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Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions
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The dynamic susceptibility of concentrated ferrofluids of magnetite-kerosene type is studied experimentally to
clarify the effect of interparticle interactions on the magnetization reversal dynamics and the ferrofluid relaxation
time spectrum. We synthesize six ferrofluid samples, four of which have the same wide particle size distribution
with a high (more than 2kT ) average energy of magnetic dipole interactions. These samples differ in particle
concentration and dynamic viscosity. The two remaining samples have a lower content of large particles and a
moderate energy of magnetic dipole interactions. For all samples, we measure the dynamic susceptibility in the
weak probing field at frequencies up to 160 kHz and the field amplitude dependence of the susceptibility at a
frequency of 27 kHz. The results show that the susceptibility dispersion at frequencies up to 10 kHz is due to
the rotational diffusion of colloidal particles and aggregates. Steric and hydrodynamic interparticle interactions
are the main reason for the strong concentration dependence of the viscosity and so they also strongly influence
the frequency dependence of the susceptibility. The influence of van der Waals and magnetic dipole interactions
on the susceptibility is manifested indirectly, through the formation of multiparticle clusters. The contribution of
clusters to the low-frequency susceptibility reaches 80%. Their large sizes (about 100 nm) shift the dispersion
region to frequencies of 1–100 Hz, depending on the temperature and particle concentration. Experiments at
27 kHz demonstrate the increase in the dynamic susceptibility with increasing field amplitude. This growth is
unexpected since all spectral amplitudes in the Debye function expansion of the dynamic susceptibility decrease
monotonically with increasing field. To clarify the situation, the auxiliary problem of the magnetodynamics of
a uniaxial particle in the alternating field is solved numerically. The Fokker-Planck-Brown rotational diffusion
equation is used. It is shown that an increase in the field amplitude reduces the anisotropy barrier and the Néel
relaxation time of particles and increases the dynamic susceptibility by one to two orders of magnitude compared
to the weak-field limit. The calculation results are in qualitative agreement with the experimental data and allow
us to propose a consistent interpretation of these data. We find that the increase in dynamic susceptibility with
increasing amplitude is observed when two necessary conditions are met: (i) The suspension viscosity and the
field frequency are high enough to cause the blocking of the rotational degrees of freedom of particles and
aggregates and (ii) particles with a large magnetic anisotropy are present in the ferrofluid.

DOI: 10.1103/PhysRevE.100.032605

I. INTRODUCTION

A. Quasiequilibrium susceptibility of ferrofluid

Ferrofluids are an example of disordered systems with
distinctive magnetic dipole interparticle interactions, which
can lead to a substantial (sometimes manifold) increase of
the system’s initial magnetic susceptibility as compared to
the susceptibility of noninteracting particles [1–5]. Over the
years, many different theoretical approaches have been used
to describe this effect: classical Weiss [6–8] and Onsager [9]
models, the mean-spherical approximation by Wertheim and
Morozov [3,10–12], the high-temperature approximation by
Buyevich and Ivanov [13,14], the virial expansion technique
by Morozov [15], and the cluster expansion theory by Huke
and Lücke [16–18].

*pshenichnikov@icmm.ru

Later on, the modified mean-field model was frequently
used to describe the equilibrium magnetization of ferrofluids.
It was first proposed in [19] and was theoretically justified
and refined in [20–22]. The refined version, known as the
second-order modified mean-field model (MMF2), states that
the equilibrium susceptibility χ0 of the ferrofluid with strong
interparticle interactions can be represented as a series ex-
pansion in powers of the Langevin susceptibility χL, which
describes the magnetic response of noninteracting dipoles

χ0 = χL

(
1 + χL

3
+ χ2

L

144

)
, χL = μ0m2n

3kT
, (1)

where μ0 = 4π × 10−7 H/m, m = πMsx3/6 is the particle
magnetic moment, n is the particle number concentration,
Ms is the saturation magnetization of the particle material
(480 kA/m for magnetite), x is the diameter of the particle
magnetic core, k is the Boltzmann constant, and T is the
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temperature. An important advantage of MMF2 is that it
allows one to take into account in the proper manner the
polydispersity of particles. To do this, it is necessary to replace
the squared magnetic moment m2 in Eq. (1) with its ensemble
average 〈m2〉. This model is in good agreement with the ex-
perimental and numerical results for the equilibrium magneti-
zation over a wide range of temperatures and magnetic phase
concentrations [22]. The only exception is ferrofluids with a
very high (of the order of 102) initial magnetic susceptibility.
For these fluids, MMF2 underestimates the susceptibility due
to inadequate consideration of the steric and magnetic dipole
interactions [5].

For the monodisperse ferrofluid, the Langevin susceptibil-
ity χL is proportional to the product of the particle volume
fraction ϕ by the dipolar coupling constant λ, which is the
ratio of the magnetic dipole interaction energy of two particles
with a minimum distance between their centers to the thermal
energy

χL = 8λϕ, λ = μ0m2

4πd3kT
, ϕ = πd3n

6
, (2)

where d = x + 2δ is the particle hydrodynamic diameter and
δ is the total thickness of the protective shell and the non-
magnetic layer on the particle surface. From the aforesaid it
follows that Eq. (1) can be considered as a special case of the
double series expansion of susceptibility in powers of ϕ and
λ, in which only the terms containing the product of these
parameters are retained. Good agreement between Eq. (1)
and the experimental and numerical results [5,22] means that
these terms make the main contribution to the ferrofluid initial
susceptibility, at least at moderate values of ϕ and λ. There is
a simple explanation of this fact. Both the parameter λ and
the Langevin susceptibility χL have the meaning of the ratio
of the dipole-dipole interaction energy to the thermal one. The
only difference is that in the former case the interaction energy
is calculated at the minimum distance between the centers of
particles, which is equal to their diameter, whereas in the latter
case the interaction energy is calculated at the mean distance
determined by the particle number concentration n. Thus, the
parameter λ defines the probability of particle aggregation
and the lifetime of the formed aggregates, and the Langevin
susceptibility can be treated as a measure of the intensity of
magnetodipole interactions averaged over the sample volume.
At small values of λ the number of aggregates in the ferrofluid
is inessential and they do not affect the magnetization of
the system. In this case, the Langevin susceptibility appears
to be the single dimensionless parameter which defines the
influence of magnetic dipole interactions on the equilibrium
magnetization. So the region where Eq. (1) is valid involves
low and moderate values of the dipolar coupling constant.
The formation of large aggregates at λ > 2 breaks the system
homogeneity at the mesoscopic and macroscopic scales, and
χL ceases to be a universal dimensionless parameter defining
the influence of interparticle interactions on the equilibrium
susceptibility of the system.

Real ferrofluids, as a rule, have a wide particle size distribu-
tion, which is why an unambiguous definition of the coupling
constant λ is impossible. Its numerical value depends on the
problem being solved and the method of ensemble averaging
[5,16,18,23–25]. In contrast, the definitions of the Langevin

susceptibility and the volume fraction are straightforward:

χL = μ0〈m2〉n
3kT

, ϕ = π〈d3〉n
6

. (3)

For this reason, it is tempting to use the relaxation χL =
8λϕ in Eq. (2) as the governing equation for the dipolar
coupling constant λ of the polydisperse system. It is exactly
this approach that will be used in our work. Hereinafter, for
the sake of convenience, the analysis and interpretation of the
experimental data will be performed using the quantity

λ = χL

8ϕ
(4)

as the dipolar coupling constant, bearing in mind that the
Langevin susceptibility χL and hydrodynamic concentration
ϕ are determined during independent experiments. Equation
(4) allows us to accurately fit experimentally obtained de-
pendences of the initial susceptibility on temperature and
concentration at λ > 2 [5].

Ferrofluids with high initial susceptibility (tens of units)
are of considerable interest to researchers as the systems in
which the effects of peculiar magnetic dipole interactions are
most pronounced. By that we mean the field-induced first-
order phase transitions, which were repeatedly observed in
laboratory experiments [24–30], and the second-order phase
transitions, which were observed in numerical simulations
and were predicted by some analytical models [6,31–36].
In the applied problems, a high initial susceptibility (other
things being equal) increases the system’s response to the
weak probing field. In the latter case, the question arises
about the range of applied fields, within which the ferrofluid
magnetization is linearly proportional to the field and the sus-
ceptibility can be considered constant. In the quasistationary
regime (i.e., at ωτ � 1, where ω is the field frequency and τ

is the magnetization relaxation time), the condition of a weak
probing field is equivalent to the smallness of the Langevin
parameter ξ . If an error of the order of 1% is permissible, the
condition can be written as

ξ = μ0mH0

kT
� 0.3, (5)

where H0 is the magnetic-field amplitude. For typical com-
mercial ferrofluids of the magnetite–liquid hydrocarbon–oleic
acid type, Eq. (5) is fulfilled at H0 = 400–500 A/m [37].

