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Hard-wall entropic effect accelerates detachment of adsorbed polymer chains
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Many previous studies of unbinding kinetics have focused on a two-state model, with fully bonded and free
states, which may not extend to more complicated biopolymer dynamics involving other reactions. Here we
address the kinetic rate of this process at the segment level, as it is influenced by a growing dangling end of the
chain. We use the mean first-passage time approach and treat the polymer as a chain attached to a wall through a
succession of spring potentials, with two distinct regions of bonded and free segments. The interaction between
the wall and free-moving chain end adds an entropic repulsion to this process. We estimate the average monomer
detachment rate K as a function of the free dangling length L. For a flexible polymer, we find an acceleration
factor in the average detachment rate depending on L and the details of the spring bond; when L is long, this
factor is a simple ratio of its breaking distance to the natural bond length. For a semiflexible filament, we examine
the regime where L is shorter than persistence length Lp, as the limit opposite to that of the flexible chain. An
enhancing factor also appears, speeding up the filament unbinding when the free length grows; for a long rigid
rod, this factor becomes two, independently of the bond details. We also examine the total unbinding time of an
irreversible detaching process by integrating (1/K ) over polymer length and discover that its power-law scaling
with chain length is smaller than one, over the commonly seen range of polymer size.
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I. INTRODUCTION

Detachment of adsorbed polymers from a surface is a
fundamental kinetic process [1–7] and has been an important
problem due to its frequent involvement in biological systems
such as single biopolymers attached to cell membrane [4,8,9].
This polymer-surface system is also relevant in unzipping of
two multiply bonded polymer chains or filaments such as
microtubule filaments, known as one of the main components
of the cellular network controlling their length through an
unbinding and dissociation process [10–12]. Therein, one of
the two laterally bonded filaments is usually treated as a hard
wall, respecting the fact that two filaments cannot penetrate
each other. Due to an increasing impact of single-molecule
techniques, such as atomic force microscopy and optical
tweezers, an experiment is able to investigate thermodynam-
ics and kinetics of single biopolymers [13–16], accordingly
attracting theoretical interest to the underlying physics of
sequential unbinding.

Although many of the previous studies have examined
kinetics of unbinding the whole chain attached to a hard sur-
face and unzipping of two bonded filaments [7,11,13,17–19],
they mostly applied the two-state transition kinetic theory,
considering a fully bonded and a fully unzipped state with
a transition barrier to cross. The task became to describe
the transition state: solving a Schrödinger-like equation of
the end-end separation distance[13,14] or the filament-shape
equation with the bonded length being the free energy min-
imization parameter [18]. The kinetic rate constant of un-
zipping is then determined by the Arrhenius activation law,
proportional to the Boltzmann factor of barrier crossing. Little
effort was put into understanding the unbinding kinetics of in-
dividual monomers or chain segments during the detachment
process.

This two-state simplification is somewhat unrealistic in
biological phenomena, which are usually quite dynamic and
accompanied by various side reactions before the entire
chain fully unbinds from its substrate. Although Paturej and
coworkers [7] derived an evolution equation for the unbound
length by using a blob-trumpet picture of the polymer shape,
it is still not applicable to incorporate the effect of accom-
panying reactions, as surely the inclusion of other reactions
will change their evolution equation, and the new equation
may be hard to find. In fact, a trend of applying the master
kinetic equation method has been growing in the biopolymer
area [20–23]. Therein, the evolution of the entire system is
governed by many step-by-step reactions, described through
a set of kinetic equations. This has the benefit to allow other
possible intervening reactions to contribute to this dynamic
process. In this sense, unbinding of the entire chain will
be treated as a monomer-by-monomer process, with each
polymer state characterized by the length of the free unbound
segment. It is therefore indispensable to find the average
detachment rate constant at this monomer or segment level
during unbinding process of all bonded monomers, instead of
using the full-filament view.

Here we address the unbinding problem at the segment
level, specifically focusing on finding the monomer detach-
ment rate. We consider a polymer chain laterally bonded to
a hard surface. The unbinding process occurs from one end
and proceeds continuously by one segment at a time, without
jumping (the segment will not break off, if the previous neigh-
bor has not yet done so). Hence, there are only two distinct
regions along the polymer, bonded and detached (the latter of
the length L); see Figs. 1(a) and 3(a) below for illustration.

Under this scenario, the detached chain segments freely ex-
plore the space above the wall, subject to thermal motion and
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FIG. 1. (a) Cartoon of a flexible chain partially attached to a
hard wall, with a detached chain free to fluctuate. Our focus is on
the kinetics of the tag monomer (shown in red), while the rest of
the bonded monomers are immobilized. The imaged chain is shown
by dashed lines, with one end imaged from r′ across the surface,
yet the other end fixed at the tag monomer. Note that this imaged
chain inevitably crosses the surface and is therefore a forbidden
configuration that we need to exclude in calculating the number of
chain configurations which obey the hard-wall boundary condition.
(b) Plot of the effective potential Vfl (logarithmic scale) against z,
with the detached length N = 0, 2, 5, and 150 (increasing along the
arrow). The monomer starts from the the length a and breaks the
bond when reaching z = c (here taken as c = 2a). The minimum of
this effective potential, z∗, moves farther away from the equilibrium
bond length a due to the entropic repulsion, as N increases.

the grafting constraint. This contributes an additional entropic
effect to the unbinding kinetics. Many previous studies have
reported such an entropic effect due to spatial confinement,
in dynamics of flexible polymers [24] and glassy colloids
[25], in desorption kinetics of polymeric surfactants (diblock
copolymers) which forms a monolaymer with many brushes
pointing out normal to the surface [1], and in stiff semiflexible
chain systems [26–28]. Nevertheless, this effect has not been
explored in unzipping kinetics. Here our goal is to study
this entropic effect on the step-by-step unbinding kinetic rate
constant in two distinct cases: for a flexible chain and for a
semiflexible filament.

