modeled
theoretically in Ref. [31] and reexamined in Refs. [32,33].
This is closely related to the mechanism of entropic ratchets,
which was widely studied [33–41]. In reality, hydrodynamic
effects are always present in practical realizations of entropic
ratchets, and it was shown that interplay of hydrodynamics
and Brownian motion leads to new phenomena, e.g., the
hydrodynamically enforced entropic trapping [42,43].

In this paper, we investigate the diffusion of a small particle
carried by an incompressible fluid in a tube. The tube is
axially symmetric, but its diameter may change along the
axis. Moreover, the particle will be exposed to an external
field, which may be either uniform and parallel to the axis,
or centrifugal, corresponding to rotation of the whole device
around the axis. The approach we apply relies on a mapping of
three-dimensional (3D) problem to effective one-dimensional
(1D) one. There has been much work done on such a mapping
procedure, starting from the pioneering works of Jacobs and
Zwanzig [44,45] for the diffusion alone. Intuitively, it relies on
the following simple idea. If the typical scale of the problem is
much smaller in the transverse direction than in the longitudi-
nal one, we can assume that at each place and time the system
is equilibrated in the transverse direction, while it may not
be equilibrated (or it may be even strongly time-dependent)
in general [46,47]. In this way we obtain a 1D equation for
probability density projected onto the longitudinal coordinate.
This idea was formalized by several procedures [45,46,48–
59], which are equivalent in principle but differ in details
and in their efficiency. Apart from approximations based on
physical insight [46,47] or advanced use of curvilinear co-
ordinates [49,60–63] the mapping methods are mostly based
on expansion in a formal small parameter ε, which may be
interpreted either as the ratio of the longitudinal-to-transverse
diffusion constant, transverse length scaling factor, or factor
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controlling the amplitude or rate of changes of the tube
diameter.

The theory was first developed for diffusion alone
[48,64,65]. At zeroth order in the small parameter ε the
effective 1D Fick-Jacobs (FJ) equation [44] has the form
of the Smoluchowski equation for diffusion in an effective
potential representing just the entropic contribution from the
width of the channel. Higher order terms in ε can be found
recursively, and the resulting equation of a rather complicated
structure can be brought again into the form of the Smolu-
chowski equation in the limit of stationary flow, but with an
effective diffusion coefficient depending on position [65–67].
Approximate formulas for the effective diffusion coefficient
were found based on truncated power series [45], general
physical arguments [46], or partial resummation of the power
series in ε [65].

The theory was more or less straightforwardly generalized
to the case of conservative external forces, either longitudinal
[68–71] or transverse [72], or placing the diffusing particle
into a confining potential [73], thus defining “soft walls” of
the channel. Time-dependent forces were also studied [40,74].

Nonconservative forces, like hydrodynamic drag, are tech-
nically more challenging. There is no scalar potential, and di-
rect application of techniques used for pure diffusion and con-
servative forces does not lead to an equation of Smoluchowski
form even in the zeroth approximation. Enhancement of the
longitudinal diffusion of particles advected by a Poisseuille
flow in straight channels, known as Taylor dispersion, has
been studied for a long time [75,76]. The leading correction
to the FJ equation due to the hydrodynamic drag was recently
approved also for channels of variable and time-dependent
width [77].

One possibility to deal with the general type of driving,
including hydrodynamic drag, is to separate the forces into
conservative (rotation-free) and nonconservative (divergence-
free) components and treat these components with two dif-
ferent procedures. This approach was used successfully [42]
and led to the discovery of important effects, like hydrody-
namically enforced entropic trapping [42,43,78,79]. However,
we encountered situations [80] where the distinction between
conservative an nonconservative forces is not possible or,
more precisely, is ambiguous. Indeed, if we consider driven
diffusion only in a compact area delimited by hard walls, we
may partition the force into a rotation-free and divergence-free
part in many equivalent ways, just by placing effective charges
outside the area in question. (This would not be possible if we
took into account the entire Euclidean space, as is the case of
classical electrodynamics.) Transition from one partitioning
to another one can be described by a kind of gauge transform.
We used the freedom of the choice of the gauge and developed
a general approach for mapping diffusion problems with both
conservative and nonconservative forces onto a 1D problem
[81]. We choose the gauge explicitly in such a way that the
resulting equation again has the Smoluchowski form in the
zeroth-order approximation, and the higher order corrections
have a form which is suitable for definition of an effective
position-dependent diffusion coefficient, as it is routinely used
in the case of diffusion alone. We formulated the general
method [81] in a 2D setting and applied it to the 2D problem of
a Feynmann-Smoluchowski ratchet [80]. Here we rewrite the

method for the case of axially symmetric 3D geometry and
apply it for several problems connected with the construction
of particle-separation devices. The main point is to study the
influence of corrugation of the tube on the separation meth-
ods, e.g., flotation. In fact, when dealing with hydrodynamic
problems, we are forced to work in three dimensions, because
true 2D hydrodynamics is to certain extent unphysical. On
the other hand, just as a technical remark, we note that
axially symmetric 3D problems bring certain simplifications,
rather than complications, compared to truly two-dimensional
problems.

In Sec. II we outline the general theory of mapping of the
confined 3D diffusion driven by a nonconservative force. As
an example of practical application of the method developed
here we shall investigate separation of particles in tubes with
sinusoidally varying diameter in Sec. III. Nevertheless, let us
emphasize that the method is completely general, and it can
also describe many other situations.

II. GENERALIZED FICK-JACOBS MAPPING
IN THREE DIMENSIONS

A. General theory

1. Exact expression

We investigate diffusion of a particle suspended in a fluid
in an axially symmetric tube under the influence of external
driving. The driving may be of an arbitrary type, includ-
ing hydrodynamic, electrostatic, magnetic, gravitational, etc.
Generally, there is no scalar potential which would correspond
to the driving force. We describe the system by cylindric
coordinates (x, r, φ), where the axis x coincides with the
symmetry axis of the tube. All quantities of interest will be
assumed independent of the angle φ; therefore, the problem is
effectively 2D. This does not mean that the velocity of the
fluid in the tube does not have an angular component; we
just assume that the probability density for the position of the
particle is independent of φ.