In an alternating magnetic field of ultrasonic frequency
(ωτ ∼ 1), the system susceptibility is primarily determined
by the magnetization relaxation time τ and its dependence on
the field value and interparticle interaction effects including
particle aggregation. Although recently there have been many
papers dealing with the effect of interparticle interactions on
the magnetization dynamics (for example, [38–40]), the prob-
lem is still far from being solved. The available information
concerns the influence of magnetic dipole interactions either
on the dynamics of magnetic hard particles in a liquid or
on the dynamics of superparamagnetic particles frozen into a
solid matrix. Thus, according to Refs. [38–40], in ferrofluids
with moderate concentrations of the magnetic phase, the
magnetic dipole interaction leads to an overall increase in
the imaginary part of the susceptibility and shifts its peak
towards lower frequencies, whereas the relaxation time of
magnetization increases by a factor of 2. Taking account of the
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orientation diffusion of the magnetic moment inside the par-
ticle leads to the problem of the influence of magnetic dipole
interactions on the height of the potential barrier and on the
coercive force Hc. According to Refs. [41,42], the influence of
the dipolar interparticle interaction on the energy barrier den-
sity depends qualitatively on the single-particle anisotropy.
For low anisotropy, the shift is towards higher barriers at
increasing interaction strength, whereas for moderate and high
anisotropy values the shift is in the opposite direction. This
interaction significantly decreases the energy barrier heights
for a large fraction, at very moderate volume concentrations
of particles (0.05). Similar conclusions regarding the effect of
magnetic dipole interactions on the coercive force were made
in [43,44]. At low values of the anisotropy energy (compared
to the energy of thermal motion), the interactions lead to an
increase in the local energy barriers, resulting in an increase of
Hc with an increase of the packing density ϕ. For large values
of the anisotropy energy there is a decrease in the coercive
force Hc with ϕ.

In this work we investigate experimentally the dynamics of
the magnetization reversal of concentrated ferrofluids such as
magnetite in kerosene systems with a high energy of magnetic
dipole interactions, a wide distribution of particles, and a high
cluster content. In such a system, magnetization reversal of
large particles with high magnetic anisotropy energy is due to
their rotation in the liquid matrix (Brownian orientation diffu-
sion mechanism). Therefore, the steric and hydrodynamic in-
teractions should play an important role in the low-frequency
dynamics. At frequencies of tens of kilohertz and more, the
Brownian diffusion mechanism is blocked and the response of
the system to the external probing field is associated only with
overcoming the internal potential barriers subjected to the
superimposed local magnetic fields created by neighboring
particles. Hence, our main concern is to gain insight into
the role of hydrodynamic interactions in highly concentrated
solutions and to estimate the possible effect of magnetic
dipole interactions on the Néel mechanism of magnetization
reversal of single-domain particles.

B. Ferrofluid in an alternating magnetic field

In the alternating magnetic field H = H0 exp(iωt ), the
ferrofluid magnetization changes periodically with the fun-
damental frequency ω and also contains high-order harmon-
ics due to nonlinearity of the magnetization curve. Time-
dependent magnetization can be expanded in the Fourier
series

M =
∞∑

k=0

Mk exp{i[(2k + 1)ωt − 
k]}, (6)

where Mk is the amplitude of the (2k + 1) harmonic and

k is its initial phase angle. In the weak-field limit, the
magnetization is directly proportional to the field, and the
right-hand side of Eq. (6) contains only the first term with
κ = 0. In this case, it is convenient to introduce the coefficient
of proportionality between M and H in the form of the initial
dynamic susceptibility

χ̂ = M0

H0
(cos 
0 − i sin 
0) = χ ′ − iχ ′′. (7)

The real and imaginary parts of Eq. (7) are responsible for the
in-phase and out-of-phase components of magnetization, re-
spectively. Here χ ′′ characterizes the energy dissipation in the
ferrofluid. For the model system with a single relaxation time
τ , the frequency dependence of the dynamic susceptibility is
given by the well-known Debye formulas

χ ′ = χ0

1 + ω2τ 2
, χ ′′ = χ0ωτ

1 + ω2τ 2
. (8)

In the weak-field limit, the quantity χ0 = M0/H0 in Eq. (8) is
clearly the equilibrium susceptibility. In strong fields, this is
the linear susceptibility, i.e., the ratio between the amplitude
of the fundamental harmonic of M and the field amplitude.
However, real ferrofluids have a wide spectrum of relaxation
times due to polydispersity of single-domain particles, the
formation of clusters, and the existence of two independent
relaxation mechanisms (Brownian and Néel). For this rea-
son, Eq. (8) for real ferrofluids can be transformed into the
series expansion in Debye functions. In particular, the low-
frequency part of the dynamic susceptibility spectrum (which
we are interested in) can be described using a relatively small
number (Q = 5–8) of the expansion terms, each of which
corresponds to a separate fraction of Brownian particles (or
clusters) with the fixed relaxation time τi [45,46],

χ ′(ω) = A0 +
Q∑

i=1

Ai

1 + ω2τ 2
i

, χ ′′(ω) =
Q∑

i=1

Aiωτi

1 + ω2τ 2
i

,

(9)

where the spectral amplitudes Ai denote the contribution of the
ith Brownian fraction to the equilibrium susceptibility and A0

describes the frequency-independent (up to ω/2π ∼ 105 Hz)
contribution of the smallest particles with the Néel relaxation
mechanism. The sum of all spectral amplitudes is obviously
nothing more than the equilibrium initial susceptibility. If the
ith fraction is represented by individual particles, its spectral
amplitude can be described by Eq. (1),

Ai � μ0
〈
m2

i

〉
ni

3kT

(
1 + χL

3
+ χ2

L

144

)
, (10)

where ni is the particle concentration in the ith fraction.
According to Eq. (10), the spectral amplitude is proportional
to the second power of the magnetic moment, i.e., to the sixth
power of the magnetic core diameter. This means that the main
contribution to the quasiequilibrium susceptibility is made
by the coarsest fractions. Equation (10) is not suitable for
the description of multiparticle clusters (aggregates), and the
corresponding spectral amplitudes can be obtained from the
experimental dispersion curves for the dynamic susceptibility
[45,46].

As it will be shown below, the existence of two independent
mechanisms of the magnetization relaxation in ferrofluids is
of crucial importance for the interpretation of experimental
data. Let us briefly recall these mechanisms. For a uniaxial
single-domain particle embedded in a solid matrix, the most
energetically favorable orientations of the magnetic moment
are along or against the easy axis. These two states are
separated by the energy barrier KVm, where K is the magnetic
anisotropy constant and Vm is the volume of the particle
magnetic core. In the weak applied field, this barrier can be
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overcome due to thermal fluctuations within the particle itself,
which corresponds to the Néel relaxation mechanism [47].
The characteristic (Néel) time τN required to overcome the
barrier grows exponentially with decreasing temperature, i.e.,
τN ∝ exp σ , where σ is the reduced barrier height (anisotropy
parameter)

σ = KVm

kT
. (11)

For a more accurate estimation of the Néel relaxation time,
the approximation formula

τN = τ0
eσ − 1

2

[
1

1 + 1/σ

√
σ

π
+ 2−σ−1

]−1

(12)

can be used [48], where τ0 ∼ 10−9 s is the Larmor precession
damping time. If ωτN 
 1, the magnetic moment is frozen
into the particle and the Néel relaxation can be neglected. In
this case, the magnetic response of the particle is only due
to the magnetic moment fluctuations in the vicinity of the
easy axis and it can decrease by several orders of magnitude
compared to the low-frequency range ωτN � 1 [49]. For a
particle in a liquid matrix, i.e., for ferrofluids, the situation
is different since now the moment can fluctuate due to the
rotation of the particle itself. The reorientation of the easy
axes provides the Brownian relaxation mechanism with the
characteristic time τB [1],

τB = 3ηV

kT
, (13)

where η is the ferrofluid dynamic viscosity and V is the
particle hydrodynamic volume. The magnetization dynamics
in an applied field is determined by that of two relaxation
mechanisms, which ensures the shortest relaxation time.