We will not consider a more complicated situation where
some of the segments along the free unbound chain may
have reattached back onto the surface, forming loops on the
dangling chain. Our aim in this paper is purely to calculate
the rate constant to detach the last-bonded monomer with a
free dangling chain without reattachment The purpose is to
establish some of the unbinding rate constants required for
applying the master equation method to describe dynamics of
fully detaching an adsorbed polymer at the surface.

The paper is organized as follows: in Sec. II A we review
the previous studies of entropic repulsion between the wall
and the grafted polymer, and obtain the effective potential

along the unbinding coordinate, essentially making it a one-
dimensional problem. In Sec. II B we introduce the mean
first-passage time (MFTP) method [29,30] in order to find the
average detachment rate of the last bonded monomer in this
context. This general method is widely applied in polymer
reaction theories [31,32]; the unbinding rate we obtain has
a geometric prefactor, erf (c/2Rg)/erf (a/2Rg), increasing the
escape rate of a harmonically bonded particle, where a is
the natural bond length, Rg is the radius of gyration of the
unbound dangling chain segment, and c is the bond-breaking
length. For a very long unbound chain, this prefactor reduces
to (c/a).

In Sec. III A we consider a discrete semiflexible filament,
with bending penalty described by the Kratky-Porod model
[33]. In the case where the unbound chain length L is shorter
than the persistence length Lp, we treat the unbound chain
as a rigid rod that rotates above the wall about the point
of last bonded monomer. The effective entropic potential is
obtained in a similar way as in Sec. II A, i.e., by integrating
over the available orientations of the rod. Even for such a
simplified model, the MFPT analysis becomes algebraically
difficult. In Sec. III B we use an interpolation by first finding
analytical approximations in the two limiting cases, without
the rod and with a very long rigid rod, and then spanning
between the two limits. The resultant detaching rate again
has an acceleration factor depending on the rod length,
{1/2 + 1/[2 + (3L/

√
bLp)]}−1

, where b is the monomer size.
For a long rod (yet when the condition L < Lp still holds), this
factor reduces to 2, independently of the details of the lateral
bond. In Sec. IV we explore the full process of irreversible un-
binding, and the power-law scaling of the total unbinding time
with the chain length, by summing the monomer detachment
time along the filament length. Trying to keep the logic and
the results clear, we move complex mathematical derivations
into appendices.

II. FLEXIBLE CHAIN

First we consider a flexible polymer [34] composed of two
different regions, bonded to the substrate and freely dangling,
and represent it by the ideal bead-spring model as illustrated
in Fig. 1(a). The freely dangling unzipped region starts from
one grafted point and goes along the remaining polymer
backbone. The monomers in this region can move around
through thermal fluctuations, while respecting the hard-wall
constraint. The other region consists of monomers bonded
to the wall through an attractive spring potential, with its
minimum sitting at the bond length a away from the wall.
These bonded monomers are initially equally spaced by the
segment (Kuhn) length b in the longitudinal direction, giving
the initial fully bonded state. For simplicity, yet capturing
the physical essence, the individual bonded monomers are
only allowed to move perpendicular to the wall along z axis.
The lateral bond with the wall is assumed broken, when
the particle reaches the bond-breaking distance denoted as c.
We focus only on the last grafted monomer that is about to
detach, with the rest of the bonded monomers assumed to
be immobilized in their equilibrium positions in the spring
potential.
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Let us estimate the average time for this last bonded
monomer (initially at z = a) to reach the bond-breaking dis-
tance c for the first time and find how it changes with the
length L of the dangling end. In order to achieve this, the first
thing is to find the “effective potential” along the z direction
that this last bonded particle experiences, which consists of
the harmonic potential of the bond, k(z − a)2/2, and an en-
tropic effect from the interaction between the detached chain
segments and the wall.

The detached chain is treated as an ideal flexible chain
of N springs with (N + 1) monomers (L = Nb), with the
propagator function GN (r, r′) between end positions at r and
r′, described by the “diffusion equation” [34], with the initial
condition GN (r, r′) = δ(r − r′) at N = 0:

∂GN (r, r′)
∂N

= b2

6
∇2GN (r, r′); GN (r, r′) ∝ e

−3(r−r′ )2

2Nb2 , (1)

Without the reflecting wall, Eq. (1) has a standard Gaussian
solution shown on the right-hand side of the equation.

A. The effective potential

The presence of an impenetrable wall imposes a boundary
condition at z = 0. The exact form of this boundary condi-
tion is nontrivial, as simulations [35] showed. Many of the
important theoretical studies [36–38] all used an “exclusion”
condition GN (r, r′) = 0 at the wall (z = 0), meaning that a
flexible chain strongly prefers not to touch the surface. This is
an effect of configurational entropy of a long chain, examined
first by DiMarzio [39] by counting restricted chain configura-
tions, and then by Edwards and Freed [40] by estimating the
entropic repulsive force if the chain were pushed into a wall.
It is in stark contrast with the “zero-flux” condition on the
repulsive wall that individual (colloid) particles experience.

