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One of the basic characteristics of a linear dsDNA molecule is its persistence length, typically of order 50 nm.
The DNA chain inflicts a large energy penalty if it is bent sharply at that length scale. Viruses of bacteria, known
as bacteriophages, typically have a dimension of a few tens of nanometers. Yet, it is known that a bacteriophage
actively packages viral DNA inside the capsid and ejects it afterwards. Here, adopting a commonly used polymer
model known as the wormlike chain, we answer an idealized question: Placing a linear DNA molecule inside a
spherical cavity, what ordered states can we derive from known tools in statistical physics? Solving the model
in a rigorous field-theory framework, we report a universal phase diagram for four orientationally ordered and
disordered states, in terms of two relevant physical parameters.
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I. INTRODUCTION

The issue of the packing structures of a dsDNA molecule
inside a confinement cage is a half-century-old problem. Ex-
tensive experimental efforts have been devoted to the subject,
particularly on DNA inside bacteriophage capsids [1–15].
The Particle-based computer simulations of coarse-grained
models, which model DNA by a self-avoiding semiflexible
polymer chain in confinement of cavities of simply spherical
or more realistic shapes, have also enlightened us with the
possible packing structures [16–25]. The main driving force
is the intrachain excluded-volume interactions, after the DNA
winds around inside the capsid, which prefers DNA strands
to locally align in parallel. The commonly acknowledged
physical picture is that the linear molecule winds into a spool
[1–23,26–28], but variations of the spooling details exist in
the literature.

Complementary to experimental methods and particle-
based computer simulations, a theoretical analysis of the
subject, which is usually further aided by numerical computa-
tions, provides a different perspective but is rarer. As far as we
know, the only existing theoretical study is based on the Frank
model, which treats the overall DNA texture as a nematic field,
with three phenomenological distortion-energy penalties as
the system parameters [29]. Our aim in this paper is to clearly
present a unified view of the ordered and disordered states, as
a function of physically tractable parameters such as confined
DNA length and excluded-volume diameter, on the basis of
solving the free-energy problem of the wormlike-chain model
confined in a spherical cavity.

The theoretical model here assumes that the DNA molecule
is a semiflexible polymer of thickness diameter d , total con-
tour length L, and persistence length P, such that d/P � 1
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and L/P � 1. In total, n polymer chains (for most DNA-
confinement problems, n = 1) are completely placed inside a
spherical cavity of radius R and interact with the confinement
wall by a steric repulsion only. The P/R ratio is a system
parameter here that controls the strength of confinement,
from strong (large P/R) to weak (small P/R). The predomi-
nant segment-segment interactions between DNA strands that
drive the orientational ordering are formulated in terms of
the second-virial free-energy term, originally proposed by
Onsager [30].

Hypothetically, if we could ignore the chain connectiv-
ity for a moment, the system would effectively contain
neff = nL/P rodlike segments confined inside a volume V =
4πR3/3; according to Onsager, the lyotropic liquid-crystal
phase transition takes place when the average relative rod
density ρ0 = 2neff P2d/V , or

ρ0 = 3

2π

d

P
(
P

R
)3 nL

P
, (1)

reaches a critical value. Quantitatively, we can show that the
self-consistent field theory (SCFT, outlined in Appendix A)
gives rise to the same ρ0 as the basic parameter for a long,
wormlike, and connected polymer in spherical confinement,
independent of the above rough estimate. In physical units,
this density regime corresponds to neff/V ∼ 1/(P2d ), which
is much less than the close packing density neff/V ∼ 1/(Pd2).

Hence, en route to close packing which happens at a much
higher density, one expects liquid-crystal-type phase transi-
tions in confined DNA. The most important physical property
of the current system is the connection between the polymer
segments which strongly couples density inhomogeneity and
orientational ordering; once this coupling is correctly installed
in our theory, instead of the liquid-crystal transition, we find
transitions to three spooling states: coaxial spool (CS) as
commonly acknowledged on this topic, Hopf fibration (HF),
and condensed HF (CHF). All are illustrated in Fig. 1 and
discussed in Sec. II. The evidences of the coexistence of two
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FIG. 1. Structural illustrations of the four states, CHF, HF, CS, and ISO, found from SCFT. The director maps in (a), (d), and (g) are drawn
by connecting the local long-axis nematic directions. On the basis of using the symmetry axis as the south-north pole axis, the left panels of (a),
(d), (g), and (j) are side views, the middle panels cross-section views, and the right panels top views from the north pole. Three sets of director
lines are shown: red, light grey, and light blue. The yellow region is the isotropic core (|σ | ∼ 0). In (g), the nematic directors shown by light grey
lines form a weak splay pattern. The left panels of (b), (e), (h), and (k) are plots of the local orientational distribution represented by ellipsoids.
The needlelike and pancakelike shapes indicate local nematic ordering with positive and negative long-axis order parameter σ ; a spherical
shape indicates isotropic ordering with σ = 0. The local density is shown in the right panels. The side (left), cross-section (middle), and top
views (right) of (c), (f), (i), and (l) were produced according to the actual chain coordinates taken from mean-field Monte Carlo (MFMC)
simulations, where colors have no particular meanings. All graphs in this figure were produced by taking parameters [ρ0, P/R] = [18, 1]
(CHF), [13.56,0.3] (HF), [13.3, 0.3] (CS), and [12.2, 1.5] (ISO).