The Brownian and Néel relaxation times depend differently
on the particle volume. The condition τN = τB gives the char-
acteristic magnetic core diameter x∗ (the so-called Shliomis
diameter), which corresponds to switching out the relaxation
mechanism. If x < x∗, then the Néel relaxation mechanism
prevails, and if x > x∗, then the Brownian mechanism is pre-
dominant. Generally speaking, x∗ does not coincide with the
limiting size of superparamagnetic particles: The Brownian
fraction includes both magnetically hard particles and some
superparamagnetic particles with τN > τB.

Cubic crystals of magnetite exhibit a very weak crys-
tallographic anisotropy. The effective magnetic anisotropy
constant of particles K is determined to a greater degree by
the shape anisotropy. The latter becomes predominant at a
slight nonsphericity of particles of about a few percent. For
this reason, the behavior of magnetite colloidal particles in
the applied field is similar to that of uniaxial crystals, which is
confirmed in particular by birefringence experiments [50,51].
For magnetite ferrofluids, according to the estimates given
in Ref. [52], x∗ ≈ 16–18 nm, τN = 10−10–10−5 s, and τB =
10−5–10−3 s.

II. SAMPLE PREPARATION AND DESCRIPTION

In the experimental part of this work, our attention was
focused on obtaining ferrofluid samples with a large value
of the dipolar coupling constant and accordingly with a high

initial susceptibility (for high particle concentrations). As can
be seen from Eqs. (3) and (4), the most effective way to do
this is to increase the average square of the magnetic moment
〈m2〉 by increasing the average particle diameter and/or the
relative width of the particle size distribution. To date, in the
literature there have been several articles in which ferrofluids
with a high (of the order of 102) initial susceptibility were
synthesized. First of all, these are standard ferrofluids of the
magnetite–liquid hydrocarbon–oleic acid type. High suscep-
tibility was obtained by separating the coarse fraction of par-
ticles [5,53–55]. Depending on the particle concentration and
temperature, the initial susceptibility varied from 60 to 120
SI units and the coupling parameter λ had a value of 2–2.5.
Second, these are iron nitride–based ferrofluids with record
high magnetic permeabilities reaching 180 units [56,57].

In this paper, as the base fluid we used the commercial
ferrofluid prepared on the basis of aviation kerosene and finely
dispersed magnetite a the broad particle size distribution man-
ufactured by the Ivanovo State Power University. The mag-
netite was obtained using the standard chemical condensation
method [2,58]. The desired particle size distribution was
obtained by varying the synthesis conditions (concentrations
of iron and ammonia salt solutions, pH of the medium, tem-
perature, solution feed rate, and mixing intensity) [59]. The
resulting colloidal solution was diluted to a particle volume
concentration of about 6% and then was processed twice in
a centrifuge equipped with four nonstandard cuvettes with a
volume of 20 ml each. After each centrifugation, the particle
sediment was removed. As a result of centrifugation, fine and
coarse fractions with different concentrations and dispersed
composition of particles were obtained. In the following, the
coarse fraction was used to obtain four samples with similar
size distributions of particles. These samples differed from
each other only in the concentration of the magnetic phase,
which ranged from 1.7 vol % to 6.6 vol %. In a few experi-
ments, we used samples 5 and 6 with a high concentration
of magnetite, obtained from the base ferrofluid and the fine
fraction, respectively, by the repeated peptization method.

Magnetization curves were determined by the sweep
method, in which differential magnetic susceptibility χ (H ) =
dM/dH of the fluid is directly measured and the magnetiza-
tion curve is found by numerical integration as follows [60]:

M(H ) =
∫ H

0
χ (H )dH. (14)

A long cooled solenoid with two galvanically isolated coaxial
coils was used as the source of magnetic field. The direct cur-
rent was passed through one of the coils and the weak alternat-
ing current of infralow frequency 0.1 Hz was passed through
the second. The frequency was sufficiently low to ignore
the relaxation processes in the ferrofluid. The design of the
experimental setup made it possible to measure the amplitudes
of small magnetization oscillations and the field strength, the
ratio of which gave the desired value of the differential sus-
ceptibility. The dependences of the differential susceptibility
on the field strength for the base ferrofluid and the fine and
coarse fractions are shown in Fig. 1 and the corresponding
magnetization curves are shown in Fig. 2. Figure 1 illustrates
the high rate and the characteristic range of the decrease in the
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FIG. 1. Ferrofluid differential susceptibility vs the applied field:
pluses, diluted base ferrofluid; asterisks, fine fraction; and circles,
coarse fraction.

equilibrium susceptibility. In the probing field ranging from
zero to 200 kA/m, the differential susceptibility decreases by
three orders of magnitude. It can also be seen that susceptibil-
ity curves for the diluted base ferrofluid and the fine fractions
are almost identical. There exists a simple explanation of what
we observe in the figure. The slope of the magnetization curve
in the strong fields is determined only by the temperature and

FIG. 2. Ferrofluid magnetization curves: crosses (curve 1), di-
luted base ferrofluid; asterisks (curve 2), fine fraction; and circles
(curve 3), coarse fraction.

TABLE I. Results of the magnetogranulometric analysis.

Commercial Fine Coarse
Parameter sample fraction fraction

T, K 293 286 286
χ0 4.81 0.74 4.86
M∞ (kA/m) 27.2 7.4 13.3
n (1022 m−3) 13.6 3.85 5.79
〈m〉 (10−19 A m2) 2.00 1.92 2.31
〈m2〉 (10−37 A2 m2) 1.77 1.50 4.16
〈x〉 (nm) 7.44 7.46 6.94
δx 0.51 0.49 0.67

the particle number concentration. The number concentrations
of particles in the diluted base ferrofluid and in the fine
fraction are close and so are the χ = χ (H ) curves. This
means that the centrifugation of the base fluid resulted mainly
in the spatial movement of the relatively small number of
the largest particles from the fine fraction to the coarse one.
They significantly affect the initial susceptibility (the coarse
fraction susceptibility is 6.5 times larger than that of the fine
fraction), but to a much lesser extent the particle concentration
and the saturation magnetization (only 1.8 times larger).

The particle size distribution was determined via the mag-
netogranulometric analysis according to the method described
in Ref. [60], which makes it possible to correctly determine
the particle numerical concentration and the average magnetic
moment and its average squared value. These parameters are
calculated from the magnetization curve without any assump-
tions as to the size distribution of particles. The information on
the average particle diameters and dispersions was obtained
using the two-parameter � distribution on the assumption that
the shape of the particles is not very different from that of the
sphere. The � distribution has the form of an asymmetric bell
and is described by the well-known formula

f (x) = xα exp(−x/x0)

xα+1
0 �(1 + α)

, (15)

where �(α + 1) is the Gamma function, x is the magnetic
core diameter, x0 and α are the distribution parameters, which
are related to the average core diameter 〈x〉 and the relative
distribution width δx by the following equations:

〈x〉 = x0(1 + α), δx =
√

〈x2〉
〈x〉2

− 1 = 1√
1 + α

. (16)

The basic parameters (temperature T at which the magnetiza-
tion curve was measured, initial susceptibility χ0, saturation
magnetization M∞, particle number concentration n, average
magnetic moment 〈m〉, mean-square magnetic moment 〈m2〉,
and average diameter of the particle magnetic core 〈x〉) are
presented in Table I for the original commercial sample and
fine and coarse fractions. A comparison of the data in the
table demonstrates that the average diameter of the magnetic
core of the coarse fraction was even smaller than that of the
original fluid. We are prone to regard this circumstance as
an artifact associated with the very long tail in the particle
size distribution. This tail, being formed by large particles,
provides a high value of the dipolar coupling parameter, but at
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TABLE II. Parameters of the samples prepared on the basis of the coarse fraction.

Sample No. χ (at 293 K) η (cPs) (at 293 K) ϕm ϕs ϕ(η) λ

1 2.26 1.88 0.0171 0.026 0.097 1.9
2 4.53 2.83 0.0278 0.046 0.145 2.1
3 10.5 10.3 0.0475 0.090 0.255 2.1
4 18.4 76.7 0.0659 0.146 0.332 2.2
commercial sample 4.81 20.2 0.0566 0.088 0.293 1.1

the same time introduces systematic error in the moments of
high order, including 〈x6〉 ∼ 〈m2〉.