To solve Eq. (1) with an exclusion boundary condition,
one can apply the “image” principle originally introduced by
Smoluchowski [41] in the diffusion-type problems. There is
a subtlety here: the “image” chain shares the same grafting
point r with the real chain. It is only the other end of the
chain that is reflected across the wall, being at the position
(x′, y′,−z′), as shown in Fig. 1(a), with the chain adopt-
ing an arbitrary configuration between these fixed ends. All
such “image” configurations are, in fact, forbidden, because
it inevitably crosses the wall at a certain segment as can
be seen in Fig. 1(a). Its contribution therefore needs to be
subtracted from the original unconstrained propagator, giving
the constrained solution GC

N (r, r′) as

GC
N (r, r′) =

(
3

2πNb2

)3/2

exp

{
−3[(x − x′)2 + (y − y′)2]

2Nb2

}

×
{

exp

[
−3(z − z′)2

2Nb2

]
− exp

[
−3(z + z′)2

2Nb2

]}
. (2)

Since the detached chain has one freely fluctuating end, we
integrate Eq. (2) over r′, counting all the possible detached-
chain configurations, while leaving z as the only spatial vari-
able for this propagator (note that the monomer is assumed to
move only along the z direction; x and y do not come into play

and are set to be zero):

ZC
N (z)=

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

0
dz′GC

N (r, r′)= erf

(
z

2Rg

)
, (3)

where {erf} is the error function, and Rg =
√

Nb2/6 is known
as the radius of gyration. As expected, ZC

N equals zero when
the grafted monomer touches the wall and increases when
moving away from the wall. At large separation, this term
reaches a plateau, entailing that an entropic repulsion is
observed only near the wall. Equation (3) has been used in
similar polymer systems, on different topics, all dedicated
to understanding the entropic effect arising from the wall
[38,42,43].

The effective potential that the last bonded monomer expe-
riences is the combination of a spring (bond) potential and an
entropic contribution to free energy:

Vfl(z) = k

2
(z − a)2 − kBT ln

[
erf

(
z

2Rg

)]
. (4)

For practical bonded polymers in biological systems, the
bond length a is usually of the same magnitude of the segment
length b, while the bond-breaking distance c normally sits
between 2b and 3b. The characteristic energy per monomer
depends on the type of physical interaction and could vary
between 20 kBT for stronger hydrogen bonds to around 5 kBT
for weaker hydrophobic interaction, when kBT is the room
temperature [13,44,45]. For illustration, let us set a = b =
1 nm, c = 2 nm, and choose the spring constant k value such
that the bond energy k(c − a)2/2 = 5 kBT . Then Fig. 1(b)
shows the variation of effective potential with z, with in-
creasing detached length N . Note that in this plot we have
vertically shifted the potential Vfl at different N values in order
to have the same value at z = c for clearer comparison. As
N increases, the equilibrium length of the bond, z∗, is driven
away from the wall: a stronger entropic repulsion appears as
the detached length increases, while at N = 0, the effective
potential is simply the spring on its own.

B. Mean first-passage time and detachment rate

The MFPT technique is a well-known method in statistical
mechanics [30], used to estimate the time for the particle to
first reach the adsorbing boundary, starting from a specified
initial position. Here our detachment system projects into a
one-dimensional problem (along the detaching direction z) for
the last bonded monomer, with one adsorbing boundary at
z = c (after the monomer breaks the bond, we do not account
for a possible rebonding as we are interested in finding the
detachment rate only) and a hard wall boundary condition
at z = 0, while the monomer initially starts at z = a (at the
minimum of the bond potential). For this system, MFPT has a
rather simple integral form:

τ = 1

D

∫ c

a
dz eVeff (z)/kBT

(∫ z

0
dx e−Veff (x)/kBT

)
, (5)

where Veff is the effective potential and is given in Eq. (4) for
a flexible chain and Eq. (13) for a semiflexible filament. For
the flexible chain, D is the bare diffusion coefficient of the
single fluctuating monomer. Note that all the boundary and
initial positions appear in the integral limits. When we insert
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FIG. 2. (a) Acceleration prefactor of the flexible chain, Kfl/K0
fl ,

plotted against the detached length N , with b/a = 0.2, 0.4, 0.6,
1.4 nm (increasing along the arrow). Solid lines are plotted without
considering the hydrodynamic interaction between the surface and
the last bonded segment. The asymptote at large N is shown in
the gray line, giving the plateau c/a. The corrections due to the
hydrodynamic effect, Eq. (9), are shown in dashed lines, with circles
being numerical results (hydrodynamic effect included), using the
same parameter values. (b) Plot of the average detachment rate Kfl

(logarithmic scale) of the flexible chain against the spring constant k,
for N = 1, 3, and 15. Solid lines are produced using the approximated
expression of Eq. (7), while markers (circles, squares, and diamonds
for N = 1, 3, and 15, respectively) are the corresponding numerical
results estimated from Eq. (5).

Eq. (4) into the MFPT expression, the resultant integrals are
difficult to calculate directly. However, we can obtain a good
approximation by assuming a large spring constant k, which
turns out to be reasonable for practical biopolymer systems
with the bond energy of 5 kBT per monomer or above. We
will show the comparison of the numerical and approximated
results, after we derive them, to justify this assumption later;
see Fig. 2(b).