HF states are further given in Sec. IV. The appearance of HF
in a nematic liquid crystal is consistent with the conclusions
drawn from Ref. [29] for a spherically confined system and
from Ref. [31] for nematic liquid crystals in general.

Here we consider a single-chain problem (n = 1). A worm-
like polymer is mathematically modeled by a continuous
cylindrical filament; a contour variable s within the range
[0, L] is specified along the chain axial curve. The spatial
position of a point on the curve at s is represented by the
three-dimensional vector r(s). The unit vector u(s) = dr/ds
determines the tangent direction. The probability function for
a chain configuration r(s) is assumed to be

P[r(s)] = exp(−H0 − Hint ), (2)

where the reduced Hamiltonian

H0 ≡ P

2

∫ L

0
ds

(
du
ds

)2

(3)

is the bending-energy penalty and

Hint = d
∫ L

0
ds

∫ L

0
ds′δ[r(s) − r(s′)]|u(s) × u(s′)| (4)

represents the excluded-volume interaction between the poly-
mer segments at s and s′ [30]. The DNA thread diameter d
shows up here as the magnitude of the interaction.

The mathematical difficulty to analytically treat Eq. (2) is
well known. The theoretical approach we took is the SCFT,
which can be rigourously formulated and whose resulting
differential equations can be precisely solved numerically.
This powerful theoretical platform has had many successes
in other structural-prediction problems in theoretical polymer
physics [32–36]. The key step is to find the Green’s function
that represents the probability of a polymer segment which
gives the segment distribution function f (r, u), that then can
be used to describe the orientational distribution of segments
along the direction specified by the unit vector u, at a spatial
location r. In this paper we omit the entire theoretical deriva-
tion to arrive at the calculation of f (r, u), as it can be found in
a review [37]; the main final equations to be solved are listed
in Appendix A. The numerical solution yields different states
corresponding to different branches of the free energy, which
can be assessed from this theory. A comparison of the free
energies allows us to identify a phase diagram in terms of two
parameters, ρ0 and P/R, discussed in Sec. III. Depending on
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the length of the confined DNA (through ρ0), the confinement
dimension (P/R), and the shape of the confinement (fixed here
to be spherical), the orientational field inside the confinement
can display different states.

II. FOUR DISTINCT STRUCTURES

Here we describe the four types of confined states found
on the basis of our numerical solutions of the distribution den-
sity to the wormlike-chain model, f (r, u). The solutions are
computed at different values of [ρ0, P/R], and two branches
sometimes coexist. Their main characteristics are illustrated
in Fig. 1 by a number of visualization methods, some of which
are defined in Appendix C.

Hopf fibrations (HF or CHF) are directionally ordered
structures in the main body, which usually occur at high
ρ0. The local orientations of segments can be assessed from
the Q-tensor calculated from f (r, u) [38]. Then, the nematic
director n(r), to which most chain segments point, can be
identified for each r. The director view in the figure is pre-
sented by connecting the local nematic directors to form unit-
vector fields. Following the red director curves in Figs. 1(a)
and 1(d), for example, we can see that a red solenoid surface
is formed on which the directors point in twisted directions
continuously, resembling the texture on a French cruller.
Layer by layer, from red, light grey, to light blue surfaces in
Figs. 1(a) and 1(d), the director field varies continually until it
converges to a central, circular solenoid axis inside the blue
solenoid. The HF pattern was first proposed by Hopf [39]
generally for directed vector fields and was previously seen in
other fields of mathematics and physics. References [29,31]
further describe the symmetry that the nematic director field
n(r) must follow to form HF.