We assume that the tube has hard walls and the radius of the
tube changes along the axis according to a function h(x). In
the applications we show later the function h(x) will be peri-
odic, but the general formalism holds for any analytic function
h(x). The diffusing particle is subject to a driving force
which can be decomposed into an axial and radial component,
described by functions Fx(x, r) and Fr (x, r), respectively. The
primary quantity of interest is the probability density for
the particle ρ(x, r, t ) obeying the general advection-diffusion
equation

∂tρ(x, r, t ) = D0

{
∂x[∂x − βFx(x, r)] + 1

r
∂rr[∂r − βFr (x, r)]

}
× ρ(x, r, t ), (1)

where D0 denotes the intrinsic diffusion constant, and β =
1/kBT is the inverse temperature. Here and in the rest of the
article we denote ∂t , ∂x, ∂r partial derivatives with respect to
time, with respect to x with r fixed and with respect of r with
x fixed, respectively. However, the method of solution will
consist mainly in projecting this density on the axis. So in the
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1D picture, we shall work with the projected density

p(x, t ) =
∫ h(x)

0
2πrρ(x, r, t ) dr. (2)

The key point of the mapping procedure is scaling of the
transverse lengths r, h(x) by a small parameter

√
ε and,

correspondingly, the transverse component of force Fr (x, r)
by 1/

√
ε. We shall obtain the approximate equations for

p(x, t ) in terms of the series in powers of ε, which describes
separation of timescales for the movement in radial, compared
to axial, directions. Applying the scaling, we obtain our
starting equation in the form

∂tρ(x, r, t ) = ∂x[∂x − f (x, r)]ρ(x, r, t )

+ 1

εr
∂r r[∂r − g(x, r)]ρ(x, r, t ). (3)

We have introduced here the reduced parameters f (x, r) =
βFx(x, r), g(x, r) = βFr (x, r), and the time is rescaled by the
diffusion constant, D0t → t .

Finally, Eq. (3) is supplemented by the boundary condi-
tions (BCs):

{[∂r − g(x, r)]ρ(x, r, t )}r=0 = 0 ∀x∀t

{[∂r − g(x, r)]ρ(x, r, t )}r=h(x)

= εh′(x){[∂x − f (x, r)]}]r=h(x) ∀x∀t . (4)

Integrating (3) over the cross section and using (4), we get an
exact equation for the projected density, namely,

∂t p(x, t ) = ∂2
x p(x, t ) − ∂x[2πh′(x)h(x)ρ(x, h(x), t )]

− ∂x

∫ h(x)

0
2πr f (x, r)ρ(x, r, t ) dr. (5)

Our task now is to express ρ(x, r, t ) using p(x, t ) to find the
mapped equation for the projected density in a closed form.

2. Series expansion

For the conservative forces, (Fx, Fr ) = −∇U (x, r), where
the corresponding scalar potential U (x, r) exists, we obtain
the 1D equation of the Smoluchowski form

∂t p(x, t ) = ∂xA(x)∂x
p(x, t )

A(x)
(6)

in the zeroth order in ε, supposing instantaneous equili-
bration in the transverse direction. The function A(x) =∫ h(x)

0 2πre−βU (x,r)dr is related to the effective 1D potential in
which the particle moves. The mapping procedure generates
corrections to this equation in the higher orders,

∂t p(x, t ) = ∂xA(x)[1 − Ẑ (x, ∂x )]∂x
p(x, t )

A(x)
, (7)

where the operator Ẑ (x, ∂x ) is expressed as power series in the
parameter ε,

Ẑ (x, ∂x ) =
∞∑

k=1

εkẐk (x, ∂x ). (8)

We showed in our previous work [80,81] that in the 2D case
it is possible to find the equation for p(x, t ) in the same form,
having redefined the function A(x). We extend validity of such

an equation for the 3D case here, skipping details which are
literally identical to two dimensions.

An analysis [81] applied for 3D channels shows that for
nonconservative forces as well there can be defined a function

G(x, r) = G00(x, r) − γ (x) (9)

which plays the role of the scalar potential in our mapping
formalism. Here

G00(x, r) = −
∫ r

0
g(x, r′) dr′ (10)

and γ (x) is a gauge function which will be discussed later.
In order to obtain (7) from (5) we need a kind of backward
projection from the function p(x, t ) to the density ρ(x, r, t ).
Following arguments in Ref. [81], we assume the following
ansatz for this projection:

ρ(x, r, t ) = e−G(x,r)[1 + ω̂(x, r, ∂x )]
p(x, t )

A(x)
; (11)

the entropic factor A(x) is redefined as

A(x) =
∫ h(x)

0
2πr e−G(x,r) dr. (12)

Still, the operator of backward mapping ω̂(x, r, ∂x ) and the
gauge function γ (x) in G(x, r) and A(x) are to be determined.
Similarly to (8), the operator ω̂(x, r, ∂x ) also can be expressed
as a power series in ε:

ω̂(x, r, ∂x ) =
∞∑

k=1

εkω̂k (x, r, ∂x ). (13)

The successive terms ω̂1, ω̂2, etc., can be obtained iteratively,
substituting the backward projection (11) into the original
advection-diffusion equation (3) and comparing terms at the
same power of ε [81]. For example, for the leading correction
ω̂1 we obtain a differential equation of the following form:

1

r
∂rr e−G00(x,r) ∂rω̂1(x, r, ∂x )

= e−G00(x,r)[T I
1 (x, r) + T II

1 (x, r)∂x
]
. (14)

The functions T I
1 (x, r) and T II

1 (x, r) will be shown explicitly
later. Both sides of these equations are understood as operators
acting on any function of x.

From the form of Eq. (14) it is clear that the operator ω̂1

can be partitioned into two terms

ω̂1(x, r, ∂x ) = ωI
1(x, r) + ωII

1 (x, r)∂x, (15)

where ωI
1(x, r) and ωII

1 (x, r) are just functions of x and r, not
containing the differentiation operator. It can be shown that
analogous property holds to all orders in ε, so that the entire
operator ω̂ can be partitioned as

ω̂(x, r, ∂x ) = ωI (x, r) + ω̂II (x, r, ∂x )∂x, (16)

where now ωI (x, r) is just a function of x and r, while
ω̂II (x, r, ∂x ) is an operator, which may in general also contain
the partial derivative ∂x. This partitioning is essential for fixing
the gauge term γ (x). For conservative forces, ωI (x, r) = 0,
and the projection technique results directly in Eq. (7). For
nonconservative forces, contributions from nonzero ωI (x, r)
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have to be eliminated by the proper choice of γ (x) to bring
the mapped equation to the form of (7).

First, we assume that this function is also expanded into
power series in ε, i.e.,

γ (x) = γ0(x) + γ̃ (x) = γ0(x) +
∞∑

k=1

εkγk (x). (17)

In order to formulate the general conditions fixing the terms
γ0(x) and γ̃ (x), let us introduce the following notation. For
any function (or operator) F (x, r) we define the average with
respect to function G00(x, r) as

〈F 〉(x) = 1

A00(x)

∫ h(x)

0
2πr F (x, r) e−G00(x,r) dr, (18)

where

A00(x) =
∫ h(x)

0
2πr e−G00(x,r) dr. (19)

Note that this average is independent of the choice of gauge.
Using this notation, we find that the gauge which brings
the equation for p(x, t ) into the form (7) should obey the
equations

γ ′
0(x) = 〈G′

00 + f 〉(x) (20)

(the prime denotes partial differentiation with respect to x with
r fixed) and

γ̃ ′(x) = 〈 f ωI〉(x) + 2πh′(x)h(x)

A00(x)
e−G00(x,h(x)) ωI (x, h(x)).