The first-inside integral in Eq. (5) is estimated by using the
saddle point approximation. The saddle point z∗ is given by
the equation

(z∗ − a) = kBT exp
(−z∗2/4R2

g

)
√

π kRgerf (z∗/2Rg)
, (6)

which is not analytically solvable. But the shift (z∗ − a)
becomes small when the restoring coefficient k increases,
which may be checked by examining the large-Rg case and
obtaining (z∗ − a) ∝ k−1. Under the large-k assumption, we
take the saddle point z∗ ≈ a, neglect the small correction

added to k in the quadratic coefficient of the expansion,
and further replace the upper limit of the first integral
with ∞, as the inside exponential function decays sharply
away from the saddle point. The first integral then becomes
erf (a/2Rg)

∫∞
0 e−k(x−a)2/2kBT dx. In this way, we decouple the

two integrals in Eq. (5). The second integral clearly has its ma-
jor contribution from around z = c; see Fig. 1(b). We substi-
tute −kBT ln[erf (c/2Rg)] for the entropic term in the effective
potential of Eq. (4), resulting in the factor 1/erf (c/2Rg) in the
second integral. However, the mean detachment rate Kfl of the
N th segment, namely, the inverse of the MFPT, takes the form

Kfl ≈ erf (c/2Rg)

erf (a/2Rg)

D∫ c
a e

k(z−a)2

2kBT dz
∫∞

0 e
−k(x−a)2

2kBT dx

≈ erf (c/2Rg)

erf (a/2Rg)

{
D(c−a)k3/2

√
2π (kBT )3/2

[
1+ kBT

k(c−a)2

]e−k(c−a)2/2kBT

}
,

(7)

where Rg =
√

Nb2/6, and the integrals in the bracket of
the first line represent, in fact, the detachment rate K0

fl
for the monomer with a strong spring potential of attaching to
the wall, without any effect of the detached chain (at Rg = 0).
The analytic approximation of the average escape rate for such
a harmonic system is well known in textbooks [30,46]. We
hence skip the derivation of K0

fl and present the final form for
our detachment rate Kfl in the second line of Eq. (7).

The effect of entropic repulsion from the detached chain is
manifested in the ratio of erf functions, as a factor multiplying
the “bare” K0

fl . This ratio reduces to 1 when N = 0 (i.e.,
without any detached chain), correctly recovering the physical
picture that only spring potential matters in this extreme case.
On the other hand, when the detached length N grows, this
ratio increases, making the detaching process faster. Yet, for
a very long detached chain, it eventually reaches a plateau
determined by the ratio of the breaking distance to bond
length, namely, c/a. This acceleration prefactor depends on
the Kuhn length b, through the relation Rg =

√
Nb2/6: at a

fixed N , a larger step length b gives a longer detached chain
Rg, thus resulting in a stronger entropic repulsion away from
the wall, and accordingly a sharper increased rate. Figure 2(a)
shows how Kfl/K0

fl ratio changes with the length of the free
chain, for several values of b, while taking a = 1 nm, and
c = 5 nm to enhance the c/a ratio and make the effect of b
more visible.

To see how the bond strength k affects Kfl, and whether our
large-k assumption leads to a desirable approximated form,
we plot both the numerical and approximated detachment rate
[using Eqs. (5) and (7) in Fig. 2(b)], with a = 1 nm, b = 1
nm, and c = 2 nm, against k in the range that would give
bond energy from 2.5 to 7.5 kBT at room temperature, with
three different N values. All these parameter values are in
practical order of the magnitude for biological systems. Note
that the diffusion coefficient D of a monomer is not a relevant
parameter that would cause any error and is chosen to be
1 nm sec−2 for convenience to cancel the units. The results
show that Kfl decreases dramatically with k as expected from
the Boltzmann factor, exp[−k(c − a)2/2kBT ], to overcome
the bond energy barrier in the Arrhenius kinetic theory, and
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that our approximation of Eq. (7) in Fig. 2(b) matches well
with the numerical calculation (within 10% error).

Note that our assumption that the diffusion coefficient D is
a constant independent of the monomer position with respect
to the wall is based on ignoring the volume or thickness of
segments in the bead-spring model. It is well known that
particles with nonzero volume show a decreased mobility
[and thus the local diffusion coefficient D(z) in the vicinity
of a hard wall], which is due to hydrodynamic effects of
flow disruption [47–50]. This effect may be important for
attaching and detaching kinetics in biological systems, for
example, in the shaft dynamics of a bacterium attached to
the hard surface [51]. In our system, we consider only the
hydrodynamic interaction between the hard wall and the last
bonded segment, and neglect the hydrodynamic effect from
the immobilized and other remaining monomers of the free
chain, which we take to be a Rouse chain. For a spherical
particle of radius b (we take it of the order of the segment
length), D(z) has an approximate form D∞C(z, b), where D∞
is the diffusion coefficient far away from the hard wall, and
the correction factor C(z, b) is given by the famous expression
[47,49]

C(z, b) ≈ 6(z/b)2 + 2z/b

6(z/b)2 + 9z/b + 2
, (8)

which equals zero at z = 0 and reaches one far away from the
wall.

The mean detachment rate we evaluated in Eq. (5) needs to
be modified, since the effective diffusion constant D(z) is now
under the outer integral over z; see Ref. [29]. The calculation
is straightforward, and we plot its numerical result in Fig. 2(a)
with circles, to illustrate the level of correction introduced
by this hydrodynamic effect. Since the effective diffusion is
reduced near the wall, the role of this hydrodynamic cor-
rection is to decrease the mean detachment rate of the last
bonded monomer, although not significant for some typical
values of parameters. In the same way that we produced the
approximate analytical factors in Kfl/K0

fl in Eqs. (6) and (7), a
simple approximation for the hydrodynamic correction at high
lateral-bond strength k takes the form

Kfl

K0
fl

≈ erf (c/2Rg)

erf (a/2Rg)
C(c, b), (9)

which clearly shows that only the diffusion coefficient near
bond-breaking distance c matters, appearing as the factor
C(c, b). As the segment size b increases, with respect to the
equilibrium bond length a, the hydrodynamic effect becomes
more prominent; see the dashed lines in Fig. 2(a).