Our solution for the density distribution, f (r, u), enables
the analysis that goes beyond the nematic-director view. An-
other representation of the directional ordering is the 3 × 3
tensor field Q(r), which is commonly used in liquid-crystal
physics to measure the orientational ordering [38] and is de-
fined in Appendix C together with the coloring methods used
in an illustration. At a given spatial point r, the Q-tensor can
be diagonalize to yield three principal axes associated with the
three main-axis eigenvalues. Then, the orientational properties
can be described by plotting a three-dimensional ellipsoid
specifying the main nematic direction and by defining a main-
axis order parameter σ , taken from the three eigenvalues, that
has the maximum magnitude. A needlelike shape indicates a
strong orientational ordering (for which σ � 1), a spherical-
like shape denoting a directionally isotropic distribution
(σ � 0), and a pancakelike shape denoting an oblate distribu-
tion (σ � −1/2). The left-hand panels of Figs. 1(b) and 1(e)
contain these plots. In CHF, the chain segments in the central
core region are directionally ordered in the vertical direction
and in HF, disordered. This is further conceptually illustrated
in the cross-section view of the director map, Figs. 1(a)
and 1(d), where the yellow color represents the disordered
region.

These visualization methods [and indeed our calculation
of f (r, u)] have the advantage of ignoring the effects of
configurational fluctuations, hence precisely pinning down
the ideal structures on average. This is particularly important

in studying the fundamental aspects of structural transitions
where particle-based simulation methods are less effective.
On the other hand, they do not directly show the actual chain
configurations which have more visual impacts. Monte Carlo
(MC) or molecular dynamics simulations deal with chain con-
figurations on a more detailed molecular basis. For a wormlike
chain confined in a spherical cavity, they were attempted in
the past [16–24]. One of the technical challenges in these
simulations is designing an algorithm that can efficiently
bring the simulated systems to an equilibrium state under the
extreme physical conditions known for the DNA confinement
problem: slow simulation dynamics due to an extremely long
chain, “jammed” configurations caused by the strong confine-
ment, and the nature of the orientationally dependent excluded
volume between cylindrical filaments. Some of the simulation
difficulties can be more easily overcome for a similar con-
finement problem on short, multiple wormlike chains [40].
A recent molecular-dynamics simulation of a coarse-grained
model provides concrete evidence that the HF configuration
can be found by computer simulations as well [25]. HF was
not found in Refs. [16–24].

We take an alternative MC approach here. From our
SCFT calculation, we precisely determine an external mean
field W (r, u) for a given state, which implicitly contains the
excluded-volume information. The conformational properties
of a long chain can then be simulated in a Monte Carlo
simulation with W (r, u) in replacement of Hint. The method,
known as the mean-field Monte Carlo (MFMC) method and
clearly defined in Appendix D, approximates the actual chain
configurations with some fluctuation effects. For illustration
purposes, Figs. 1(c) and 1(f) are MFMC snapshots of HF and
CHF; the texture formed by chain segments can be compared
with the director map in Figs. 1(a) and 1(d). In particular, a
careful examination of the central panels in Figs. 1(c) and
1(f) reveals the same orientational properties of the central
panels of Figs. 1(a) and 1(d); vertical alignment of chain
segments in the central core region can be observed in CHF
but is not observed in HF. Section IV provides other physical
measurements that demonstrate the differences between the
two states.

At a lower ρ0, the CS state is stable, illustrated by the
director map in Fig. 1(g), displaying coaxial circles about
the vertical axis in the outer layers; all local nematic di-
rectors are parallel to the latitude lines of the confining
sphere. The yellow core region is less dense in chain seg-
ments, which are weakly ordered in the vertical direction;
the MC configurations are further shown in Fig. 1(i). As
the chain persistency increases, there is a strong competition
between the packing requirement, which prefers the chain to
make turns to reach the core region, and the DNA bending
energy, which disfavors any sharp turns. This competition,
together with the requirement of chain connectivity, has
yielded some unique chain structures seen in recent computer
simulations of packaging DNA [16,17,19,20,24]; on statis-
tical average, the overall picture is consistent with the CS
pattern.

At an even lower ρ0, the isotropic (ISO) state is stable and
it has a much simpler structure where the excluded-volume
interactions do not dominate. Most segments in the central
region have an isotropic orientational distribution, σ ∼ 0; the
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FIG. 2. Phase diagrams. (a) The calculated phase diagram in
terms of the reduced density ρ0 and P/R, based on SCFT. See
Eq. (1) for the definition of ρ0. The first-order phase transition is
represented by solid black lines and second-order ones by dashed
blue lines. The orange square is a critical point where the first-order
line terminates. (b)–(d) Real examples produced from typical DNA
parameters according to our theory (see Sec. III), where the smooth
change of color in (b) and (c) represents crossovers.

only exception is near the confinement surface, where the
DNA strands make typical tangential alignments with the
wall surface, σ ∼ −1/2, enforced by the steric interaction.
In a tight confinement when P/R � 1, the DNA strand winds
around the interior of the confinement with no particular cir-
cling directions and creates a less dense regime in the center.
The crossover of the conformational properties from weak
confinement (P/R � 1) to strong confinement (P/R � 1) can
be simply described by a ghost-chain model [41]. Richards
et al. [2] referred to this DNA conformation as the ball model.