(21)

With this choice of gauge, the equation for p(x, t )
takes the form (7) with the operator Ẑ written explicitly

as

Ẑ (x, ∂x ) = 〈 f ω̂II〉(x, ∂x )

+ 2πh′(x)h(x)

A00(x)
e−G00(x,h(x)) ω̂II (x, h(x), ∂x ). (22)

B. Lowest approximations

1. Zeroth order

The expansion in powers of ε must be obtained iteratively,
step by step. So let us start with the zeroth approximation.
Both ω̂ and Ẑ are zero at this order, but the gauge term
already assumes the lowest correction (20). In the backward
projection for the density this correction cancels, and in the
zeroth order we have

ρ0(x, r, t ) = e−G00(x,r) p0(x, t )

A00(x)
. (23)

Here p0(x, t ) is the projected density, which is the solution of
the equation

∂t p0(x, t ) = ∂xA0(x)∂x
p0(x, t )

A0(x)
(24)

in which the gauge term enters through the factor A0(x) =
A00(x) eγ0(x). In this way the gauge factor influences the back-
ward projected density even in the zeroth approximation.

2. First order

The starting point for the calculation of the corrections to
the first order in ε is the differential equation for the operator
ω̂1, which we have already written in (14). The functions
T I

1 (x, r) and T II
1 (x, r) which occur in Eq. (14) can be found

explicitly as

T I
1 (x, r) = G′′

00(x, r) − 〈G′′
00〉(x) + f (x, r) − 〈 f 〉(x) − [G′

00(x, r)]2 + 〈(G′
00)2〉(x) − f (x, r)G′

00(x, r)

+〈 f G′
00〉(x) − [G′

00(x, h(x)) − 〈G′
00〉(x) + f (x, h(x)) − 〈 f 〉(x)]

2πh′(x)h(x)

A00(x)
e−G00 (x,h(x))

+ [2G′
00(x, r) − 2〈G′

00〉(x) + f (x, r) − 〈 f 〉(x)][〈G′
00〉(x) + 〈 f 〉(x)],

T II
1 (x, r) = 2πh′(x)h(x)

A00(x)
exp [−G00(x, h(x))] + 2G′

00(x, r) − 2〈G′
00〉(x) + f (x, r) − 〈 f 〉(x). (25)

It is clear from Eq. (14) that the functions ωI
1(x, r) and

ωII
1 (x, r) depend only on functions T I

1 (x, r) and T II
1 (x, r),

respectively. Therefore, we can write the solution of (14) in
one compact formula,

ωσ
1 (x, r) =

∫ r

0

1

r′ eG00(x,r′ )
∫ r′

0
r′′ e−G00(x,r′′ ) T σ

1 (x, r′′) dr′′dr′

− 1∫ h(x)
0 r′ e−G00(x,r′ ) dr′

∫ h(x)

0
r′ e−G00(x,r′ )

×
∫ r′

0

1

r′′ eG00(x,r′′ )
∫ r′′

0
r′′′ e−G00(x,r′′′ ) T σ

1 (x, r′′′)

× dr′′′dr′′dr′, (26)

taking the BC ∂rω
σ
1 (x, r)|r=0 = 0 and normalization∫ h(x)

0 2πre−G00(x,r)ωσ
1 (x, r) dr = 0 into account; the upper

index assumes the values σ ∈ {I, II}. With the correction to
the backward projector ω̂1 at our disposal, we can calculate
the next correction to the gauge term

γ ′
1(x) = 〈

f ωI
1

〉
(x) + 2πh′(x)h(x)

A00(x)
e−G00(x,h(x)) ωI

1(x, h(x))

(27)

and the lowest term in the operator Ẑ , which is just a function
of x in the first order

Z1(x) = 〈
f ωII

1

〉
(x) + 2πh′(x)h(x)

A00(x)
e−G00(x,h(x)) ωII

1 (x, h(x)).

(28)
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The projected density up to the first order in ε, denoted as
p1(x, t ), is then the solution of the equation

∂t p1(x, t ) = ∂xA1(x)[1 − εZ1(x)]∂x
p1(x, t )

A1(x)
, (29)

where A1(x) = A00(x) eγ0(x)+εγ1(x) contains the gauge term up
to the first order in ε. Having solved (29), we can project
p1(x, t ) backward to obtain the probability density up to the
first order

ρ1(x, r, t ) = e−G1(x,r){1 + ε
[
ωI

1(x, r) + ωII
1 (x, r)∂x

]}
× p1(x, t )

A1(x)
. (30)

Here we denoted G1(x, r) = G00(x, r) − γ0(x) − εγ1(x), the
function G(x, r) approximated up to the first order.

In the following, we shall be also interested in total particle
current, incorporating both the drift and diffusion compo-
nents. The axial and radial components of the current are, by
definition,

jx(x, r, t ) = ( f (x, r) − ∂x )ρ(x, r, t ),

jr (x, r, t ) = 1

ε
(g(x, r) − ∂r )ρ(x, r, t ). (31)

In all what follows, we limit the discussion to stationary states,
so there is no time dependence of the current.

In practical calculation, there is an annoying problem
stemming from the fact that the two components of the current
defined in (31) are of different order in ε. Therefore, in any
finite order in ε we face the following dilemma. Either the
continuity equation

∂x jx(x, r, t ) + 1

r
∂rr jr (x, r, t ) = 0 (32)

is violated, or the two components of the current are not
calculated to the same order in ε. In this work, we consider
satisfaction of the continuity equation too valuable to sacrifice
it. Thus, when calculating the current within a given order
in ε, we start with the backward projected density ρ in this
order, calculate jx from it according to (31), and then complete
the task by calculating jr such that it satisfies (32). In this
procedure, a useful auxiliary quantity is the particle stream
function defined as

�(x, r) =
∫ r

0
r′ jx(x, r′) dr′. (33)

Then the radial current is simply

jr (x, r) = −1

r

∂�(x, r)

∂x
, (34)

and (32) is satisfied automatically.

III. COMBINATION OF FLOW AND EXTERNAL FORCES

A. Pure flow

1. General consideration

We shall investigate diffusion in a flowing liquid in a
tube of varying diameter [82]. The problem of fluid flow
in such a tube is itself a tricky task [83–86]. Increasing
the Reynolds number, various regimes are observed, from a

simple vortex-free flow, to nontrivial structure of vortices, to
unstable flow, to fully developed turbulence. We shall omit all
these delicacies, assuming a negligible value of the Reynolds
number [10]. In this regime, the flow is described by the
Stokes equation, instead of the full Navier-Stokes equation.
However, even the solution of the Stokes equation is far from
trivial [87–89]. One of the procedures is the expansion of
the solution of the Stokes equation in the amplitude of the
variation of the diameter [24,25,90,91]. Here we shall use
only the lowest term in this expansion. This is the simplest
possible approximation compatible with the geometry of the
tube. In fact, it is just geometrically deformed Poisseuille flow.
In terms of the Stokes stream function, the drag of flow is, in
this approximation, described as

ψ (x, r) = 4q

π

{[
r

2h(x)

]2

− 2

[
r

2h(x)

]4}
, (35)

where q is the amplitude of hydrodynamic force, proportional
to total volumetric flow through the tube.