In summary, we exposed the origin of the entropic repul-
sion originating from the hard wall in Sec. II A and further
implemented the MFPT method to investigate how this affects
the monomer detachment rate. The result gives an acceleration
ratio [erf (c/Rg)/erf (a/Rg)] multiplying the unbinding rate of
the purely spring potential case (i.e., Kfl0). In the long chain
limit, this ratio reduces to c/a, merely determined by the
equilibrium bond length and its breaking distance.

a

b
z

0
i=0

i ti-1

z
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(b)
L

0
min

max

b

ati

FIG. 3. (a) A discrete presentation of a semiflexible filament
above the wall. A monomer on the wall is particularly shown to
illustrate the hard wall boundary conditions on the bond vector t .
(b) Rodlike description used in our model. θmax and θmin are the
maximum and minimum of the available rotation angle θ about
the tag monomer, respectively. φ is the bending angle between the
second and third bonded monomer.

III. SEMIFLEXIBLE FILAMENT

Semiflexible chains are rigid polymers where monomers
prefer to align linearly. This tendency is conveniently de-
scribed by the famous Kratky-Porod discrete model or the
continuous wormlike chain model [33,34], through the bend-
ing energy

Hb =
N∑

i=0

κ

2b
(1 − cos θi ) ∼

∫ Nb

0

κ

2

[
d2r(s)

ds2

]2

ds, (10)

where θi is the bond angle between bond vectors of ith and
(i + 1)-th monomers (the tangent vector for the ith monomer
is denoted as t i), κ is the bending rigidity, and b is the
internal bond length between two neighboring monomers;
see Fig. 3(a). In the continuous version, r is the position of
the chain element, as a function the arc length s along the
semiflexible filament. The second derivative of r is the local
curvature along the chain.

The persistence length Lp is defined as the ratio κ/kBT and
is the length scale for the chain to roughly retain its linear
shape without significant bending fluctuation. When the chain
length, L ≡ Nb, is much longer than Lp, a behavior similar
to the flexible chain is expected. Hence, we will focus only
on the regime L < Lp, as the opposite limit to the previous
section. We ignore any possible torsional effect along the
chain and use a discrete model of the two-dimensional system,
as depicted in Fig. 3(a). As in the flexible chain case, the
bonded monomers are all assumed to be immobilized in their
equilibrium position of the spring potential (at z = a), except
for the last bonded monomer that is considered as the grafting
point of the remaining free chain. Both the dangling chain
end and the last bonded monomer are subject to thermal
fluctuations.

A. The effective potential of a rodlike model

The presence of a wall poses a different boundary condi-
tion on its surface, compared with the flexible chain, where
monomers are strongly repelled away and cannot reside
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against the wall due to great loss of configurational entropy.
The stiffness of semiflexible chain can overcome this entropic
loss and force monomers to lean on the wall. To put it differ-
ently, if the ith monomer rests on the wall, the tangent vectors
t i−1 and t i must point downward and upward, respectively; see
Fig. 3(a) for an illustration.

This wall boundary condition is nontrivial to implement
when one tries to solve the propagator equation for the parti-
tion function of the chain. Under a subtle assumption of a long
semiflexible chain with small lateral deflection (yet still in the
regime L < Lp), the partition function for a chain with one
fluctuating end and the other end grafted with specified posi-
tion and bond orientation above the wall has been obtained as
a product of z1/6 and a complicated hypergeometric function
that accounts for the orientation effect [26,28]. However, the
information of the chain length has been lost or becomes
simply a free energy shift that plays no effect in the shape
of the effective potential, making it unsuitable for our purpose
(which is to investigate how this length affects the unzipping
time).

Instead of solving the propagator for the chain, we treat the
detached chain as a rigid rod, free to rotate above the wall,
as our interest lies in the regime L < Lp. This rodlike system
has only two bending energy contributions. One is due to the
bending angle θ between the rod and the first polymer tangent
in the bonded area, while the other is the angle φ between the
first and second bonds therein, as shown in Fig. 3(b). Without
the dangling rod, the chain Hamiltonian solely depends on the
bent angle φ. Note that this angle φ is essentially a function
of unbinding coordinate z, described by the relation sin φ =
(z − a)/

√
b2 + (z − a)2.

The hard-wall boundary condition in this rodlike model
becomes a constraint on the range of the available rotation
angle θ . For L > c (c is the bond-breaking length), this
constraint can be readily obtained from triangular geometry,
when this rod rotates clockwise and counterclockwise to hit
the wall [see Fig. 3(b)]: θmin = cos−1(z/L) − π/2 and θmax =
− cos−1(z/L) + 3π/2. For L < c, this has to be discussed in
a piecewise way in the two regimes z > L and z � L, yet this
extra complexity may be unnecessary, as one realizes that c
is usually only two or three monomers long and this L < c
regime is indeed very narrow over the entire course of the
full detachment. Alternatively, we can first find the effective
potential of L = 0 and L > c cases, then use them to estimate
the detachment rate, and finally interpolate to cover the L < c
regime.

Without the rod (that is, the free dangling part), the ef-
fective potential is the sum of the spring potential plus the
bending energy, −κ (cos φ − 1)/2b:

V 0
sf = k

2
(z − a)2 − κ

2b

[
b√

b2 + (z − a)2
− 1

]
. (11)

When z = a, the bending energy in V 0
sf is zero, whereas any z

shift from a creates nonzero bending energy, in addition to the
spring potential.