III. PHASE DIAGRAM

In which parameter regimes do we expect to see these
states? Theoretically this is determined by the free-energy
calculations, which are accessible through our work. In a few
regimes, two solutions can coexist and the one corresponding
to the lower free energy is deemed stable.

Figure 2(a) is a phase diagram in which ρ0 defined in
Eq. (1) and P/R are used as the basic parameters. The solid
symbols are the actual phase boundaries determined from
our numerical solutions and the curves are the interpola-
tions to form the phase transition boundaries. The CS-ISO,
CHF-ISO, and CS-HF phase transitions are second order
and the HF-CHF transition is first order. The HF-CHF first-
order transition terminates at a critical point at approximately
P/R = 0.35, beyond which the parameter space is known as a
supercritical region in thermodynamics.

The phase transitions occurring between the different states
suggested here can have profound effects in DNA ejection
[23]. In a confinement setting, the ratio P/R is fixed. The
state of the confined DNA is controlled by nL/P (i.e., the
number of confined base pairs) inside the cavity, through ρ0 =
[(3/2π )(P/R)3(d/P)](nL/P), where parameters in [· · · ] are
all known. In ejection of a single confined DNA (n = 1), one

part of the confined DNA is released to the exterior space
of the confinement [42–45]. As L/P decreases, a number of
scenarios can happen. In strong confinement (P/R � 1), the
structure in the cavity undergoes a smooth crossover from
CHF to HF, and then a phase transition to ISO; in intermediate
confinement (0.35 � P/R � 1), the sequence is CHF-HF, HF-
CS, and CS-ISO, where CHF-HF is a smooth crossover; and
in weak confinement (P/R � 0.35), the phase-transition se-
quence is CHF-HF, HF-CS, and CS-ISO. Although DNA ejec-
tion is a dynamic process, as L/P inside the cavity is reduced
across the phase boundaries in Fig. 2, the thermodynamics
of the interior DNA portion requires structural reorganization
in order to make transitions to the new states. This has a
direct impact on the released DNA portion in the exterior;
indeed, the observed curve of released DNA length versus
releasing time from a bacteriophage is known to have two or
three kinks [42,45]. A plausible explanation is that these kinks
correspond to the phase transitions occurring in the confined
DNA portion.

The phase diagram is presented here in reduced units.
To place it in the perspective of real systems, we present
here a few examples. Typical DNA length scales, d = 2 nm,
P = 50 nm [46–49], and 1 kb = 0.34 μm are adopted. Then,
the conversion ρ0 = 16000L/R3 can be established where the
units for L and R are kilobase and nanometers, respectively.
Taking R = 40 nm (T5 phage in Ref. [43]), we illustrate a one-
dimensional phase diagram, presented in Fig. 2(b), divided
into two regions according to L. Whereas in another scenario,
if we let R = 60 nm, the one-dimensional phase diagram in
Fig. 2(c) covers three different regions. In a weak confinement
case, R = 160 nm, the CHF-HF crossover in Fig. 2(c) is now
a clear phase transition.

The theoretical phase diagram in Fig. 2 can be used as a
reference for real systems, but the precise location of these
boundaries could shift because of parameter identification; in
particular, most real confinement geometries are not perfectly
spherical. In addition, it is known, for example, that the
Onsager treatment of the directionally dependent excluded-
volume interactions marginally underestimates the liquid-
crystal transition density in comparison with real systems.
This can be traced back to the second-virial approximation
taken by Onsager [30].

On the surface layer, HF and CHF can be easily related
to a helical pattern. The tilt angle that the nematic director
makes with respect to the equator latitude at the surface,
γ , becomes a characteristic measure for the apparent helical
pattern. Kosturko et al. [5] reported that the surface DNA layer
indeed demonstrates a helical pattern, which provides indirect
experimental evidence of the existence of HF structures. A
close biological system is DNA condensates that form a
toroid; it is known that DNA winds the toroidal axis layer
by layer with varying twist angles [50]. Experimentally, the
CS-HF-CHF transition sequence ought to be measurable by
observing the tilt angle γ , which jumps from zero (CS) to a
finite value (HF), and then to another larger value (CHF), on
the outermost-shell image of the confined DNA.

Shin and Grason took the Frank-energy model as the
starting point of a theoretical model for DNA packing in
spherical confinement [29]. The model was written in terms of
the deformation of the nematic director field and contains λ/R,
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K3/K , and K2/K as the three phenomenological parameters
where λ is related to K , and K , K2, and K3 are the Frank
deformation modulus in the one-constant approximation, and
bending and twisting moduli of a solenoid texture. They
showed that a sequence of three topologically different states
is possible: CS, twisted solenoid (similar to our HF), and
simple solenoid (an extreme case of our CHF when γ = π/2).
As K3/K increases, they found that the system undergoes
a phase-transition sequence of CS to twisted solenoid, and
then twisted to simple solenoids. This is similar to our phase
diagram with a small fixed P/R, where the packed wormlike
chain undergoes the CS-HF-CHF sequence of phase transi-
tions, as the overall packed DNA density ρ0 increases. There
is no consideration of the density variation in Frank energy.
No connection between the Frank elastic moduli and the
physical parameters [ρ0, P/R] used here can be found in the
current literature.