When a spherical particle is passively carried by the flow,
its velocity can be computed from the velocity field of the
fluid. When the flow is described by the Stokes equation, the
calculation is relatively easy; the resulting particle velocity
is given by the velocity of the fluid in the absence of the
particle plus a correction term proportional to the square of the
particle diameter. (In the case of Navier-Stokes flow, further
corrections come into play.) We suppose that our particles
are small enough so that we can neglect the correction term.
Therefore, the hydrodynamic drag results in the following
driving forces acting on the particle:

g(x, r) = −1

r

∂ψ (x, r)

∂x
, f (x, r) = 1

r

∂ψ (x, r)

∂r
. (36)

Inserting the driving (36) with flow defined as (35) into the
general formalism presented in Sec. II, we can finally obtain
the probability density for the particle diffusing in a flowing
fluid in the absence of any external force.

In this work, we shall be interested only in the stationary
state. Therefore, in Eq. (7), as well as in the approximate
equations (24) and (29), the left-hand side vanishes. For
example, up to the first order in ε we obtain for the stationary
projected density the solution

p1(x) = A1(x)

{
c −

∫ x

0

j

A1(x′)[1 − εZ1(x′)]
dx′

}
, (37)

where the integration constant c and the total stationary cur-
rent j should be determined from the boundary conditions. In
the zeroth order, an analogous formula holds, further simpli-
fied by the absence of the Z term in the denominator. Taking
the higher order corrections in ε requires us to replace 1 −
εZ1(x) by an effective diffusion coefficient D(x) calculated
from the coefficients Ẑn in the same way as in Ref. [81].

We can see from (35) that the functions G00(x, r) and
f (x, r) which appear in the formalism of Sec. II are polynomi-
als of r2. This suggests the change of variables (x, r) → (x, v)
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according to

v = 1 − r2

h2(x)
. (38)

After such a substitution we can write

G00(x, r) = G̃00(x, v) = ζ0(x) + ζ1(x)v + ζ2(x)v2,
(39)

f (x, r) = f̃(x, v) = η0(x) + η1(x)v,

where the information on the shape of the tube is contained in
the set of functions ζα (x) and ηα (x). The explicit formulas for
them are given in the Appendix. Inserting (39) into (25) we

obtain

T I
1 (x, r) = T̃ I

1 (x, v) =
4∑

α=0

T I
1,α (x)vα,

(40)

T II
1 (x, r) = T̃ II

1 (x, v) =
2∑

α=0

T II
1,α (x)vα,

where the set of functions T I
1,α (x) and T II

1,α (x) can be expressed
through the set of functions ζα (x) and ηα (x), and explicit
expressions are again given in the Appendix. This formalism
allows us to perform the integrations in the formula (26)
independently of the actual shape of the tube. Indeed, we can
define the following functions of two variables:

�(z1, z2) =
∫ 1

0
e−z1v−z2v

2
dv,

�β (z1, z2) =
∫ 1

0

1

1 − v′ e
z1v

′+z2v
′2
∫ 1

v′
e−z1v

′′−z2v
′′2

v′′β dv′′ dv′,

�αβ (z1, z2) =
∫ 1

0
vα e−z1v−z2v

2
∫ 1

v

1

1 − v′ e
z1v

′+z2v
′2
∫ 1

v′
e−z1v

′′−z2v
′′2

v′′β dv′′ dv′ dv,

〈vα〉(z1, z2) = 1

�(z1, z2)

∫ 1

0
vα e−z1v−z2v

2
dv,

�β (v; z1, z2) =
∫ 1

v

1

1 − v′ e
z1v

′+z2v
′2
∫ 1

v′
e−z1v

′′−z2v
′′2

v′′β dv′′ dv′ dv. (41)

In fact, not all of them are independent. For example,
�β (0, x1, z2) = �β (z1, z2). In the Appendix we show how
〈vα〉(z1, z2) can be expressed using �(z1, z2). With help of the
functions defined in (41) we can write

γ ′
0(x) = η0(x) + ζ ′

0(x) + [η1(x) + ζ ′
1(x)]〈v〉 + ζ ′

2(x)〈v2〉

+ 2h′(x)

h(x)
ζ1(x)(1 − 〈v〉) + 4h′(x)

h(x)
ζ2(x)(〈v〉 − 〈v2〉),

(42)

and the formulas for γ1(x) and Z1(x) can be expressed in a
compact form:

γ ′
1(x) = 1

4�

4∑
β=0

[
2h′(x)h(x)

(
�β − �0β

�

)

+ h2(x)η1(x)(�1β − 〈v〉�0β )

]
T I

1,β (x),

Z1(x) = 1

4�

2∑
β=0

[
2h′(x)h(x)

(
�β − �0β

�

)

+ h2(x)η1(x)(�1β − 〈v〉�0β )

]
T II

1,β (x). (43)

In (42) and (43), the functions defined in (41) are written
without arguments. Doing that, we intend that the replacement
z1 ← ζ1(x), z2 ← ζ2(x) is performed everywhere in (42) and
(43). We believe that the advantage of this formalism lies

in the fact that the calculation of complicated integrals is
separated from the choice of geometry.

For backward projection of the density according to (30)
we shall also need the functions ωσ

1 (x, r) for σ ∈ {I, II}. Here
we use the same change of variables and write

ωσ
1 (x, r) = ω̃σ

1 (x, v)

= h2(x)

4

kσ∑
β=0

[
�β (v) − �0β

�

]
T σ

1,β (x). (44)

Here again, the missing arguments z1, z2 are intended to be
replaced by ζ1(x) and ζ2(x), respectively. The upper summa-
tion limit is kI = 4 and kII = 2. With all these building blocks
available, we can proceed to specific calculations.

However, before presenting the results, we must note an
important feature which largely changes the view on the
results of this section. It is easy to show that the diffusion
problem we solve here is singular. Indeed, suppose in general
that the driving field is composed of two parts, the first
one being the drift due to an incompressible flow, and the
second one being the conservative force originating from a
fixed scalar potential. Then, if the streamlines of the flow
are everywhere perpendicular to the conservative force, then
there exists a stationary solution which depends only on the
conservative force. Therefore, the flow can be completely
ignored.

In our case the walls of the tube play the role of external
potential, which is constant inside the tube. At walls, the gra-
dient of the potential is perpendicular to the walls, elsewhere
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it is zero. But next to the walls, pure hydrodynamic flow is
perpendicular to the walls, hence the gradient of the potential
is perpendicular to the flow. This leads to the conclusion
that in the case of purely hydrodynamic drift, the stationary
density is constant everywhere inside the tube. The exact
solution of the problem is a uniform density.

Therefore, the ε expansion for the backward projected
density (11) must sum to a constant, if correct. Here we
shall interpret it as a test of reliability of the approximations
based on truncation of the ε expansion. If the first-order
approximation in ε yields a result which is closer to uniform
density than the zeroth order, we can deduce that we are on a
good track. We shall see in the next subsection that it is indeed
so, and we shall also assess quantitatively how close we are to
the known exact result.