For the rod with θ angle, the bending energy is −κ[cos(φ −
θ ) + cos φ − 2]/2b. The partition function is found by in-
tegrating all available rotations:

∫ θmax

θmin
exp{κ[cos(φ − θ ) +

cos φ − 2]/2bkBT } dθ . Assuming a large κ , we expect the

bending energy to be lowest around θ = φ (we prefer to align
linearly) and hence implement a Gaussian approximation
around this point. The integrand in this partition function shall
decay sharply, under this large κ assumption. Meanwhile,
we notice that the angle θmax has the rod rotate almost into
the opposite alignment direction, far enough away from the
preferred angle φ, so as to be replaced with ∞ in the integral
limit. On the other side, θmin may still be close to φ to cover the
major contributions of this decaying integrand, thus remains
in its original form, and is the only parameter that includes
the effect of the rod length L. However, the partition function
Gsf is

Gsf ∼
∫ ∞

θmin

exp

{
Lp

2b

[
cos φ − 1

2
(θ − φ)2 − 1

]}
dθ. (12)

The Gsf integral is straightforward, and the corresponding
effective potential is a spring potential plus the rod repulsion
term (−kBT ln Gsf ):

Vsf = k

2
(z − a)2 − kBT

(
ln

√
πb

Lp
+ Lp

2b
(cos φ − 1) + ln

×
{

1 + erf

[
1

2

√
Lp

b
(φ − θmin)

]})

≈ V 0
sf (z)−kBT

(
ln

{
1+erf

[
1

2

√
Lp

b
(φ−θmin)

]}
− ln 2

)
,

(13)

where V 0
sf is the effective potential without the free dangling

rod, Eq. (11), and the angle φ contains an additional z de-
pendence via cos φ = b/

√
b2 + (z − a)2. The constant terms

are discarded in the second line of Eq. (13). We also note
that when z increases, the angle φ also grows, making the erf
term approach one. We hence add the shift (− ln 2), so that
Vsf overlaps with V 0

sf as z reaches the bond-breaking length c,
which is more convenient to compare the potential profiles of
varied L values.

The interplay between the rod and wall is manifested in
the −kBT {ln[1 + erf (· · · )] − ln 2} term, which we plot by
setting a = 1, b = 1, c = 2, and Lp = 20 nm in Fig. 4, with
varied rod lengths L. This entropic repulsion increases when
z approaches zero, yet does not go to infinity as in the
flexible chain case, because the semiflexible filament allows
monomers to rest on the wall and puts a constraint only on
the bond orientation. On the other hand, when the monomer
moves far from a, the rotation range of angle θ roughly
recovers the partition function Gsf without the constraint, that
is, Eq. (12) with the integral limits ±∞. This causes the
repulsion free energy curve reduced to zero as z increases,
regardless of L. In fact, at around z = c, this repulsion almost
vanishes in Fig. 4.

A crossover regime between these two extremes (z close
to and very far from the wall) appears around z = a. It is
interesting to note that a long rod at z = a can rotate only
upward [thus inserting φ = 0 and θmin = 0 in Eq. (12)].
This approximately gives half of Gsf of a less constrained
case at z = c, thus resulting in a free energy increase of
−kBT ln (1/2) around z = a shown in Fig. 4. In turn, the
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FIG. 4. Entropic potential of repulsion due to the constrained
rotation above the hard wall, plotted against the unzipping coordinate
z with increasing rod length: L = 3, 5, and 10 nm along the arrow,
while setting a = 1, b = 1, c = 2, and Lp = 20b. The asymptote
of a long rod is shown by the dashed line, which intersects with
z = a roughly at − ln(1/2), contributing to a decrease in the effective
potential barrier of detachment.

detachment potential barrier, with the effective potential well
sitting roughly around z = a and a zero repulsion at z = c
(as explained above), decreases roughly by −kBT ln (1/2) as
well. We will see this (1/2)-factor contribute to the numerical
factor of 2 in the mean detachment rate in the next section.

B. Mean detachment rate

The mean detachment time without the rod in the semi-
flexible chain is calculated by inserting the effective potential
Eq. (11) into Eq. (5). As stated previously, the spring constant
k for practical systems can be safely assumed to be large.
We can therefore apply the saddle point approximation for
the inside integral of Eq. (5) and replace its limits with
±∞, which rules out the z dependence (the same logic as
we used with the flexible chain in Sec. II B). We recognize
that the second integral has its main contribution around
z = c and hence Taylor-expand the exponent of the inside
integrand around this point to the first order, approximating
it as an easy-to-integrate exponential which decays fast when
z decreases from c. All these derivation details are moved to
Appendix A. The final result gives the expression for K0

sf ,
which is the average rate of breaking the bond of the monomer
without the dangling rod:

K0
sf ≈

D(c − a)
{

k
kBT + Lp

2[b2+(c−a)2]3/2

}√
2k

kBT + Lp

b3

2
√

π exp
{

k
2kBT (c − a)2 + Lp

2b

[
1 − b√

b2+(c−a)2

]} .
(14)

The bending energy, embedded in the expression for Lp,
appears together with the bond energy as the combined energy
barrier to overcome for breaking the bond. It appears in the
activation exponential factor, while the details of the potential
shape, around the potential well and around the bond-breaking
distance, are reflected in the numerator. For Lp = 0, K0

sf re-
duces to the spring potential case, in agreement with the

expression for K0
fl , i.e., the term inside the curly bracket in

Eq. (7).
When we put effective potential of the rodlike case, Vsf (z)

of Eq. (13), into the MFPT integral of Eq. (5) to calculate
the detachment rate, the algebra becomes quite complicated,
and the approximation we used before does not lead to a
clear analytical expression. Instead, we first find the average
detachment rate for the limiting case of a very long rod and
then combine it with the rod-free result K0

sf , and the numerical
calculation of the finite rod case, in order to propose a good
interpolation.