Finally, we comment on the ISO phase boundary by taking
a horizontal path on the phase diagram for a fixed ρ0. Gener-
ally, the naive picture of confinement in an entropy-driven soft
matter system is to induce ordering. In contrast, the current
system has a competing bending energy of the polymer, which
dominates over the entropy of the bulk region at a large P/R.
Most polymer segments are pushed towards the surface shell.
Now, the entropy of winding the shell region in an arbitrary
direction (in an ISO state) prevails over the azimuthal ordering
(in a CS or HF state). This is responsible for the CS-ISO
transition, or HF-ISO transition when P/R increases with a
fixed ρ0.

IV. HF-CHF TRANSITION

In this section, we clarify a subtle issue: How different are
the two Hopf fibration states, HF and CHF? They depend
on the ratio P/R and may appear to occupy a small range
in the phase diagram (Fig. 2); however, when R/P (instead
of P/R) is used as the horizontal axis, the transition region
is significant. Figures 3(a) and 3(b) display two different
scenarios as we change ρ0 for two prototypical values of
P/R = 0.3 and 2.0, respectively. One common feature is that
the director maps of CHF in Figs. 3(a) and 3(b) (far right)
have two defect “points” (yellow) near the north and south
poles where the orientational order parameter vanishes.

A small P/R system feels fewer wall effects and as such the
density distribution profile in the bulk is more uniform. Below
ρ0 � 13, the orientational entropy dominates and hence the
bulk state is isotropic. Above ρ0 � 14, the Onsager interaction
dominates and hence the bulk state is nematic. The existence
of such a first-order isotropic-nematic phase transition was
well documented in the literature for the bulk state [51–54]. In
the case P/R = 0.3, this manifests in the form of a first-order
HF-CHF transition at ρ0 = 13.54. The qualitative picture
was suggested in Refs. [41,55]. At this transition point, as
illustrated in Fig. 3, the density profile [in Fig. 3(a)], the
overall liquid-crystal order parameter σ [in Fig. 3(c)], and the
tilt angle γ [in Fig. 3(d)] all change abruptly. The physical
mechanism is similar to the partial-wetting to complete-
wetting transition of wormlike chains confined between two
parallel plates, found by solving the wormlike-chain model
[56,57] and MC simulations [58–61].

13.4 13.6 13.8

0

0.15

0.20

0.25

0.30

0.35

13.4 13.6 13.8

0

0°

10°

20°

30°

40°

13.48 13.5 13.52 13.54 13.56 13.58 13.6

0

0.239

0.240

0.241

0.242

0.243

0.244

fr
ee

 e
ne

rg
y CHF

HF

(c) (d)

(e) P/R=0.3

FIG. 3. HF-CHF structural transition and crossover. The density
profiles and director maps in (a) are displayed for the first-order HF-
CHF transition as the overall DNA density ρ0 increases inside the
spherical cavity for P/R = 0.3; in contrast, the density profiles and
director maps in (b) are a smooth HF-CHF crossover as ρ0 changes
at P/R = 2.0. This can be further assessed by the changes in (c) the
mean order parameter σ and (d) the tilt angle γ across the HF-CHF
transition, for P/R = 0.1 (triangles), 0.2 (diamonds), 0.3 (circles),
and 0.35 (squares). (e) The reduced free energies of HF and CHF as
functions of ρ0 for P/R = 0.3.

In stronger confinement, P/R > 0.35, however, the bend-
ing of DNA inside the cavity to accommodate both confine-
ment constraint and single-chain continuity creates a density
depletion near the spherical center, as demonstrated in
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Fig. 3(b). The very mechanism that leads to the HF-CHF
phase transition now disappears. The single central isotropic
core smoothly transits into two isotropic regions, and then
subsequently to two points in the north and south poles. There
is no phase transition here. P/R � 0.35 is then a critical point
that separates this “supercritical” behavior from the first-order
transition region.