2. Specific example

We shall use spatially periodic and mirror-symmetric mod-
ulation of the tube diameter. Specifically, we choose

h(x) = d

2
(2 − a cos �x). (45)

The parameter d sets the average diameter, a is the amplitude
of variation, and � the spatial frequency of the modulation. So
the spatial period is L = 2π/�. With this choice of geometry,
and using the flow described by the stream function (35), we
obtain the following set of functions:

ζ2(x) = −ζ0(x) = q

2π

a� sin �x

2 − a cos �x
,

η1(x) = 8q

π

1

d2(2 − cos �x)2
,

ζ1(x) = η0(x) = 0. (46)

Using them, we can directly apply the formalism of the
last subsection to obtain the functions γ0(x), γ1(x), and Z1(x)
and the core of the backward projector ωσ

1 (x, r). Now we can
proceed to calculation of the particle density.

We are interested in the stationary states with spatial period
L. Let us find the projected density first. The general stationary
solution (37) should obey p1(x) = p1(x + L). This condition
fixes the constant c. Moreover, we expect that the average
density is such that there is one particle per period, i.e.,∫ L

0 pa(x) dx = 1. This condition is used to fix the stationary
current j. Finally, we obtain the solution (up to the first order
in ε) in the form

p1(x) = jA1(x)

1 − e−γ̃1(L)+γ̃1(0)

∫ x+L

x

dx′

A1(x′)[1 − εZ1(x′)]
, (47)

where γ̃1(x) = γ0(x) + εγ1(x) and the stationary current is
given as

j = 1 − e−γ̃1(L)+γ̃1(0)∫ L
0 A1(x)

∫ x+L
x {A1(x′)[1 − εZ1(x′)]}−1 dx′ dx

. (48)

Finally, let us write the formula for the backward projected
density:

ρ1(x, r) = j e−G00(x,r)

{
1 + εωI

1(x, r)

1 − e−γ̃1(L)+γ̃1(0)

×
∫ x+L

x

e−γ̃1(x′ )+γ̃1(x)

A00(x′)[1 − εZ1(x′)]
dx′

− εωII
1 (x, r)

A00(x)[1 − εZ1(x)]

}
. (49)

This result holds up to the first order in ε. For comparison,
we shall also compute analogous results in the zeroth order in
ε. We shall not list here explicitly the formulas, because they
are obtained from (47), (48), and (49) just by setting ε = 0.
Spatial distribution of the particle current can be found from
(49) using formula (31) for the axial component and formulas
(33) and (34) for the radial component.

We show in Fig. 1 results of the calculation of density
(indicated by shades) and current (indicated by streamlines
and arrows). We can clearly see that the zeroth approximation
exaggerates the influence of the varying tube diameter on the
particle probability density. The radial component of the flow
pushes the particle too much toward the axis, when the flow
is convergent, and too much to the wall, when the flow is
divergent. However, it is also clear that this artifact of the
zeroth order is extensively corrected by the first order, where,
on the contrary, the compensation seems again to be too strong
and the positions of maxima and minima are swapped. It
points to the necessity of taking the higher order corrections to
converge to the constant density, which is possible in principle
within our mapping procedure, but technically it is extremely
difficult. So we end up at the first order and continue our
analysis within the following consideration.

Deviations of the stationary density from constant are
(mostly) of the opposite signs in the zeroth order and after
the first-order correction, Figs. 1(a) and 1(b). For any tested
parameters a and q, we could (heuristically) find an opti-
mum value of ε ∈ (0, 1) minimizing these deviations [see
Fig. 1(c)], calculated for ε = 0.7 (ε could be understood as
an adjustable parameter, capable of involving partially also
the higher order corrections, if a proper condition is given;
here it is the requirement of a constant stationary ρ). At
least, we can consider the results obtained within the zeroth-
and the first-order approximations as the lower and upper
estimates of the exact values. In the next subsection we shall
apply the method to nontrivial situations containing additional
external fields, using mostly the zeroth- and first-order ap-
proximations as the lower and upper estimates of the correct
results.

B. Flotation and centrifugation

Let us now investigate the influence of external conserva-
tive forces. Here we consider just two possibilities, a uniform
axial force and a centrifugal force, which is always perpen-
dicular to the axis and its modulus scales with the distance
from the axis. It can be realized by putting the entire tube
into rotation around its axis. While the centrifugal force comes
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FIG. 1. Probability density for a particle carried by the flow in
a tube with profile (45), where � = 1, d = 2, and a = 0.5. The
fluid flow is described by (35), where q = 2. (a) Backward projected
density in an approximation up to the first order in ε, as given in
(49). (b) The same in the zeroth order in ε. (c) The data for ε = 0.7.
The particle current is indicated by the streamlines, and it is also
visualized by the arrows showing direction and size of the current.
The darker shade means larger probability density, according to the
legend shown on the top of the figure.

from buoyancy, i.e., from the difference in specific weight of
the fluid and the material of the particles, the axial force can
originate from two sources. The first option is gravity, i.e.,
buoyancy, as in the case of centrifugal force. It requires only
making the tube axis vertical. The second option relies on
endowing the particles with electrostatic charge and putting
the apparatus in a uniform electric field oriented parallel to the
axis. Anticipating the dependence on the size of the particles,
we note that the forces originating from buoyancy scale with
volume, i.e., the third power of the particle radius, while elec-
trostatic force is independent of the radius. For simplicity, we
shall use the term “flotation” for both mechanisms induced by
axial force, while the term centrifugation obviously pertains
to the centrifugal force.

So let us suppose that addition of the conservative forces
changes the expression (36) to

g(x, r) = −1

r

∂ψ (x, r)

∂x
+ br,

f (x, r) = 1

r

∂ψ (x, r)

∂r
− f0,

(50)

where b and f0 are the measures of the centrifugal and axial
forces, respectively. Consequently, the functions (46) become

ζ2(x) = q

2π

a� sin �x

2 − a cos �x
,

ζ1(x) = b d2

8
(2 − a cos �x)2,

ζ0(x) = − q

2π

a� sin �x

2 − a cos �x
− b d2

8
(2 − a cos �x)2,

η1(x) = 8q

π

1

d2(2 − cos �x)2
,

η0(x) = − f0. (51)

This set of five functions serves as an input to the formalism
developed in the last section. Therefore, we can directly
calculate the particle density and current at each point of the
tube. However, before we proceed to such a calculation, we
must clarify the dependence of all processes involved on the
size of the particles.

Introducing the forces f and g and scaling the time by
D0 in Sec. II A 1, we work in units of measurement where
the diffusion coefficient D0 = kBT/(6πηR) and mobility μ =
1/(6πηR) as well as the particle radius R are unity. We call
these units the reduced units of measurement. This way the
dependence on particle size is made implicit, because in units
of measurement, where the length unit is fixed, the diffusion
coefficient is inversely proportional to the particle radius. We
shall return to explicit dependence on the particle radius using
such units of measurements in which the fractions kBT/(6πη)
and μ = 1/(6πη) are unity, and the unit of length is fixed by
a reference particle radius R0, chosen at will. In the rest of the
article we shall call these units of measurement the physical
units. Then we introduce the quantity Rred = R/R0, called
the reduced particle radius. For Rred = 1 both the diffusion
coefficient and mobility are unity.