The parameters of samples 1–4 prepared on the basis of the
coarse fraction are given in Table II. Depending on the particle
concentration in the samples, their initial susceptibility varied
from 2.3 to 18 (SI units), an order of magnitude less than
the susceptibility of the record ferrofluids mentioned above
and having approximately the same energy of magnetic dipole
interactions. This result is natural since the high values of
the susceptibility require low temperatures (200–240 K) and
samples with saturation magnetization of about 100 kA/m
[55–57]. In Table II the initial susceptibility is given for
samples at room temperature whose saturation magnetization
does not exceed 32 kA/m.

The volume fraction of the magnetic phase ϕm is defined
as the ratio of the saturation magnetization of the sample
to the saturation magnetization of the bulk magnetite, which
was taken to be equal to 480 kA/m. The volume fraction
of the crystalline magnetite (volume fraction of the solid
phase) in the solution is calculated in terms of the ferrofluid
density ρ f under the assumption that the density of protective
shells differs nonessentially from the density of kerosene ρk =
0.78 g/cm3,

ϕs = ρ f − ρk

ρmag − ρk
,

where ρmag = 5.24 g/cm3 is the bulk magnetite density. The
use of a more accurate formula allowing for ϕs is obviously
due to the lack of reliable information on the effective density
of the protective shell. In any case, ϕs > ϕm, since the spins in
the surface layer of the magnetite particles do not contribute to
its magnetic moment [61–64]. In general, the effective thick-
ness δ of this nonmagnetic layer is slightly less than the
crystalline lattice period and can be defined by the difference
in concentrations of ϕs and ϕm. For example, for the samples
presented in Table II we have δ = (0.74 ± 0.05) nm.

The hydrodynamic particle concentration ϕ, which takes
into account the volume of protective shells, was evaluated
from the dynamic viscosity of the solutions. The dynamic
viscosity η was measured with the standard Brookfield vis-
cometer. For the Newtonian medium, such as the ferrofluid
purified from an excess of stabilizer, the viscosity of the
solutions is an unambiguous function of the concentration
ϕ (see, for example, Refs. [2,65–67]). We chose the Chow
approximation [65], which was tested earlier on magnetite
colloids and manifested its applicability over the entire range
of possible concentrations

η

η0
= exp

(
2.5ϕ

1 − ϕ

)
+ Cϕ2

1 − Cγmϕ2
, (17)

where η0 is the viscosity of the carrier fluid, C = 4.67, and γm

is the coefficient of dense packing of particles. Actually, the
evaluation of γm poses a problem. Approximating the unit cell
by the cubic centered lattice, Chow inferred that γm = 0.74,
while the random dense packing of the dry particles is equal to
0.64. We instead used γm = 0.605, which corresponds to ran-
dom packing of particles in highly concentrated suspensions,
which are still capable of viscous flow [67,68]. In the strongly
aggregated fluid, as is the case with the coarse fraction and
samples 1–4 prepared on its basis, the multiparticle aggregates
(clusters) rather than single particles should be referred to as
independent kinetic units. This is the reason why the volume
fraction ϕ of particles in the formula (17) should be replaced
by the total fraction of particles and aggregates ϕa = ϕ/γ :

η

η0
= exp

(
2.5ϕ

γ − ϕ

)
+ Cϕ2

γ 2 − Cγmϕ2
. (18)

When choosing the average packing factor of γ particles
in aggregates, we were guided by the results of rheological
measurements [69] in the magnetite colloids, according to
which γ = 0.57.

The volume fraction of particles ϕ calculated by Eq. (18)
and the Langevin susceptibility χL found from Eq. (2) were
used to find the dipolar coupling constant λ [Eq. (4)], pre-
sented in Table II. As can be seen from the table, the results
of the calculation of the coupling constant for samples 1–4
with identical size distributions of particles demonstrate its
independence of the particle concentration, as it must be:
λ = 2.1 ± 0.1. Variations of λ do not exceed 5%, despite the
fact that the concentration of the magnetic phase changes
(increases) by 3.8 times, the equilibrium susceptibility of the
samples changes by 8 times, the viscosity of the samples
changes by 41 times, and directly measured values (equi-
librium magnetic susceptibility χ and dynamic viscosity η)
nonlinearly depend on the concentration of particles. The
independence of the coupling constant on the particle con-
centration should be considered as a solid argument in favor
of the selected algorithm for calculating the hydrodynamic
concentration and the coupling constant.

III. DYNAMIC SUSCEPTIBILITY OF FERROFLUIDS
WITH STRONG INTERPARTICLE INTERACTIONS

Much attention has been focused on the dynamics of four
samples of ferrofluid mentioned above, which had similar
size distributions of particles and high energy of magnetic
dipole interactions, but different concentrations of the mag-
netic phase. The dynamic susceptibility measurements were
performed using the mutual induction bridge (MIB) described
previously in Ref. [37]. The schematic diagram of the MIB is
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FIG. 3. Circuit diagram of the mutual-inductance bridge: L1 and
L3 are the magnetizing solenoids, L2 and L4 are the measuring and
compensating coils, respectively, and R1 is the noninductive resistor.

shown in Fig. 3. Two identical spatially separated 100-mm-
long and 7.8-mm-diam solenoids L1 and L3 had single-layer
windings, which were made by winding the thin single-core
copper wire around the core. The measuring coil L2 and the
identical compensating coil L4 enclosing the middle parts of
the solenoids were connected in a series-opposing fashion.
The parameters of the coils were selected so that the total
signal �U in the absence of a sample was within 2 × 10−3U4.
The noninductive resistor R1 served to measure the current
in the magnetizing coils and determine the amplitude of the
magnetic field in the sample. The high-resistance resistor R2

served to suppress the external high-frequency interference
and R3 was used to compensate for the slight parasitic phase
shift caused by resistor R2. To reduce the parasitic capac-
itance, the solenoid and coil windings were applied at the
compulsory winding pitch. As a result, we managed to raise
the natural resonance frequency of the bridge to 2 MHz.
Owing to smaller (compared to the length of the solenoids)
dimensions of the measuring coils, the highly homogeneous
magnetic field was generated inside them. The deviations of
the field strength H inside the measuring coil from the average
value were within 0.1%.

A 110-mm-long glass test tube with a cross-sectional area
of 0.276 cm2 was filled with the examined ferrofluid and
placed into solenoid L1. The fluid column was usually 105 mm
in height, slightly exceeding the length of the solenoid. In the
frequency range from 16 Hz to 240 kHz, the difference signal
�U and voltage U4 across the compensating coil L4 were
measured with the dual-channel lock-in amplifier eLockIn
203 (Anfatec), which allowed simultaneous measurements
of the amplitudes and phases of two alternating voltages.
At low frequencies of 0.1–8 Hz, the output signals of the
bridge were measured using the 24-bit analog-to-digital con-
verter manufactured by Rudnev–Shilyaev CJS Company. The

FIG. 4. Real (upper curve) and imaginary (lower curve) parts of
the dynamic susceptibility of sample 1 as a function of the probing
field frequency at T = 297 K. Circles are experimental data and solid
lines are nonlinear least-squares fits of Eq. (9) with Q = 6.

thermostatic control of the samples was accomplished with
the CRIO-VT-01 jet thermostat, which provides the working
temperature range from −30 ◦C to 100 ◦C.

The complex susceptibility χ̂ = χ ′ − iχ ′′ related to the
output voltages �U and U4 by the simple equation

χ̂ = S�Û

S0Û4
, (19)

where S and S0 are the cross-sectional areas of the coil and
the sample, respectively. Equation (19) allows us to calculate
the desired susceptibility components in terms of the voltages
�U and U4 and the phase shift between the signals. For the
conditions of the experiment realized in this study (the sample
in the form of the long cylinder), the demagnetizing factor
of the sample was sufficiently small (0.0065 ± 0.0005) and
was used for computing the correction to the difference signal
�U . The result of the tests performed using the MIB for
frequencies below 100 kHz makes it possible to determine the
maximum error of the susceptibility χ ′ measurement, which
is equal to ±(0.2 + 2χ ′) × 10−2. The measurement error for
χ ′′ is at the level of 0.01 SI unit for diluted ferrofluids and
does not exceed 5% of the static susceptibility value for
concentrated solutions.

