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Lifetime distributions for adjacency relationships in a Vicsek model
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We investigate the statistical properties of adjacency relationships in a two-dimensional Vicsek model. We
define adjacent edges for all particles at every time step by (a) Delaunay triangulation and (b) Euclidean distance,
and obtain cumulative distributions P(τ ) of lifetime τ of the edges. We find that the shape of P(τ ) changes from
an exponential to a power law depending on the interaction radius, which is a parameter of the Vicsek model.
We discuss the emergence of the power-law distribution from the viewpoint of first passage time problem for a
fractional Brownian motion.
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I. INTRODUCTION

Lifetime distributions are commonly utilized in studies
aiming to statistically characterize a wide range of stochastic
processes in physical and social systems. There are various
examples in which lifetime (or waiting time) distributions
exhibit exponential decay: arrival of telephone calls or emails,
decay of radioactive elements, occurrence of car accidents,
and scoring of competitive sports [1,2]. Such systems can
be theoretically described by a homogeneous Poisson process
in which each event occurs independently at a constant rate
within a certain time interval [3].

Meanwhile, power-law distributions for lifetime are also
ubiquitous in nature, because they are associated with the
dynamics of earthquakes, solar flares, animal movements, and
human activities [4]. Power-law behaviors are often referred
to as “burstiness” especially for human activities. A number of
stochastic models exhibiting such power-law behaviors have
been developed based on an extended Poisson process; exam-
ples include the priority queue model [5], Hawkes process [6],
and cascading Poisson process [7].

Human activities can be divided into individual-driven and
contact-driven (or communication-driven) [4]. Recently, for
contact-driven activities, experiments using wearable sensors
have been conducted in scientific conferences [8,9], schools
[10–12], companies [13], and other settings [14,15]. These
studies measured how long two people were in close proxim-
ity within a certain distance, i.e., the lifetime of the adjacency
relationships. In these cases, it was found that the lifetime
distribution obeys a power law.

Power-law properties can be extracted from human activi-
ties and from a more general situation. In this study, we inves-
tigate the statistical properties of adjacency relationships in a
two-dimensional Vicsek model, which describes the collective
motions of self-propelled particles [16,17]. We focus on the
lifetime τ during which the adjacency relationships between
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two particles exist. It is found that the cumulative distributions
of τ , P(τ ), becomes an exponential or a power law depending
on the interaction radius in the Vicsek model.

II. MODEL

Let us consider an N-particle system in a two-dimensional
circular space with a diameter L, which corresponds to the
system size. We denote the position and velocity of the jth
particle at time t as �r j (t ) and �v j (t ) = v0�s j (t ), respectively.
Here, v0 is the speed and �s j (t ) is the unit vector. Note that
�s j (t ) is determined by the angle θ j (t ) in polar coordinates.
The equation of the motion of each particle is given as follows
[18]:

θ j (t + �t ) = Arg
N∑

k∼ j

[(1 − c)�vk (t ) + c �f jk (t )] + ξ j (t ), (1)

�r j (t + �t ) = �r j (t ) + v0�t�s j (t + �t ). (2)

In the first term on the right-hand side of Eq. (1), the notation
k ∼ j in the summation indicates that the jth particle interacts
with others within the circle of radius R0, whose center is
�r j . In this summation, the first and the second terms show
alignment and repulsive interactions between jth and kth
particles, respectively. Here, �f jk (t ) is given by

�f jk = −�e jk ×
[

1 + exp

( |�rk − �r j |
R f

− 2

)]−1

,

where �e jk is the unit vector of �rk − �r j , and R f is the typical
repulsion distance [18]. The proportion of the alignment and
repulsive interactions is controlled by the parameter c. The
operator Arg converts the vector to the angle. The second
term in Eq. (1) represents noise, or fluctuation, where ξ is
given as a uniform random number in [−ηπ,+ηπ ] (η > 0).