The volumetric flow Q and the current J expressed in
physical units of measurement are related to corresponding
quantities q and j expressed in the reduced units as

q = Q Rred, J = j/Rred. (52)

The conservative forces remain seemingly unaffected, be-
cause both diffusion coefficient and mobility scale equally
with the particle size. However, we must take into account
yet another source of particle size dependence. Indeed, the
forces originating in buoyancy, i.e., the centrifugal force and
the gravitational axial force, are proportional to the volume of
the particle. Therefore, we must also replace

b = B R3
red, f0 = F0e + F0g R3

red, (53)
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FIG. 2. Probability density for a particle carried by the flow in a
tube with the same profile and fluid velocity as in Fig. 1 and Q = 2
calculated in the first (a) and the zeroth (b) order in ε. The particles
are in an external axial electrostatic field with strength F0e = 0.2. The
reduced particle size is Rred = 2. Meaning of the symbols is the same
as in Fig. 1.

where F0e measures the electrostatic and F0g the gravitational
component of the axial force in the physical units, while B
measures the centrifugal force in the physical units.

Let us first look at the effect of flotation. We show in Figs. 2
and 3 particle density calculated in the zeroth (panels b) and
the first-order (panels a) approximation in ε for axial force
of electrostatic origin, i.e., not scaling with the size of the
particle, F0e = 0.2 and reduced particle sizes Rred = 2 and
Rred = 0.5, respectively.

Generically, we observe that the role of the first correction
in ε is less significant when conservative forces dominate.
Here it is the case with Rred = 0.5 (Fig. 3), as can be clearly
seen from the overwhelming flow of the particles to the
left, despite the hydrodynamic drift, which tends to push
the particles to the right. However, when the hydrodynamic
forces are comparable, or even dominant to the conservative
forces, inclusion of the first correction in ε is indispensable,
as demonstrated in Fig. 2. On the one hand we can see that the
competition of axial force with hydrodynamic drag results in
a complicated pattern of the particle current, also containing
vortices, and on the other hand, we can observe that the first
correction in ε significantly changes the particle density.

Now let us turn to the effect of centrifugation. We show in
Figs. 4 and 5 the particle density for B = 0.2 and the reduced
particle sizes Rred = 0.5 and Rred = 1.5, respectively. We can
observe how the centrifugal force concentrates the particles in
the farthest periphery of the tube. This effect is stronger for
larger particles, as buoyancy is proportional to volume of the
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FIG. 3. Probability density for a particle carried by the flow in a
tube with the same profile and fluid velocity as in Fig. 1 and Q = 2.
The particles are in an external axial electrostatic field with strength
F0e = 0.2. The reduced particle size is Rred = 0.5. Meaning of the
symbols is the same as in Fig. 1.

particles. Comparing the results of the zeroth (panels b) and
the first order (panels a) in ε, we come to the same conclusion
as in the case of axial force, namely, that inclusion of the
first correction is crucial when the conservative forces are
comparable or weaker than the hydrodynamic drift. Contrary
to the axial force, the particle current looks very simple,
without any vortices. Indeed, there is no mechanism to create
them, as long as there are no vortices in the flow of the fluid
itself.

C. Particle separation

A microfluidic device can work as a particle separator if
there is sufficiently strong dependence of its parameters on
particle size. The mechanism we investigate here is analogous
to chromatography, where each substance is carried by a
moving phase at a specific velocity. In our case, we need that
the average particle velocity be size-specific. In order to study
our problem from this point of view, we calculate the total
current, as given by (48). In fact, it is more practical to express
the average particle velocity 〈ẋ〉 = 2πJ/� from it, because
this quantity is independent of average particle density.

Let us first investigate flotation. We show in Fig. 6 the
velocity of particles subject to gravity in a vertical tube. We
assume that the flow of the carrying fluid goes upward, thus
gravity acts against it. Therefore, particles can be separated
according to which of the driving agents prevails. For very
small particles, gravity is negligible, and the particle velocity
is dictated only by the velocity of the fluid. On the contrary,

032606-9



FRANTIŠEK SLANINA AND PAVOL KALINAY PHYSICAL REVIEW E 100, 032606 (2019)

0.01240.0120.0116ρ =
r

(a)2.5

2

1.5

1

0.5

0

x

r

(b)

3210−1−2−3

2.5

2

1.5

1

0.5

0

FIG. 4. Probability density for a particle carried by the flow in a
tube with the same profile and fluid velocity as in Fig. 1 and Q = 2.
The particles are subject to centrifugal force with strength B = 0.2.
The reduced particle size is Rred = 0.5. Meaning of the symbols is
the same as in Fig. 1.

for large particles gravity is dominant and particles are pushed
back down. We are not free to tune the parameter F0h, which
measures the buoyancy, but adjusting the fluid velocity (i.e.,
the parameter Q) we can sharply separate particles larger than
prescribed Rred from smaller ones.

The separator based on electrostatic flotation is similar in
principle; an external field pushes the particles against the
flow. But in contrast to gravity, the force is independent of
the particle size. This leads to the opposite trend in the size
dependence, compared to gravity. Smaller particles have a
larger diffusion constant and mobility, and therefore driving
by external field prevails. On the contrary, larger particles are
more attached to the fluid flow, and external field becomes
negligible. In this case, we can tune both the strength of the
external field and the velocity of the fluid. In this way we again
adjust the critical Rred so that smaller particles will be pushed
back and larger particles will be carried farther by the fluid.
We show the dependence of the particle velocity on Rred in
Fig. 7.

Separation by centrifugation works differently. The tube
rotates around its axis, and particles are pushed toward the
walls. In our geometry the diameter of the tube varies period-
ically, and the particles accumulate preferentially in the areas
of larger diameter and they are wiped out from the central
area where the flow has large velocity. This results in dimin-
ishing the total flow of particles. The separation capability
is based on the fact that larger particles feel more strongly
the centrifugal force. However, in contrast to flotation, the
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FIG. 5. Probability density for a particle carried by the flow in a
tube with the same profile and fluid velocity as in Fig. 1 and Q = 2.
The particles are subject to centrifugal force with strength B = 0.2.
The reduced particle size is Rred = 1.5. Meaning of the symbols is
the same as in Fig. 1.

particle velocity is only slowed, rather than reverted, when
the centrifugal force increases. We show in Fig. 8 dependence
of the particle velocity on Rred. For very small particles, the
velocity corresponds to particles carried freely by the flow, as
in the case of gravitational flotation.