Figure 4 shows the frequency dependences of imaginary
and real parts of the susceptibility in a weak probing field for
the least concentrated sample 1 ( f = ω/2π is the ordinary
frequency). Curves demonstrate a quasi-Debye shape, which
is typical for magnetite ferrofluids. The only exception here
is that the region of the strongest dispersion is significantly
shifted towards the low-frequency range. The size of the cir-
cles representing the experimental data in Fig. 4 corresponds
to the expected measurement error, therefore the standard
error bars are omitted. Solid curves in Fig. 4 correspond
to the Debye function expansion (9) with seven particle
fractions, including the superparamagnetic fraction with the
frequency-independent susceptibility contribution (i.e., Q =
6). The relaxation times τi and the spectral amplitudes Ai in
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Eq. (9) were determined from the experimental spectral curves
χ ′ = χ ′(ω) and χ ′′ = χ ′′(ω) via the method of least squares.
Conditions of the minimum of the root-mean-square residual
R are calculated as

R =
∑

j

[χ ′(ω j ) − χ ′
j]

2 +
∑

j

[χ ′′(ω j ) − χ ′′
j ]2 = min,

where ω j is the frequency at which the susceptibility was
measured, χ ′

j and χ ′′
j are the experimental values of its real

and imaginary parts, and χ ′(ω j ) and χ ′′(ω j ) are the values of
its real and imaginary parts calculated from Eq. (9), respec-
tively. To minimize the residual R, the standard Levenberg-
Marquardt algorithm [70] was used.

It is apparent that the solution of the reverse problem
obtained in such a way is not unique, because it depends on
the selected number of fractions Q on the right-hand side
of Eq. (9). With an increase of Q the error of the exper-
imental curve approximation first decreases, reaching some
irreducible level determined by the error of measurements. In
all cases we chose the minimal number of fractions (from 5
to 7) capable of sustaining this irreducible level. An increase
of the number of fractions above this minimum proved to be
an invalid practice leading to the simultaneous increase in the
error of computation of the amplitude Ai. Thus, the selection
of the number of fractions Q in the series expansion (9)
cannot be considered unambiguous; it involves a compromise.
The desire to obtain more comprehensive information on the
relaxation times and granulometric composition by increasing
the number of fractions is restrained by the growth of the
error in the spectral amplitude Ai; the larger the number of
fractions, the greater the error. For the number of fractions
chosen for our calculations the spectral amplitudes Ai are
determined from Eq. (9) with an accuracy of about 20%. As
for the characteristic relaxation times, they are determined
up to a coefficient equal to 2. Higher accuracy is practically
unattainable due to the low resolution of the method, which
is based on the expansion of dispersion curves in terms of the
Debye functions. Nevertheless, this accuracy is quite enough
to obtain new information, since the spectrum of relaxation
times of magnetite colloids is expanded by four orders of
magnitude.

Since the size distribution of the particles is continuous,
one might expect that instead of a discrete fit of many Debye
relaxations, the continuous model will be used [71]. However,
we did not use the continuous model, since in our case the
main contribution to the low-frequency susceptibility is made
by multiparticle clusters. As for the latter, we did not hold a
priori information on their size distribution, which otherwise
will allow us to choose a family of approximating functions.

As mentioned above, the spectral amplitude Ai is nothing
but the contribution of the ith fraction of particles (or clus-
ters) to the equilibrium susceptibility of the ferrofluid. These
amplitudes and relaxation times τi carry information about
the size of the Brownian particles. In particular, the effective
hydrodynamic particle diameter can be obtained directly from
Eq. (13) for the Brownian relaxation time. On the other hand,
knowing the maximum size of the particle magnetic core
in the colloidal solution (30–35 nm), we can estimate the
corresponding maximum relaxation time. For example, for
sample 1, this time is 3 × 10−5 s.

The magnetic dipole and van der Waals interparticle inter-
actions lead to the formation of clusters, the apparent change
of the characteristic sizes of particles, and the change of the
contribution to static susceptibility (i.e., amplitudes Ai). This
is the effect, the detection of which is one of the objectives
of this study. In what follows, any group of particles with
the uncompensated magnetic moment, rotating as a whole
(independent kinetic unit) under the action of the weak mag-
netic field, will be referred to as an aggregate or cluster. The
major distinguishing feature between the cluster and single
particle is the cluster size. The effective diameter of the cluster
must exceed the maximum possible diameter of a single
particle. Clearly, clusters formed by molecular interactions
and consisting of superparamagnetic particles with the Néel
mechanism of relaxation only cannot be detected in this way
and are eliminated from our consideration. The magnetic
moments of these particles fluctuate independently of each
other and the affiliation of the particles to clusters does not
affect the dynamic susceptibility.

Spectral amplitudes Ai and relaxation times τi were ob-
tained from a nonlinear least-squares fit of Eq. (9) to exper-
imental points. These amplitudes and times carry information
about the size and properties of Brownian particles. In par-
ticular, the effective hydrodynamic particle diameter can be
obtained directly from Eq. (13) for the Brownian relaxation
time. On the other hand, knowing the maximum size of the
particle magnetic core in a colloidal solution (30–35 nm), one
can estimate the corresponding maximum relaxation time. For
sample 1, this time is 3 × 10−5 s.

Figure 5(a) shows the frequency dependences of the dy-
namic susceptibility modulus (normalized by its equilibrium
value) for the least concentrated sample 1 and the most
concentrated sample 4. The curves corresponding to samples
2 and 3 occupy intermediate positions and are not shown in
the figure. The most important result, derived from Fig. 5(a),
is that curves 1 and 4 can be obtained from one another
by the simple shift along the frequency axis. Moreover, the
whole family of dispersion curves related to samples 1–4
with similar particle size distributions can be reduced to
one universal dependence of χ/χ0 on κ f due to frequency
scaling [Fig. 5(b)]. The appearance of the scale factor κ is
equivalent to a synchronous change of all relaxation times in
Eq. (9).

According to Eq. (13), the only possible reason for this
growth of relaxation times, which is the same for all particles
and aggregates regardless of their size, is an increase in the
effective viscosity of the suspension. The data of direct vis-
cosity measurements on the Brookfield rotational viscometer
confirm this supposition, at least qualitatively. From sample
1 to sample 4, the dynamic viscosity at T = 293 K increases
from 1.88 to 77 mPa, i.e., by 41 times. Such a strong effect
is caused by the exponential dependence of viscosity on the
volume concentration of particles [65,66]. The scale factor
κ is the fitting parameter, corresponding, by the order of
magnitude, to an increase in the viscosity of the solution
compared to the viscosity of sample 1 [see the caption to
Fig. 5(b)]. Some problems with the interpretation of the
results arise only due to the fact that the scaling factor κ

varies less with the concentration of particles as compared
to the dynamic viscosity and Brownian relaxation time in
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FIG. 5. Normalized modulus of the dynamic susceptibility as a function of the probing field frequency at T = 297 K. (a) Squares represent
sample 1 and circles sample 4. The solid line is obtained by shifting curve 1 to the left along the frequency axis. The dashed vertical line shows
f = 27 kHz. (b) The horizontal axis corresponds to the rescaled field frequency κ f . Squares represent sample 1 (κ = 1), triangles sample 2
(κ = 1.2), crosses sample 3 (κ = 3) and circles sample 4 (κ = 18).

the formula (13). There are three possible reasons for this
discrepancy.

(i) One is the weak effect of the Néel mechanism of mag-
netization reversal. If both mechanisms of rotational diffusion
are in operation, then the relaxation time should be described
by the more general formula as compared to Eq. (13) [1],

1

τ
= 1

τB
+ 1

τN
, (20)

which predicts a weaker dependence of the time of magneti-
zation reversal on the solution viscosity.

(ii) The second is the approximate nature of Eq. (13).
It was derived in the dilute solution approximation, which
neglects the dependence of the particle rotational mobility
on the particle concentration. The concentration dependence
of the Brownian relaxation time is the direct consequence
of the steric and hydrodynamic interparticle interactions. Un-
fortunately, there is no case of a correct description of this
dependence. Here we used the heuristic approach, which is
based on the assumption that the particle rotational mobility
is inversely proportional to the effective suspension viscosity.
Within this approach, the viscosity of the dispersion medium
in Eq. (13) is replaced by the effective suspension viscos-
ity, the concentration dependence of which is well studied
[2,65–67]. This approach has proved its value for low and
moderately concentrated suspensions [45,46], but it may well
lead to a twofold discrepancy in the case of highly concen-
trated ferrofluids with a volume fraction of particles of above
40—50%.