At every time step, we define the adjacent edges for all
particles using (a) Delaunay triangulation and (b) Euclidean
distance d . Hereafter, these edges are referred to as Delaunay
and Euclidean edges, respectively. The Delaunay triangulation
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FIG. 1. Images of particles’ motion and adjacency relationship for N = 200 and η = 0.2 at t = 1100 in the circular reflection boundary
with diameter L = 1. The direction of the particles is shown by arrows. Lines between particles show the adjacency networks, defined by
(a) the Delaunay triangulation and (b) the Euclidean distance d < 0.05. Left column: R0 = 0. Particles move randomly because they do not
interact. Middle column: R0 = 0.05. Particles’ directions are aligned locally. Right column: R0 = 0.1. All particles form a single cluster and
move along the boundary.

is obtained from the adjacency relationships in the Voronoi
regions of each particle (a Voronoi region of a particle is a set
of locations for which the distance to the particle is less than to
any other [19]). For the Euclidean edges, we define two parti-
cles as adjacent if the Euclidean distance between them is less
than d . Thus, at each time step, particles form an adjacency
network as shown in Fig. 1. We focus on the lifetime τ during
which the adjacency relationship between two particles exist
(i.e., the lifetime of adjacent edges). The adjacency relation-
ships between particles do not affect the particles’ motion.

The numerical calculation of Eqs. (1) and (2) was per-
formed in the circular reflection boundary by setting L = 1,
�t = 1, v0 = 0.005, R f = 0.003, c = 0.5, and d = 0.05. R0,
η, and N are the controlling parameters. The total time step
was set as T = 11 000, and the cumulative distribution of the
lifetime τ , denoted by P(τ ), is computed using the data of τ ,
which are obtained from all adjacent edges for t > 1000.

III. RESULT

We first present results for R0 = 0. In this condition, each
particle moves randomly because no interactions occur among
them (see the directions of the particles in the left column of
Fig. 1). Figure 2 shows the cumulative distribution P(τ ) for
(a) Delaunay and (b) Euclidean edges in a semilogarithmic
scale. It is found that P(τ ) for small η exhibits an exponential
decay, although it deviates from the exponential for large η.

Next, Fig. 3 shows P(τ ) for R0 �= 0 obtained from (a) De-
launay and (b) Euclidean edges in a double logarithmic scale.

The left panels in Fig. 3 show that P(τ ) follows the power-law
distribution with an increase in R0. The power-law exponents
for R0 = 0.1 and η = 0.2 are estimated as α � 1.56 and 1.57
for the Delaunay and the Euclidean edges, respectively. The
middle panels in Fig. 3 show the power-law behaviors of P(τ )
when R0 = 0.1 and η � 0.5. We also confirmed that these
power-law behaviors are almost independent of N (�10) for
both the Delaunay and Euclidean edges.

To characterize the behaviors of P(τ ), we introduce a coef-
ficient of variation defined as CV = σ (τ )/〈τ 〉, where 〈τ 〉 and
σ (τ ) are the mean and standard deviation of τ . CV becomes
unity when τ follows an exponential distribution. When CV
deviates from unity, the distribution is not an exponential. We
present the R0 dependence of CV in the right-hand panels

FIG. 2. Cumulative distributions P(τ ) for R0 = 0 obtained from
(a) Delaunay and (b) Euclidean edges in a semilogarithmic scale. For
small η, exponential decay is observed.
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FIG. 3. Cumulative distributions P(τ ) for (a) Delaunay and (b) Euclidean edges. Each panel is shown in a double logarithmic scale. The
slope of guideline in each panel is obtained by fittings for R0 = 0.1 and η = 0.2. Left column: R0 dependence of P(τ ) where η = 0.2; P(τ )
changes from an exponential to a power-law distributions with an increase in R0. Middle column: η dependence of P(τ ) where R0 = 0.1. Right
column: R0 dependence of CV values.

of Fig. 3. It is found that CV changes from unity to larger
values as R0 increases; in particular, CV increases rapidly
at R0 � 0.05. Therefore, P(τ ) has a crossover between an
exponential and a power-law distribution at around R0 � 0.05.

When R0 is sufficiently large, particles form a single cluster
and move together as shown in the right-hand panels of
Fig. 1. To check the influence of reflections of particles at
the boundary on P(τ ), we performed a simulation without
any boundaries for R0 = 0.2. Note that a single cluster is kept
during this simulation. Figure 4(a) shows that the power-law
distribution is observed with an increase in η. In the small
τ region, the same power-law exponent α � 1.56 is obtained

FIG. 4. (a) η dependence of P(τ ) obtained from Delaunay edges
without boundaries where R0 = 0.2. (b) Rf dependence of P(τ ) for
Delaunay edges where R0 = 0.1 and η = 0.2.

independently of η. The deviation from the power law for
small η suggests that the rewiring of edges seldom occurs
because of the fixed positions of particles. This deviation of
P(τ ) from the power law is also observed under the circular
boundary. Thus, reflective interactions between particles and
the boundary does not affect the power-law behavior of P(τ ).
Here, we note that if there is no boundary, P(τ ) is not
stationary because a single cluster eventually breaks down due
to the noise. In this sense, existence of boundary is needed to
ensure the stationarity of P(τ ).