Rred

ẋ

21.510.50

0.2

0

−0.2

−0.4

−0.6

FIG. 6. Dependence of the average particle velocity on the re-
duced particle diameter. The tube has profile (45),where � = 1,
d = 2, and a = 0.5, and the fluid flow is described by (35) with
Q = 2 (• and �) and Q = 1 (� and �). The particles are subject to
gravity in the axial direction, with F0g = 0.1 (� and �) and F0g = 0.2
(• and �). The dashed lines here and in all following figures represent
the zeroth-order approximation; the solid lines depict calculations up
to the first order in ε.
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FIG. 7. Dependence of the average particle velocity on the re-
duced particle diameter. The tube has profile (45), where � = 1,
d = 2, and a = 0.5 and the fluid flow is described by (35) with
Q = 2 (• and �) and Q = 1 (� and �). The particles are subject
to electrostatic force in the axial direction with F0e = 0.1 (� and �)
and F0e = 0.2 (• and �).

It seems that the best separations can be obtained by combi-
nation of flotation and centrifugation. We show in Fig. 9 how
the average particle velocity depends on the particle radius,
when the particles are subject to centrifugal and electrostatic
force. By tuning the field and rotation speed we can adjust the
maximum current at the preferred particle size.

Another interesting quantity which can influence separa-
tion of the particles is an effective diffusion constant D∗. The
Reimann formula [92,93] is extended by including the spatial
dependent effective diffusion coefficient D(x) [50,94],

D∗ =
L2

∫ L
0

dx
A(x)D(x)

∫ x
x−L

dz
A(z)D(z) I

2(z)[ ∫ L
0

dx
A(x)D(x) I (x)

]3 , (54)

where

I (x) =
∫ x

x−L
A(y) dy (55)
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FIG. 8. Dependence of the average particle velocity on the re-
duced particle diameter. The tube has profile (45), where � = 1,
d = 2, and a = 0.5, and the fluid flow is described by (35) with
Q = 2 (• and �) and Q = 1 (� and �). The particles are subject
to centrifugal force with B = 0.1 (� and �) and B = 0.3 (• and �).
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FIG. 9. Dependence of the average particle velocity on the re-
duced particle diameter. The tube has profile (45), where � = 1, d =
2, and a = 0.5, and the fluid flow is described by (35) with Q = 2.
The particles are subject to combined centrifugal force with B = 0.3
and electrostatic axial force with F0e = 0.1 (�) and F0e = 0.05 (•).

integrates properties of a periodic channel given by its cor-
rugation over one period L and characterizes diffusion on
a much larger scale than L. In our case, A(x) = A0(x) and
D(x) = 1 in the zeroth-order approximation, while A(x) =
A1(x) and D(x) = 1 − εZ1(x) after also taking the first-order
correction.

We present the effective coefficient D∗ depending on the
axial force f0 for several values of q in Fig. 10 for two

D
∗
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FIG. 10. Dependence of the effective diffusion constant on the
axial force. The tube has profile (45), where � = 1; d = 2; a = 0.2
(a) and a = 0.5 (b). The fluid flow is described by (35) with q =
2 (�), q = 6 (�), q = 10 (•). The dashed lines are results of the
zeroth-approximation in ε, and the full lines include the first-order
correction in ε.
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amplitudes of corrugation, a = 0.2 (upper panel) and a = 0.5
(lower panel). The data are calculated within the zeroth-order
approximation (dashed lines) and including the first-order
correction (solid lines); these lines are supposed to determine
the upper and lower estimates for the exact results. The
typical behavior of all curves exhibits a minimum at the
force corresponding to changing direction of the averaged
velocity. It can be explained by Fig. 2, which depicts the
density and fluxes for such parameters. The particles are
partially trapped in whirls at the bottlenecks, which can slow
the diffusion on a large scale. It is an effect of corrugation of
the tube; the minimum of D∗ for larger amplitude a is more
distinctive.

The values of D∗ for the first-order approximation in the
limit q → 0 and f0 → 0 are well approximated by the formula
of Reguera et al. [50], giving D∗ = 0.970575 or 0.832722 for
a = 0.2 and 0.5, respectively. The zeroth-order D∗ approaches
the values 0.980137 and 0.880224, respectively, calculated
for the FJ approximation. The first-order corrections due to
corrugation decrease the diffusion coefficient D(x)(< D0), as
well as the effective D∗, which can be seen in Fig. 10(b) for
a = 0.5, q = 2 and 6. On the other hand, the presence of the
flux increases the diffusion coefficient D(x) = 1 − Z1(x) �
1 + q2/[48π2h2(x)] > 1, if approximated by the leading
terms [77]. The other terms included in our first-order correc-
tion Z1 even raise the resultant D∗ above the zeroth order, as
seen in Fig. 10(a) for a = 0.2, when the corrugation is small
and does not play an important role.

Nevertheless, both our approximations demonstrate that
unlike the diffusion in a flat tube, where the separation is
based on changing direction of the net flux, there is a specific
regime in corrugated channels near the critical force f0 when
the particles are trapped and their effective dispersion is
minimized.

IV. CONCLUSIONS

The systematic procedure of mapping of 3D diffusion
problems with general, conservative as well as nonconser-
vative driving on an effective 1D diffusion problem was
presented here. It summarizes and generalizes development
obtained earlier for 2D geometry. We showed that in the
presence of nonconservative forces, like the hydrodynamic
drift, the lowest order approximation may not be satisfactory,
and calculation of the higher order corrections enabled by our
theory can improve reliability of the obtained results.

We applied the mapping procedure to diffusion of particles
driven primarily by the hydrodynamic flow. Because of the
complexity of the calculations, we restricted ourselves only
up to the first-order approximation. The stationary density in
the pure hydrodynamic driving represents a good test of our
calculations; the exact solution is a constant. As the deviations
of the zeroth-order and the first-order approximations from the
constant have opposite signs, we consider the results of both
approximations as the upper and the lower estimates of the
exact values.

For construction of particle separation devices, the hydro-
dynamic drift has to be combined with other (conservative)
forces. We considered two of them, a constant force acting

along the axis (e.g., gravitation, flotation) and the centrifugal
force, when the tube rotates around its axis. For a fixed hydro-
dynamic flow and growing axial force, the resultant direction
of the net flow of particles depends on their properties, e.g.,
the size, as expected.

By tuning the volumetric flow of the fluid and the external
conservative fields we can adjust the critical particle size so
that particles larger than critical go in the opposite direction
than the particles smaller than critical. In this setting, we
closely observe the regime in which the competing forces are
almost equal and the net particle current approaches zero, i.e.,
around the critical particle size. In order to achieve as clean a
separation as possible, it is beneficial to have a low diffusion
coefficient. This is exactly what we observe; near the regime
of a zero particle current the effective diffusion coefficient
D∗ has a minimum. Its origin comes from the fact that the
particles are partially trapped, circulating in whirls near the
bottlenecks of the tube.

Correspondingly, one of the most important findings is
that the minimum of the effective diffusion constant becomes
more distinctive when the amplitude of corrugation of the tube
increases. This suggests that separation in corrugated tubes
might be more accurate than in the straight ones.