(iii) The third possible reason for the discrepancy is mag-
netic dipole-dipole interactions, which are known to have
a significant effect on the relaxation time spectra [38–40].
However, studies in which this influence for polydisperse
ferrofluids has been estimated quantitatively are lacking.

Figure 6(a) shows the relaxation time spectrum for the
least concentrated ferrofluid sample 1 (it corresponds to
the fitting curves in Fig. 4). The smallest superparamag-

netic particles with relaxation times lower than 10−7 s and
frequency-independent (up to 105 Hz) susceptibility contri-
bution are combined into a single fraction with the spectral
amplitude A0 because of the lack of reliable information about
these particles. The six remaining fractions with the Brownian
relaxation mechanism include single particles with hydrody-
namic diameters up to 30 nm and relaxation times of the order
of 10−6–10−5 s and multiparticle clusters with hydrodynamic
diameters of 60–250 nm, which behave as independent kinetic
units with relaxation times on the order of 10−4–10−2 s. We
tend to interpret the intermediate fraction, which corresponds
to an effective diameter slightly exceeding 40 nm, as the set of
particle dimers. It can be seen that for sample 1 multiparticle
clusters play a dominant role in the formation of the low-
frequency susceptibility, while the total contribution of single
particles does not exceed 15% (the same is true for other
samples obtained from the coarse fraction). For comparison,
Fig. 6(b) shows the relaxation time spectrum for the fine frac-
tion, which has a dipolar coupling constant λ = 1.1 instead
of the λ = 2.1 typical for the coarse fraction (see Table II).
It can be seen from Fig. 6(b) that the total contribution of
single particles (including superparamagnetic ones) to the
low-frequency susceptibility remains almost unchanged. At
the same time, the contribution of clusters decreases by almost
an order of magnitude, and the equilibrium susceptibility as a
whole decreases by 3.5 times. Such changes are the natural
result of the ferrofluid centrifugation, during which clusters
containing predominantly large particles leave the fine frac-
tion and gather in the coarse one. Large clusters with hydro-
dynamic diameters of more than 100 nm and relaxation times
of more than 10−3 s are almost absent in the fine fraction.

IV. AMPLITUDE DEPENDENCE OF
THE DYNAMIC SUSCEPTIBILITY

All previous results on the dynamic susceptibility were ob-
tained in a weak probing field of about 150 A/m, so a twofold
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FIG. 6. Relaxation time spectrum for (a) sample 1 and (b) the fine fraction, for T = 297 K.

change in the field amplitude did not lead to a noticeable
change in susceptibility. Dynamic measurements at increasing
values of the probing field amplitude (up to 8 kA/m) were
carried out with the aim of receiving a response from large ag-
gregates and single particles, in which both relaxation mech-
anisms are blocked. The Brownian mechanism is blocked due
to large aggregate sizes and the high suspension viscosity.
The Néel mechanism is blocked due to the large magnetic
anisotropy energy and correlations between the magnetic mo-
ments of neighboring particles. The tests were performed for
samples 1–4, which have a strong dipolar coupling and differ
only in the magnetite concentration and effective viscosity.
The amplitude dependences of the dynamic susceptibility
were measured at a frequency of 27 kHz, which corresponds
to the vertical dashed line in Fig. 5(a). At this frequency, the
dynamic susceptibility of the most concentrated sample 4 is
associated only with the frequency-independent response of
single superparamagnetic particles. At the same time, in the
least concentrated sample 1 (whose dynamic viscosity is 41
times less), the rotational diffusion of particles still makes a
marked contribution. Measurement results are shown in Fig. 7
(unlike the data presented in Fig. 5, the susceptibility mod-
ulus is not normalized and given in SI units). The sevenfold
discrepancy in the dynamic susceptibility between samples 1
and 4 is due to a big difference in the magnetite concentration
and approximately eightfold discrepancy in the equilibrium
susceptibility.

We revealed only one but very important difference in the
behavior of samples 1–4. For the least concentrated sample 1,
the dynamic susceptibility modulus is almost independent of
the probing field amplitude. At the same time, the susceptibil-
ity of the concentrated sample 4 increases by approximately
1.5 times as the field amplitude increases from 0 to 6 kA/m.
The results for sample 1 are quite predictable, since multipar-
ticle clusters containing large particles do not participate in
the processes of magnetization reversal due to large Brownian
relaxation times. As follows from Eq. (13), the main contribu-
tion to the dynamic susceptibility at 27 kHz is made by single
particles with hydrodynamic diameters of about 25–30 nm
and relaxation times as long as 10−5 s. For such particles,
a magnetic field with an amplitude as large as 8 kA/m can
be considered small: The Langevin parameter ξ , determined
in terms of the average magnetic moment, is approximately
0.6. As for sample 4 (and to a lesser extent sample 3), an

increase in susceptibility with increasing field amplitude looks
very strange, since this runs contrary to Eq. (9), in which all
spectral amplitudes monotonically decrease with increasing
field. Indeed, for every fraction, the linear susceptibility M/H
monotonically decreases with increasing H due to the fast
saturation of the function M = M(H ). In principle, the effect
can be explained by the influence of the external field on the
Brownian relaxation time. It is known that the relaxation times
of the longitudinal and transverse magnetization components
decrease with increasing field as [1]

τ‖ = τBξL′(ξ )

L(ξ )
, τ⊥ = 2τBL(ξ )

ξ − L(ξ )
, (21)

where L(ξ ) = coth ξ − 1/ξ is the Langevin function. It is
assumed that the sample is under the action of a constant mag-
netizing field, which corresponds to the Langevin parameter ξ

and alternating probing field, orthogonal (⊥) or parallel (‖) to

FIG. 7. Modulus of the dynamic susceptibility of four samples vs
the probing field amplitude at 27 kHz. The bottom curve corresponds
to sample 1 and the upper one to sample 4.
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the magnetizing field. However, estimations based on Eq. (21)
show that in our experiment the decrease in relaxation times
does not exceed 4% and cannot explain the observed effect.
Moreover, since the transition from sample 1 to sample 4 is
accompanied by a 40-fold increase in the effective viscosity,
one might expect the blocking of the rotational degrees of
freedom of all particles and the complete deactivation of
the Brownian relaxation mechanism. Only some of super-
paramagnetic particles with small Néel relaxation times will
respond to a weak alternating field (ωτN � 1). If they do,
then the magnetization reversal dynamics of the concentrated
ferrofluid sample at tens of kilohertz should be similar to
the dynamics of superparamagnetic particles embedded in the
solid matrix. An example of susceptibility measurements in
the solid matrix can be found in Ref. [72].

V. NUMERICAL SOLUTION OF THE PROBLEM

In order to verify the latter hypothesis, the problem of
the uniaxial particle magnetodynamics in an alternating field
was solved numerically. It was assumed that the particle
easy axis is always parallel to the applied field. We used
the Fokker-Planck-Brown rotational diffusion equation for the
one-particle orientation distribution function W (ϑ, t ),

2τD
∂W

∂t
= ĴW Ĵ

(
U

kT
+ ln W

)
, (22)

U

kT
= −σ cos2 ϑ − ξ cos ωt cos ϑ, (23)

where ϑ is the angle between the field and the particle
magnetic moment, τD = στ0 is the characteristic timescale
of the magnetic moment rotational diffusion, Ĵ ≡ e × (∂/∂e)
is the infinitesimal rotation operator, e is the unit vector of
the magnetic moment, and U is the particle potential energy.
Equation (22) was solved using the calculation technique de-
scribed earlier in [49]. We calculated the statistical moments
of the distribution function