We also check the effect of the repulsive force for large
R0 by controlling the repulsion distance R f . As shown in
Fig. 4(b), the power-law region with α � 1.56 reduces with a
decrease in R f . The same result is obtained for the Euclidean
edges. This indicates that the cohesion of particles for a small
R f inhibits emergence of longevity edges. Thus, the repulsive
forces between particles are necessary for the emergence of
the power-law behavior of P(τ ).

As shown in Fig. 5, the typical behaviors of P(τ ) are
classified into four cases A–D. The exponential decay and
power law of P(τ ) are observed in case A (small R0) and case
B (large R0), respectively. The crossover between exponential
and power law occurs in case C. In case D, P(τ ) becomes
a distribution with a longer tail than the power law, such as
Fig. 4(a). The vertical dashed line at R0 � 0.05 represents
the point around which CV increases rapidly with an increase
in R0.
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FIG. 5. Behaviors of P(τ ) as functions of R0 and η. A: exponen-
tial; B: power law; C: crossover between A and B; D: P(τ ) becomes
a distribution with a longer tail than the power law such as Fig. 4(a).
The vertical dashed line at R0 � 0.05 represents the point around
which CV changes considerably.

IV. DISCUSSION

The lifetime τ is regarded as a one-dimensional first return
time. For the Delaunay edges, τ corresponds to the lifetime
of the Voronoi line l (t ), where l (t ) is the length of each
edge. For the Euclidean edges, τ is the first return time of
the distance r(t ) between two particles to the threshold d ,
where r(t ) < d . Figure 6 shows the typical time series of l (t )
and r(t ), which are obtained at the circle markers in Fig. 5.
It is found that the time series are very different for the two
cases. The power-law behavior of P(τ ) in case B can be
explained by considering random fluctuations of l (t ) and r(t )
as follows. It is known that the first return time of a fractional
Brownian motion follows the power law with the exponent
α = 2 − H , where H is its Hurst exponent [20]. This holds
for arbitrary one-dimensional time series characterized by H .

Then, we calculated H for each time series of l (t ) and r(t ) at
R0 = 0.1 and η = 0.2. As shown in the right column of Fig. 6,
H is distributed around a peak value, which are H � 0.42
and H � 0.43 for the Delaunay and Euclidean edges, respec-
tively. Because the power-law exponents obtained from P(τ )
are α � 1.56 and 1.57 (see Fig. 3), these values satisfy the
relation α = 2 − H . On the other hand in case A, the time
series l (t ) and r(t ) have fewer fluctuations and become shorter
than those in case B. The exponential decay of P(τ ) in case
A suggests that they are subject to a homogeneous Poisson
process.

Previous studies on the Vicsek models have mainly focused
on macroscopic properties such as an order-disorder transition
of particles’ directions or a giant density fluctuation [17].
In contrast the adjacency relationship of particles is a more
detailed characterization of collective motions rather than
the macroscopic quantities such as order parameters. For
example, we applied the Delaunay triangulation method to
the formation analysis of team sports, i.e., football games
[21]. Nagy et al. elucidated a hierarchical structure of flocks
of birds using the network defined by the time delay be-
tween two birds’ directions [22]. We expect that our results
can be observed in some experiments, such as those for
bacterial motions in circular pools [23] and self-propelled
robots [24].

V. CONCLUSION

For the lifetime distributions P(τ ) of the Delaunay and
Euclidean edges obtained by the Vicsek model, there exists
a crossover for the shape of P(τ ) between the exponential
for small R0 and the power law for large R0. The power-law
exponent α of P(τ ) satisfies the relation α = 2 − H , where H
is the Hurst exponent obtained from the one-dimensional time
series of the Delaunay and Euclidean edges.

FIG. 6. Typical time series of (a) length l (t ) of Voronoi line and (b) distance r(t ) between two particles. Dashed lines indicate l (t ) = 0
and r(t ) = 0.05, which show the thresholds for the first return time. Left column: R0 = 0.01 and η = 0.2 in case A of Fig. 5. Middle column:
R0 = 0.1 and η = 0.2 in case B. Right column: probability distributions of Hurst exponent H for the time series at R0 = 0.1 and η = 0.2.
Dashed lines indicate the peak values.
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