Figure 3(c) and 3(d) are plots for the mean order parameter
σ and tilde angle γ for fixed P/R as ρ0 varies. The solid and
open symbols represent CHF and HF states, respectively. At
the first-order transitions below P/R � 0.35, the gaps on these
curves are clearly visible. Once the critical point P/R ≈ 0.35
is approached, the gaps close. This can be compared to a
typical liquid-gas transition phase diagram near its critical
point. Figure 3(e) displays the free energies, reduced by a
factor of 2Pβ/L, of the HF and CHF branches at P/R =
0.3, which clearly shows how they cross each other at the
transition density. Away from the transition density, the free
energy difference is apparently small; however, a 0.1% change
in ρ0 approximately corresponds to a 0.1% change in the free
energy, which is significant.

V. CONCLUDING REMARKS

The SCFT calculation in this paper forms a firm theoretical
foundation for interpretation of the structural properties of
DNA in spherical-like confinement. Most recent experimen-
tal and simulation results are built on a spooling concept
[3–5,8,10–12,14,27,28,62]; our understanding of the phase
transitions between the three orientationally ordered states,
CHF, HF, and CS, yields the promise to further understand
DNA confinement in fine detail and to shed light on the DNA
ejection dynamics [22,23,42–45].

Here are additional remarks on the validity of our approach
and the applicability of the main results.

(1) In order to compare with the DNA confinement prob-
lem, we take the limit L/P � 1 in our calculation for a single
confined polymer (n = 1). We can show that the main SCFT
results calculated in this work formally remain the same for
multiple long polymer chains (L/P � 1 and n 	= 1), as long
as ρ0 is used as a reduced parameter, of course, with a factor
n seen in Eq. (1). This is because the dominating physics is
the excluded-volume interaction between polymer segments,
produced regardless of either intra- or interchain interactions;
the long-chain limit guarantees that the polymer end effects
are not important. Our SCFT approach is enabled by such a
physical picture.

(2) The problem of multiple wormlike polymers confined
in a spherical cavity can take another form, closer to confined
liquid-crystal polymers, when L/P is finite. For these systems,
the bipolar, twisted bipolar [63], and tennis-ball structures
[40,64,65] are now known to be stable. Although this problem
is not our main concern here, we point out that by keeping
L/P finite in our theory, the basic SCFT framework can be
used to model these states as well. Essentially, we would be
required to calculate the orientationally order structures in
a three-dimensional parameter space [ρ0, P/R, L/P] instead
of the two-dimensional parameter space [ρ0, P/R, L/P � 1]
presented in this work. From this angle, we also expect that the
SCFT builds a bridge between the classical DNA confinement

problem and the vast theoretical and simulation literature of
liquid crystals confined in a spherical cavity, reported in recent
years.

(3) The same SCFT formalism is adaptive for describing
other liquid-crystal and polymer problems. Taking L/P � 1,
we examined rigid liquid-crystal molecules confined on a
spherical surface [66,67] and on a flat surface with line
boundaries [68,69] where the geometry frustrations produce
nematic defect patterns. Taking L/P � 1, we calculated the
conformational properties of DNA molecules strongly con-
fined in a tube [70–72] where the wormlike-chain model
produces a richer scaling behavior than the Gaussian-chain
model. Using L/P as a varying parameter, we predicted the
phase diagrams for liquid-crystal polymers confined between
parallel plates and on a toroidal surface [57,73] where the
polymer persistency plays a role in stabilizing orientationally
ordered states.

(4) The wormlike-chain model uses d and P as the ba-
sic theoretical parameters. The electrostatic repulsion with
screening can be effectively accounted for within a self-
avoiding wormlike-chain model, but now d and P must be
regarded as effective and “dressed” system parameters, which
can change according to the ionic strength of the solvent. We
refer to a scholarly review on how the effective d and P can
be used for such a case [52].

(5) A viral capsid that packs DNA is known to have
different confinement shapes (e.g., icosahedral) and may con-
tain other biological features in the interior. Here we used a
“spherical cow”-type model to represent the overall confine-
ment by a perfect sphere, as a first attempt to understand the
confinement problem. The inclusion of the biological details
may change the symmetry of the particular phases discovered
in this work. However, we expect that the general physical
picture, that this confined system undergoes multiple stages
of phase transitions in the vicinity of ρ0 indicated in our phase
diagram, still stands.

(6) The current study is based on a field description, and
the particle-level spatial resolution is completely smoothed
out within the spherical interior. Some experimental results,
however, show explicit packing layering with fine spatial
resolution at the scale of DNA width d . The current approach
cannot describe such layering.
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APPENDIX A: SELF-CONSISTENT FIELD THEORY

In this work, we use the wormlike-chain model to represent
the configurations of DNA. The basic model is described by
the Boltzmann weight, Eq. (2), which is written in terms
of a phantom-chain Hamiltonian, Eq. (3), and an interaction
Hamiltonian, Eq. (4). Solving the problem exactly is pro-
hibitive because of the difficulties associated with handling
Hint. The SCFT is a conventional and successful theoretical
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procedure used in treating polymer statistics with segment-
segment interactions, as documented in Refs. [32–36,74–77].
The particular version we used here for the wormlike-chain
model in the above can be found in a review [37], step by step.
The basic assumptions and derivations made in the current
approach are laid out in this Appendix.