Xl = 1

2

∫ π

0
W (ϑ, t )Pl (cos ϑ ) sin ϑ dϑ (24)

and their complex Fourier coefficients

Xl,k (ω) = ω

2π

∫ 2π/ω

0
Xl (t ) exp(−ikωt )dt . (25)

In Eq. (24) Pl (cos ϑ ) are the Legendre polynomials. It can
be readily seen that the magnetization is related to the first
statistical moment as M = nmX1 and the Fourier coefficients
X1,k describe the spectral composition of the magnetization.
In particular, |X1,1|/ξ is the analog of the linear susceptibility.
The results of calculations for a probing field frequency of
27 kHz (i.e., for ωτ0 = 1.7 × 10−4) are shown in Fig. 8 as a
function of the normalized linear susceptibility modulus on
the reduced field amplitude. As is evident from the figure,
the amplitude dependence undergoes qualitative changes with
an increasing anisotropy parameter. At σ = 10 (curve 1), the
linear susceptibility monotonically decreases with increasing
field amplitude, and at σ = 20 (curve 2) it monotonically
increases. In the first case, the system behavior is almost
quasistatic regardless of the field amplitude. However, in the
second case, the amplitude plays a crucial role. For the high

FIG. 8. Amplitude dependence of the linear susceptibility for
uniaxial superparamagnetic particles at different values of the
anisotropy parameter. The numerical solution of Eqs. (22) and (23)
is shown at ωτ0 = 1.7 × 10−4. Curve 1, σ = 10; curve 2, σ = 20;
and curve 3, σ = 30. Dashed lines show a piecewise approximation
of curve 3 and the minimum field amplitude causing the unblocking
of the Néel relaxation mechanism.

anisotropy barrier, the particle response to the weak field
is only due to fluctuations of the magnetic moment in the
vicinity of the easy axis (since the magnetization reversal
processes are blocked by the condition ωτN 
 1). The linear
susceptibility may decrease by several orders of magnitude
compared to the equilibrium value, which is shown by curves
2 and 3 in Fig. 8. An increase in the field amplitude reduces
the anisotropy barrier between the two orientations of the
magnetic moment, lessens the magnetization reversal time
of the system, and increases the linear susceptibility. As
seen from the figure, the effect is very strong. At large field
amplitudes, when the two terms on the right-hand side of
Eq. (23) become comparable, the susceptibility can increase
by one to two orders of magnitude compared to the limit of
small amplitudes. The calculation results can be represented in
a more explicit form if we approximate each curve presented
in Fig. 8 with a piecewise linear function and define ξ ∗/σ as
the abscissa, which corresponds to the intersection of the first
two segments (see dashed lines in Fig. 8). It turns out that
in the whole range of parameters studied (5 � σ � 30 and
ωτ0 = 1.7 × 10−4), the results satisfy the simple formula

ξ ∗

σ
= μ0MsH∗

K
� 0.038(σ − σ ∗), σ ∗ � 12, (26)

where H∗ is the minimum field amplitude causing the un-
blocking and σ ∗ is the minimum anisotropy parameter at
which the unblocking is possible. Thus, Eq. (26) demonstrates
an important feature of the dynamics of uniaxial superpara-
magnetic particles: The unblocking of the Néel relaxation
mechanism and the concomitant increase in the dynamic
susceptibility are possible only if σ > σ ∗, i.e., if the system
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contains sufficiently large particles. Under the assumption that
for magnetite nanoparticles K = (1.3–2.9) × 104 J/m3 [52],
Eq. (26) gives the following value for the minimum magnetic
core diameter, for which the susceptibility can increase with
increasing amplitude:

xmin = 3

√
72kT

πK
= 17 ± 2 nm. (27)

Some uncertainty in the particle diameter is due to the uncer-
tainty in the effective magnetic anisotropy constant associated
with the particle form factor and interparticle magnetic dipole
interactions.

In general, Fig. 8 lends support to the view that there
is a qualitative analogy between the dynamics of uniaxial
superparamagnetic particles and the dynamics of the most
concentrated ferrofluid sample 4 at ultrasonic frequencies.
The curves plotted in the figure testify to the most probable
reason for the anomalous growth of the sample susceptibility
with increasing field amplitude. This is an increase in the rate
of system magnetization reversal in the case when the energy
of the particle-field interaction is comparable to the average
height of potential barriers. The difference between the fer-
rofluid and the model system considered in this section is
that the ferrofluid has a wide range of particle sizes and easy
axis orientations. Also, the interparticle interactions effects
are significant. As for the field amplitude H∗, at which the
unblocking of magnetic moments is possible, it can vary from
zero at σ = σ ∗ to about 20 kA/m at σ � 30 according to
Eq. (26).

VI. ADDITIONAL EXPERIMENTS

In order to gain deeper insight into the roles of large
particles and temperature, we conducted two additional series
of experiments. In the first series, samples 5 and 6 were used,
which differed from previously used samples 1–4 by a lower
content of large particles. Samples 5 and 6 were obtained from
the fine fraction and the base fluid, respectively (see Table I).
The particle concentration in samples 5 and 6 was close to the
particle concentration in sample 4, so their viscosities were
also close (60–70 mPa s at room temperature). The amplitude
characteristics of these samples at 27 kHz are shown in Fig. 9.
From a comparison of the curves, two important conclusions
can be drawn. (i) Despite the fact that the static susceptibility
of sample 4 is several times greater than the susceptibility
of sample 5, its dynamic susceptibility at 27 kHz is approx-
imately half. The reason is obvious: Due to the presence
of large particles and aggregates in sample 4, the effect of
blocking the rotational degrees of freedom on the dynamic
susceptibility is an order of magnitude stronger than that in the
fine fraction. (ii) The amplitude dependence of the dynamic
susceptibility of samples 5 and 6 is noticeably weaker than
that of sample 4. We consider this effect as the natural result
of the movement of large particles with the magnetic core
diameter x > xmin into the coarse fraction at the centrifugation
stage. This is just the result that we expected.

In the second series of experiments, we measured ampli-
tude characteristics of sample 4 at different temperatures from
248 to 348 K. The results are shown in Fig. 10. They may
seem unusual due to an increase in the dynamic susceptibility

FIG. 9. Modulus of the dynamic susceptibility vs the probing
field amplitude for sample 4 (bottom curve), sample 5 (upper curve),
and sample 6 (middle curve) at 27 kHz.

in the weak probing field with increasing temperature. It
would seem that the result should be the opposite. At least
the equilibrium susceptibility defined by Eq. (1) and accord-
ingly all spectral amplitudes in Eq. (9) always decrease with
increasing temperature. However, for the dynamic suscepti-
bility, the situation may change to the opposite due to the

FIG. 10. Modulus of the dynamic susceptibility vs the probing
field amplitude for sample 4 at different temperatures. From bottom
to top, T = 248, 273, 298, 323, and 348 K.
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temperature dependence of relaxation times [5]. This depen-
dence is close to the exponential one: For the Néel relaxation,
it follows from Eq. (12), for the Brownian relaxation, that
this is due to the exponential temperature dependence of
viscosity in Eq. (13) [61]. In both cases, the relaxation times
in the denominators on the right-hand side of Eq. (9) quickly
decrease with increasing temperature, so at sufficiently low
temperatures this decrease begins to prevail over a decrease
in the numerators (i.e., spectral amplitudes Ai). As a result,
the dynamic susceptibility χ (ω, T ) increases until it reaches
the maximum, the position of which is determined by the
condition ωτ (T ) � 1 for the fraction making the greatest
contribution to the dynamic susceptibility at a frequency ω

[3,5].
Due to the high field frequency and high viscosity of

sample 4, all temperatures in the range from 248 to 348 K
can be considered sufficiently low, which implies that at
these temperatures ωτB(T ) 
 1. Although in this temperature
range the sample viscosity decreased 15 times (from 0.33
to 0.021 Pa s), it still remained high enough to exclude the
rotational diffusion of large particles and aggregates. For
particles with a diameter less than the average value (8 nm)
ωτB < 6, and the contribution of such particles to the dynamic
susceptibility at 27 kHz is noticeable. Thus, an increase in
dynamic susceptibility with temperature in Fig. 10 is a natural
result of the partial unblocking of the Brownian and Néel
mechanisms for moderate and small particles. An increase in
the probing field amplitude leads to the unblocking of the
Néel relaxation mechanism even for large particles with a
magnetic core diameter x > xmin � 17 nm and an additional
increase in the dynamic susceptibility. Since the content of
large particles is virtually independent of temperature, all the
curves in Fig. 10 look qualitatively the same.

VII. DISCUSSION AND CONCLUSIONS

In this work the magnetization reversal dynamics of fer-
rofluids with a high energy of interparticle interactions was
investigated experimentally. The aim of this work was to
clarify the effect of interparticle interactions on the suscepti-
bility dispersion and the spectrum of magnetization relaxation
times.