For a very long rod, the angle θmin in Eq. (13) becomes
zero. By using the resultant effective potential and following
the similar procedures (see Appendix B for derivation), we
find the simple approximation for the mean detachment rate
in the limit of a long rod: K∞

sf ≈ 2K0
sf (within 10% error

compared with numerical results). Perhaps this is not too
surprising, as we already explained below Eq. (13), and il-
lustrated in Fig. 4, that a long rod roughly lowers the potential
barrier by −kBT ln (1/2), due to constrained rotation range
around z = a (ruling out downward half-plane rotations).

The next task is to find an interpolation factor that reduces
to one when the rod length L = 0, and reaches 2 as L →
∞, by observing how the numerical results of the average
detachment rate of a finite rod behaves. This factor is not an
exponential-related function as one would guess at first sight
but is better fitted by the inverse of a shifted scaling function,
giving the mean detachment rate of a finite rod as

Ksf ≈
(

1

2
+ 1

2 + 3L/
√

bLp

)−1

K0
sf . (15)

This interpolation is within 10% error over a wide range of
parameter space, and even more accurate for the range of
practical biological bonded polymers, when compared with
the numerical results (see Appendix C for this comparison).
The halfway length can be defined as the rod length L∗ that
makes this prefactor midway between 1 and 2, giving L∗ =
2
√

Lpb/3. A more rigid chain has a longer halfway length, and
the mean detachment rate in this case reaches the plateau of
Ksf0 more slowly while the dangling rod length increases. This
may be understood if we realize that the angle θcr to include
the major region of the peak of Gsf shrinks, as Lp increases,
making this peak sharper. Accordingly, θmin requires a longer
L to shrink more pronouncedly in order to have |θmin| < |θcr|
and subsequently a reduced Gsf value that creates the entropic
repulsion in the effective potential.

Although it would be desirable to also include the hydro-
dynamic effect near the hard wall as in the flexible chain,
finding the diffusion coefficient of the rod end moving along
the z direction is not straightforward, due to its coupling with
both translational and rotational diffusion coefficients in the
geometry of a rod with the hinged end. Careful investigation
of the correction factor of such effect in D goes beyond the
focus of this paper and will not be addressed here.

The rodlike model is valid in the regime where L < Lp.
For a less rigid rod, when L = Lp, the acceleration factor
of Eq. (15) may have not yet reached its 2-limit. We plot
this prefactor, Ksf/K0

sf , against the scaled rod length L/Lp,
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FIG. 5. Acceleration prefactor of the rodlike model, Ksf/K0
sf ,

plotted against the scaled rod length L/Lp, for Lp = 5b, 10b, 30b,
and 100b. (increasing along the arrow).

with b = 1 nm and several Lp values in Fig. 5. Therein,
the scaled halfway length, L∗/Lp, is longer for a smaller
Lp, consequently producing a smaller (Ksf/K0

sf ) at the limit
L = Lp.

IV. DISCUSSION AND CONCLUSIONS

We now consider the case of an irreversible one-by-one
detaching process for a polymer of N segments from the end.
Although we are aware that the exclusion of recombination is
not realistic in biological systems such as DNA zippers, our
aim here is merely to explore how the entropic acceleration
of the detaching rate due to the free dangling chain could
possibly affect the N scaling of the total detaching time. The
total or cumulative detaching time (excluding the possibility
of recombination) can be obtained by integrating the inverse
of Eqs. (7) and (15) over the number of detached monomers
N (equal to L/b). For flexible polymers, the inverse of Eq. (7)
is not analytically integrable. We therefore first numerically
estimate the nondimensional cumulative unbinding time τ tot

fl
to observe its N scaling, and then propose a possible ap-
proximation for τ tot

fl later. Figure 6 plots the nondimensional
total unbinding time (τ tot

fl ) as a function of N on the log-log
scale and shows that the curve switches from the initial linear
scaling law, N , to the shifted linear scaling, (aN/c), when the
total length of the chain increases. The lower boundary of the
crossover regime can be readily obtained by Taylor-expanding
the acceleration ratio against N , and assuming that when the
ratio of the first correction term to the zeroth term reaches
m, the deviation of the curve starts to become important. For
the upper boundary, we solve the approximate N value that
gives the acceleration ratio as (1 + p)a/c, where p measures
how far the curve is away from the asymptotic plateau, (a/c).
These give the expressions for the boundaries as 3πm2a2/2b2

(lower) and [c2(1 + p) − a2]/2b2 p (upper), and we manu-
ally choose m = 0.5 and p = 0.02 to qualitatively cover the
crossover regime. Note that the lower boundary is insensitive
to c, due to the fact that a � c and hence the variation of c
inside erf (c/2Rg) becomes less significant than the a value
inside erf (a/2Rg), when Rg is a small value and erf functions
almost reach the plateau.

1 10 100 1000
0.10

1

10

100

1000

N

a Nc

2002

0.8

0
(N )fl

tot

N

fl

FIG. 6. Nondimensional total unbinding time for the flexible
chain plotted against N , with b = 1, a = 1.2, and c = 3 nm as an
illustrative example. The crossover regime is the region confined by
two gray lines at N = 2 and 200, where the “apparent” N scaling
changes to ∝ N0.8. The dashed lines are the asymptotic expressions
at small and large N .