A long polymer chain is considered (i.e., L � P), which
winds itself inside the cavity. As such, a segment interacts
with another segment through Hint. Effectively, to consider a
single-chain partition function, the excluded-volume interac-
tion from other portions of the chain is replaced by a back-
ground, self-consistent field W (r, u). The reduced Hamilto-
nian is

Hscf = 1

2P

∫ L

0
dsW [r(s), u(s)]. (A1)

Note that a 2P factor (the effective Kuhn length) is included
to keep W dimensionless.

The total reduced Hamiltonian is then rewritten as, at this
stage in an exact form,

H = H0 + Hint = [H0 + Hscf ] + [Hint − Hscf ]. (A2)

The Hamiltonian in the first set of brackets is considered
below for the calculation of the partition function Q by
taking into account all possible polymer configurations; as an
approximation, the Hamiltonian in the second set of brackets
is treated at the free-energy level with replacement of the
fluctuating quantities by their averages. Therefore, the total
reduced free energy is

βF = − ln Q + dL2

V 2

∫
drdudu′|u × u′| f (r, u) f (r, u′)

− L

2PV

∫
drduW (r, u) f (r, u). (A3)

The mean density function

f (r, u) =
〈
V

L

∫ L

0
dsδ[r − r(s)]δ[u − u(s)]

〉
(A4)

is introduced here, which is obtained from the configurational
average 〈· · · 〉 performed according to the Hamiltonian in the
first set of brackets. Note that f is normalized,∫

drdu f (r, u) = V, (A5)

where V = 4πR3/3 is the volume. The free-energy functional
is minimized with respect to W and f to determine various
quantities self-consistently. The minimization with respect to
the density f (r, u) leads to

W (r, u) = 2ρ0

∫
du′ f (r, u′)|u × u′|. (A6)

Hence W is self-consistently determined by the distribution
function itself.

The logic behind the SCFT concept outlined here can
be more rigorously established (but is more mathematically
involved) by the use of the Hubbard-Stratonovich transforma-
tion, which is a general approach taken in the particle-picture-
to-field-picture transformation, and by the saddle-point
approximation, which is commonly used to select the optimal

W profile of the transformed field. For a general procedure
of establishing the SCFT of a system composed of Gaussian
polymers, one can refer to Refs. [32,36,74]; for wormlike
polymers, Ref. [37].

The calculation of the partition function requires the per-
formance of integration over all polymer configurations:

Q ∝
∫

D[r(s)]D[u(s)] exp[−H0 − Hscf ]. (A7)

The integration can be equivalently mapped into solving
a modified diffusion equation (MDE). For this purpose, a
polymer segment of contour length s is considered and its s
terminal is assumed to appear at the location specified by the
coordinate vector r and to point at the direction specified by
the unit vector u. The probability of finding such a segment,
q(r, u; s) (a propagator), is based on a two-point Green’s
function with the variables associated with the s = 0 end
integrated out. It satisfies

∂

∂s
q =

[ 1

2P
∇2

u − u · ∇r

∣∣∣
u

− 1

2P
W (r, u)

]
q. (A8)

Though this MDE was formulated before [78], a careful
derivation is given in Ref. [79] for non-Cartesian frames,
where special attention is paid to the meaning of the spatial
gradient term.

In the long-chain limit, which is the main concern of the
current work, the so-called ground-state dominance “approxi-
mation” is a useful theoretical tool and is asymptotically exact
[80]. In most cases, the physical properties are s independent
and hence the s dependence can be removed. The propagator
can now be written as

q(r, u; s) = exp(−μs/2P)q′(r, u), (A9)

where μ is the ground-state eigenvalue of the equation,

μq′(r, u) = [
W (r, u) + 2Pu · ∇r − ∇2

u

]
q′(r, u), (A10)

which is solved in the current work instead of solving
Eq. (A8). The partition function is given by

− ln Q = μL/2P, (A11)

and the distribution function is

f (r, u) = C−1q′(r, u)q′(r,−u). (A12)

In the rest of this paper, the prime on q is dropped, with
the understanding that the above relationships are adopted.
Here C = V −1

∫
drduq(r, u)q(r,−u) is a normalization fac-

tor, with V being the volume of the sphere.
The entire theory contains ρ0 as the reduced density in-

troduced in Eq. (1) of the text. Note that there are only two
system-dependent parameters in this theory: ρ0 and P/R. The
latter shows up in the second term on the right-hand side of
Eq. (A10), after rescaling r by R.