We synthesized and investigated six samples of ferrofluid
of the magnetite–oleic acid–kerosene type. The first four
of them had identically wide size distributions of particles,
which ensured the high average energy of magnetic dipole
interactions (more than 2kT ). These four samples differed
only in the nanoparticle concentration. The two remaining
samples (5 and 6) had a lower content of large particles but
a high total concentration. For these samples, the average
energy of magnetic dipole interactions was less than 1.1kT .
For all samples, we measured the dynamic susceptibility χ (ω)
(real and imaginary parts) in a weak probing field of amplitude
of 150 A/m at frequencies from 4 Hz to 160 kHz and the
amplitude dependence of the susceptibility at 27 kHz. The
amplitude dependence was investigated with the aim of deter-
mining the response of large aggregates and single particles
without regard for the blocking of both mechanisms of the
magnetic moment relaxation. The Brownian mechanism was
blocked due to large aggregate sizes and a high suspension

viscosity. The Néel mechanism was blocked due to a large
magnetic anisotropy and correlations between neighboring
particles.

The following are our main results and conclusions.
(i) Dispersion curves of the normalized dynamic suscep-

tibility for samples with identical particle size distributions
can be derived from one another by fitting the viscosity in
Eq. (13) for the Brownian relaxation time. The viscosity
renormalization is a sufficient procedure for describing the
effect of nanoparticle concentration on the low-frequency part
of the spectrum. In this frequency range, the susceptibility dis-
persion is due to the rotational diffusion of colloidal particles
and the Brownian relaxation mechanism. Since the concen-
tration dependences of viscosity and the Brownian relaxation
time are direct consequences of the steric and hydrodynamic
interparticle interactions, these interactions should be among
the main factors influencing the low-frequency susceptibility.
The strong effect of the van der Waals and magnetic dipole in-
teractions on the low-frequency susceptibility manifests itself
indirectly, through the formation of clusters. The contribution
of clusters to the low-frequency susceptibility exceeds 80%.
Their sizes (about 100 nm) shift the dispersion range towards
1–100 Hz, depending on the temperature and particle concen-
tration.

(ii) According to Ref. [2], for typical ferrofluids that are
stabilized via oleic acid, the height of the energy barrier
associated with steric repulsion is close to 20kT . This barrier
ensures a negligible rate of irreversible particle aggregation
and a high stability of the ferrofluid for many years. At the
same time, the experiments devoted to studying the rheology
and diffusion of particles in ferrofluids [69] and dynamic
magnetic susceptibility [45,46] indicated a high probability of
quasispherical aggregates occurring with a characteristic size
of up to 100 nm, provided large particles are present. Our re-
sults have confirmed this conclusion. We suggest that defects
in protective shells play an important role in the formation
of nanoscale clusters in a ferrofluid stabilized by surfactant
(fatty acids). The shape of the single-domain particle cannot
be ideally spherical and the density of the surface coverage
of the particle by surfactant molecules cannot be uniform. A
local decrease in the coverage density means a decrease in the
energy barrier and the occurrence of a defect.

(iii) Experiments demonstrated an increase in the dynamic
susceptibility with an increase of the probing field amplitude.
This increase was unexpected, since all spectral amplitudes
in the expansion of the dynamic susceptibility (9) in terms
of the Debye functions monotonically decrease with the field
amplitude. The effect could be explained by the influence of
the applied field on the Brownian relaxation time, but the es-
timation based on well-known dependences (21) showed that
under the experimental conditions the decrease in relaxation
times does not exceed 4%.

(iv) To clarify the situation with the amplitude dependence
of the dynamic susceptibility, we numerically solved an auxil-
iary problem of the magnetodynamics of the uniaxial particle
in an alternating field. We used the Fokker-Planck-Brown
equation (22) for the rotational diffusion and the standard
single-particle potential (23), which takes into account the
magnetic anisotropy and the particle interaction with the
field. The calculations elicited a picture which is qualitatively
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consistent with the experimental results and gave us the key
to interpret these results. An increase of the applied field
amplitude leads to a decrease of the anisotropy barrier, a
decrease of the system magnetization reversal rate in general,
and an increase of the dynamic susceptibility. The effect is
very strong: If two terms in the single-particle potential (23)
becomes comparable, the susceptibility increases by one or
two orders of magnitude compared to the weak-field limit.

(v) Additional important information is that the growth
of the dynamic susceptibility with increasing amplitude is
only possible for particles with a sufficiently high magnetic
anisotropy energy KV . For the 27-kHz experiment this means
the fulfillment of the condition KV > 12kT , which gives a
minimum magnetic core diameter xmin � 17 nm. Experiments
on samples 5 and 6, which have the lowest content of such
particles, support this conclusion. The amplitude dependence
of the susceptibility for these samples was very weak (about
5%) and not monotonic. Thus, the unusual dynamics of fer-
rofluid at ultrasonic frequencies, which is accompanied by an
increase in the dynamic susceptibility with increasing field
amplitude, is observed when the two following conditions are
met. First, the suspension viscosity and the field frequency
must be high enough to cause the blocking of the rotational
(Brownian) degrees of freedom of free particles and aggre-
gates. Second, the ferrofluid must contain particles with a
large magnetic anisotropy (σ � 12).

(vi) We also consider it possible that the magnetic dipole
interactions significantly increase the effective magnetic
anisotropy constant of particles due to the inhomogeneous
distribution of neighbors around the test particle and the
correlation of magnetic moments, which agrees with the con-
clusions of Refs. [41–44]. An additional argument in favor
of this assumption is the experimental results on the dynamic
susceptibility of ferrofluids in the high-frequency region [52].
They demonstrated a monotonic increase in the effective mag-
netic anisotropy constant with increasing average magnetic
dipole energy. Another similar argument is the results of
numerical simulation of the magnetization reversal processes
in rigid chains of superparamagnetic particles [73]. They
showed that the behavior of the rigid chain in zero magnetic
fields is equivalent to the behavior of a uniaxial particle
with an effective anisotropy constant, which can be uniquely
expressed through the dipolar coupling parameter and the
number of particles in the chain.

(vii) The so-called droplike aggregates, fairly well stud-
ied experimentally and theoretically, usually consist of
105–107 particles. These macroscopic objects, up to several

micrometers in size, are visible with an optical microscope
and occur in both surfactant-stabilized [8,24–28] and ionic
[29,74] ferrofluids due to the gas-liquid phase transition. The
phase transition is observed when the bias magnetic field
is an inclusion (field-induced aggregates) or the temperature
is reduced or the ionic strength increases (for electrically
stabilized ferrofluids). The formation of droplike aggregates
disturbs the magnetic fluid uniformity at the macroscopic
scale and affects the properties of the system as a whole.
However, the problem of the gas-liquid phase transition in-
duced by the external magnetic field is beyond the scope of
the paper and is not considered. At low frequencies we use
the weak probing field, which is not capable of initiating this
transition. At high frequencies, the field amplitude reaches
several kA/m, but large particles, which play a key role in the
phase transition, do not respond to the field due to the large
relaxation times.

(viii) All the results described here were obtained for
surfactant-stabilized ferrofluids. However, we see no reason
why the method of particle stabilization can qualitatively
affect the dynamics of the ferrofluid in the weak probe field.
For ionic ferrofluids, the particle size distribution and the
effective viscosity, which is exponentially strongly dependent
on particle concentration, should also remain the main param-
eters governing the dynamic susceptibility.

(ix) The parameters having an essential impact on the
low-frequency susceptibility for surfactant-stabilized ferroflu-
ids also include the characteristic size and concentration of
nanoscale aggregates (up to 100 nm). We have no direct
experimental data supporting the existence of such aggregates
in ionic ferrofluids. Yet there are at least two factors indirectly
indicating the probability of their appearance. (a) Particle
condensation in ionic ferrofluids that manifested as a phase
transition with the formation of droplike aggregates [29,74]
is an indication of the important role of the attraction forces.
This also means that near the phase equilibrium curve the nu-
clei of a new phase with a characteristic size of tens and hun-
dreds of nanometers, i.e., nanoscale clusters, may occur. (b) In
Ref. [75], by applying magnetic forces that vary strongly over
the same length scale as the colloidal stabilizing force and
then varying this colloidal repulsion, the authors triggered the
self-assembly of the nanoparticles into parallel line patterns.
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