Besides that, the centrifugation separation technique based
on axial rotation of the tube relies entirely on the corrugation
of the tube. Larger particles feel larger centrifugal forces and
are trapped in corrugation “pockets,” while small particles are
carried more freely by the flow. This suggests the application
as a cleaning device. However, the combination of centrifugal
and axial force leads again to a competition, which results
in a maximum in the dependence of the particle current on
particle radius. This means that in such a combined setup
movement of particles of specific size is preferred. This may
serve as a kind of chromatographic particle separator. The
corrugation of the tube is an essential component here, as
the separation effect of a centrifugal force is neutral in a
straight tube. The current technology of polydimethylsiloxane
molding (see, e.g., Ref. [14]) allows routine fabrication of
nearly any shape of such corrugation on the scale of several
micrometers, with submicrometer precision.

Generally speaking, an open question remains, namely,
whether the series in ε could be partially resummed, as was
done in Ref. [65]. This would result in a formula for an
effective position-dependent diffusion coefficient. For now,
technical difficulties hinder the progress in this direction. We
tried to emulate the resummation by adjusting the value of ε

by hand, which was rather successful, but this procedure is
too crude and not well controlled to be reliable in a generic
situation. Therefore, we leave the problem of resummation of
the ε series for future consideration.

An open problem of great practical importance is the
influence of hydrodynamic particle-particle interactions in
dense colloidal suspensions. Such interactions can have a
large positive impact on particle transport, as demonstrated
experimentally in a recent work [95]. If such transport occurs
in channels of variable diameter, hydrodynamic interactions
bring further complexity. Mapping such systems on an effec-
tive 1D problem is a challenge requiring substantially new
ideas, and this is the direction of future research.
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APPENDIX

1. Functions ζα(x) and ηα(x)

For pure hydrodynamic driving defined by (35) and (36) we have

ζ0(x) = − Q h′(x)

2πh(x)
, ζ1(x) = 0, ζ2(x) = Q h′(x)

2πh(x)
, η0(x) = 0, η1(x) = 2Q

πh2(x)
. (A1)

In more complicated cases, the functions ζ1(x) and η0(x) may not be zero.

2. Functions T I
1,α(x) and T II

1,α(x)

The set of functions T I and T II is

T I
0 (x) = ˜ζ ′

2(x)
2〈v4〉(x) + [2˜ζ ′

1(x)˜ζ ′
2(x) + +η1(x)˜ζ ′

2(x)]〈v3〉(x)

+
[
− ˜ζ ′′

2 (x) + ˜ζ ′
1(x)

2 + 2˜ζ ′
0(x)˜ζ ′

2(x) + η0(x)˜ζ ′
2(x) + η1(x)˜ζ ′

1(x) + ˜ζ ′
2(x)

2h′(x)

h(x)�(x)

]
〈v2〉(x)

+
{
− ˜ζ ′′

1 (x) − ˜η′
1(x) + 2˜ζ ′

0(x)˜ζ ′
1(x) + η0(x)˜ζ ′

1(x) + η1(x)˜ζ ′
0(x) + [˜ζ ′

1(x) + η1(x)]
2h′(x)

h(x)�(x)

}
〈v〉(x)

− [2˜ζ ′
1(x)〈v〉(x) + 2˜ζ ′

2(x)〈v2〉(x) + η1(x)〈v〉(x)]{˜ζ ′
0(x) + η0(x) + [˜ζ ′

1(x) + η1(x)]〈v〉(x) + ˜ζ ′
2(x)〈v2〉(x)},

T I
1 (x) = ˜ζ ′′

1 (x) + ˜η′
1(x) − 2˜ζ ′

0(x)˜ζ ′
1(x) − η1(x)˜ζ ′

0(x) − η0(x)˜ζ ′
1(x) + [2 ˜ζ ′

1(x) + η1(x)]{˜ζ ′
0(x) + η0(x) + [˜ζ ′

1(x) + η1(x)]〈v〉(x)

+ ˜ζ ′
2(x)〈v2〉(x)},

T I
2 (x) = ˜ζ ′′

2 (x) − ˜ζ ′
1(x)

2 − 2˜ζ ′
0(x)˜ζ ′

2(x) − η1(x)˜ζ ′
1(x) − η0(x)˜ζ ′

2(x) + 2˜ζ ′
2(x){˜ζ ′

0(x) + η0(x) + [˜ζ ′
1(x) + η1(x)]〈v〉(x)

+ ˜ζ ′
2(x)〈v2〉(x)},

T I
3 (x) = −2˜ζ ′

1(x)˜ζ ′
2(x) − η1(x)˜ζ ′

2(x),

T I
4 (x) = −˜ζ ′

2(x)
2
,

T II
0 (x) = 2h′(x)

h(x)�(x)
− [2˜ζ ′

1(x) + η1(x)]〈v〉(x) − 2˜ζ ′
2(x)〈v2〉(x),

T II
1 (x) = 2˜ζ ′

1(x) + η1(x),

T II
2 (x) = 2˜ζ ′

2(x). (A2)

In these formulas we defined the following combinations:

˜η′
0(x) = η′

0(x) + 2h′(x)

h(x)
η1(x),

˜η′
1(x) = η′

1(x) − 2h′(x)

h(x)
η1(x),

˜ζ ′
0(x) = ζ ′

0(x) + 2h′(x)

h(x)
ζ1(x),

˜ζ ′
1(x) = ζ ′

1(x) − 2h′(x)

h(x)
ζ1(x) + 4h′(x)

h(x)
ζ2(x),

˜ζ ′
2(x) = ζ ′

2(x) − 4h′(x)

h(x)
ζ2(x),

˜ζ ′′
0 (x) = ζ ′′

0 (x) + 2h′′(x)

h(x)
ζ1(x) + 4h′(x)

h(x)
ζ ′

1(x) − 6h′2(x)

h2(x)
ζ1(x) + 8h′2(x)

h2(x)
ζ2(x),
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˜ζ ′′
1 (x) = ζ ′′

1 (x) − 2h′′(x)

h(x)
ζ1(x) − 4h′(x)

h(x)
ζ ′

1(x) + 6h′2(x)

h2(x)
ζ1(x) − 28h′2(x)

h2(x)
ζ2(x) + 8h′(x)

h(x)
ζ ′

2(x) + 4h′′(x)

h(x)
ζ2(x),

˜ζ ′′
2 (x) = ζ ′′

2 (x) − 2h′′(x)

h(x)
ζ1(x) + 20h′2(x)

h2(x)
ζ2(x) − 8h′(x)

h(x)
ζ ′

2(x) − 4h′′(x)

h(x)
ζ2(x). (A3)

3. Expressions for 〈vk〉
Of course, 〈v0〉 = 1. For the first power we have

〈v〉(z1, z2) = − z1

2z2
+ 1

2z2�(z1, z2)
− e−z1−z2

2z2�(z1, z2)
, (A4)

and the recurrence formula

〈vk〉(z1, z2) = − z1

2z2
〈vk−1〉(z1, z2) + k − 1

2z2�(z1, z2)
〈vk−2〉(z1, z2) − e−z1−z2

2z2�(z1, z2)
(A5)

allows calculation of all higher powers.
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