APPENDIX B: NUMERICAL COMPUTATION

In brief summary, to perform a calculation for the current
problem, for a field W , the MDE (A10) needs to be solved
for q. The density profile is then produced from Eq. (A12)
and through Eq. (A6) gives W . Looping through these self-
consistent steps yields a solution for the problem. The free
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energy is evaluated from

2P
βF

L
= 1

V

[
ρ0

∫
dr

∫
du

∫
du′ f (r, u) f (r, u′)|u × u′|

−
∫

dr
∫

duW (r, u) f (r, u)
]

+ μ (B1)

for assessing the stability of a state and for producing the
phase diagram in the text.

The numerical solution of the eigenproblem in Eq. (A10)
requires the consideration of the propagator q as a function
of five variables: three components for r and two components
for u. The variable space can be reduced if a certain symmetry
is expected. Here we found that by simply discretizing the q
function in the five-dimensional space, with implementation
of parallel computation, enables us to calculate the propagator
efficiently. A typical solution for a given [ρ0, P/R] point,
carried out on 32 processors, takes approximately a few hours.

We initially used a numerical guess for the simplest ISO
state. As we scan the phase diagram in Fig. 2 by increasing ρ0

with fixed P/R, the ISO solution bifurcates at the ISO-CS and
ISO-HF boundaries. At a relatively large P/R, HF smoothly
crosses over to CHF. Once these four states were discovered,
we took multiple paths to scan the phase diagram, to ensure
that all regions are covered. This time, to produce a solution
for a particular state (HF, CHF, CS, or ISO) at given [ρ0, P/R],
an initial guess was taken from an existing solution of that
state at a neighboring point of [ρ0, P/R].

APPENDIX C: VISUALIZATION FOR ORIENTATIONAL
ORDERING

We solved the model in the last section by using a spherical
coordinate system [41,55,79]. An important result is f (r, u),
which is the probability density of finding a chain segment
at a spatial position specified by the vector r and pointing at
the direction specified by the unit vector u. The numerical
solutions to SCFT yield the distribution functions f (r, u)
precisely for the four states discussed in the paper.

The density profile plotted on the right-hand panels of
Figs. 1(b), 1(e), 1(h), 1(k), 3(a), and 3(b) is calculated from

ρ(r) = ρ0

∫
du f (r, u). (C1)

Following the convention used in the liquid-crystal theory,
the local orientational distribution at u is characterized by

computing the 3 × 3 tensor Q(r) which contains the elements
calculated from [38],

Qi j (r) =
∫

du(3uiu j − δi j ) f (r, u)

2
∫

du f (r, u)
, (C2)

where ui (i = x, y, z) is the ith Cartesian component of u.
Based on this traceless tensor, three eigenvalues are then
obtained, λ1 � λ2 � λ3. Hence the orientational property can
be represented by an ellipsoid with axes ai = λi + 1/2, where
i = 1, 2, 3. As the result, an idealized, needlelike distribution
is illustrated by ellipsoid with a1 = 3/2, a2 = a3 = 0. An
isotropic state is illustrated by a sphere with all ai = 1/2.
A pancakelike distribution is illustrated by an oblate with
a1 = a2 = 3/4, a3 = 0. This method is used in producing
the left-hand panels of Figs. 1(b), 1(e), 1(h), and 1(k). The
eigenvector corresponding to λ1 is used as the local director
in Figs. 1(a), 1(d), and 1(g).

In Fig. 1, we also use color to represent the orientational or-
dering. An order parameter σ (r) is defined from the eigenval-
ues, σ (r) = λ1 if |λ1| > |λ3| and σ (r) = λ3 otherwise. Then,
a needlelike distribution has σ = 1 and an oblate distribution
σ = −1/2. The isotropic distribution is represented by σ = 0.
A color map can then be produced for σ .

APPENDIX D: MEAN-FIELD MONTE CARLO

One can show that the probability density produced from
solving Eq. (A10) self-consistently is equivalent to an effec-
tive wormlike-chain model for a single chain, with the chain
statistics satisfying the probability

P = exp

{
−H0 − 1

2P

∫ L

0
W [r(s), u(s)]ds

}
.

Note that there is no intrachain interaction anymore, as it
is now effectively represented by W [r(s), u(s)], the self-
consistent field.

This offers the opportunity to conduct a single-chain Monte
Carlo simulation without including the interaction Hamilto-
nian in Eq. (4). The continuum version assumes a continuous
function r(s), which can be represented by a discrete chain
connected by bonds of small length 
s. Hence, after solving
the SCFT to obtain W , one can conduct Monte Carlo simu-
lations on a discrete chain following this weight to reproduce
typical segmental coordinates for each given type of W (r, u)
(HF, CHF, CS, and ISO), inside the confinement sphere of
radius R.
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