The range of this crossover extends roughly from 2 to
a few hundreds of monomers, which covers the commonly
seen polymer sizes in biological systems. Moreover, the N
scaling in this crossover regime is changed to an apparent
N0.8. We note that a previous study on desorption kinetics
of the flexible polymer chains from the surface gives this N
scaling exponent ≈2 [7]. This discrepancy originates from the
different configuration assumed for the zipped (bonded) state.
In our model, we assume that monomers are detaching in an
orderly way on the premise that the bonding is strong and
only the detachment at the end of bonded monomers matters,
whereas Ref. [7] uses a randomly bonded configuration for
the bonded region (it does not assume a fixed number of
bonded sites), and, importantly, the chain length between two
neighboring bonded monomers is assumed to be larger than
bN3/5, so that they can apply the mesoscopic blob model
to describe the chain configuration [52]. These blobs in the
bonded region provide additional configurational entropy that
would more or less stabilize the zipped state, which one
expects to slow the entire unbinding process.

In contrast, our model does not allow any distance between
two bonded sites (we assume it to be the Kuhn length b and
not very stretchable). In fact, in biological zippers such as
microtubules and DNA, the lateral bonds between two parallel
filaments are not really random (the bonding sites need to
match the correct sites to form bonds). The simulation of
the unzipping of Y-shaped DNA which excluded the effect
of DNA looping showed that this N scaling of the unbinding
time is ≈1 [53], which corresponds to the case where no hard
wall appears and explains that the difference in configurations
assumed for zipped states could cause the different N scaling
in kinetics. The decreased exponent in N scaling in our model
originates from the switch between the two linear scalings
which is driven by the entropic repulsion away from the hard
wall.

The approximated formula for τ tot
fl (N ) can be obtained

by separating the original integral over N into two smaller
integrals in the small- and large-N regimes, respectively,
and utilizing the first term of the Bürmann series for the
erf function, erf (x) ≈ [1 − exp(−x2)]1/2, followed by Taylor
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expansion of the resultant function inside the square root in
the large-N regime. This gives the nondimensional cumulative
unbinding time approximately as

τ tot
fl

τ 0
fl

≈ 1 + a

c
(N − 1) + 3ac

8b2

(
1 − a2

c2

)
ln

(
1 + N − 1

ν

)
,

where ν =
1
b (8b2 + 3c2 − 3a2) + √

4b2 + 3a2 − 3c2

8b + 2(8b2 + 3c2 − 3a2)/
√

4b2 + 3c2 − 3a2
.

(16)

τ 0
fl is the unbinding time required when without the free

dangling chain, namely, 1/K0
fl defined below Eq. (7). The first

two terms of Eq. (16) give the large-N asymptote (aN/c), and
the last term is the correction for small N . The parameter ν

represents the length of the free dangling end governing the
sharpness of the transition between two regimes in Fig. 6; it
depends on the geometric parameters of the bond, a and c,
and Kuhn length of the chain b. Yet ν varies only between
1.6 and 4.5 for c between 2b and 5b, with a ≈ b, qualitatively
consistent with the lower boundary of crossover we proposed
earlier (both would give small numbers for the occurrence of
crossover). The characteristic length 
fl for the crossover may
be estimated by finding the intersection of τ tot

fl with the linear
function that has the mean slope of these two asymptotic
N scalings (so that this function sits right in the midregion
between them). Mathematically, solves the N value satisfy-
ing the equation τ tot

fl = (1 + a/c)Nτ 0
fl /2. Although the exact

analytical solution for this equation is not available, a good
approximation, valid over the range of practical parameter
values for biological zipped filaments, takes the form


fl ≈ 2 + 9ac

8b2

(
1 + a

c

)
. (17)

This characteristic length 
fl decreases as the Kuhn length b
increases, because as shown in Fig. 2(a), a larger b shrinks the
decay length for the acceleration ratio for the unbinding time,
making it approach the large-N asymptote faster (and also the
same for the cumulative unbinding time). On the other hand,

fl increases as a and c increases, with quadratic and linear
dependence, respectively.

For semiflexible filaments in our model, the nondimen-
sional total unbinding time is obtained by directly integrating
the acceleration prefactor in Eq. (15) over the filament length
N (using the relation L = Nb), giving

τ tot
sf

τ 0
sf

≈ N

2
+ 1

3

√
Lp

b
ln

(
1 + 3

2

√
b

Lp
N

)
. (18)

τ 0
sf is defined as 1/K0

sf of Eq. (14). A switching behavior
similar to Fig. 6 for the flexible chain also emerges. However,
the change of the “apparent” scaling exponent in the crossover
regime is not as pronounced as for the flexible chain, with
this exponent being roughly 0.9 (probably due to a slower
decay of the acceleration ratio in unbinding time and a smaller
asymptotic value in the long chain limit, compared with the
flexible chain). The characteristic length 
sf for this crossover
of two asymptotic N scalings may be obtained by solving the

equation τ tot
sf = (1 + 1/2)Nτ 0

sf/2, which gives


sf ≈ 1.675

√
Lp

b
. (19)

Equation (19) indicates a longer 
sf length for a more rigid
filament. It is not surprising, as we already saw the same
tendency in the acceleration ratio (Ksf/K0

sf ); see Eq. (15). We
could use the similar procedures to define the lower boundary
of the crossover, by finding the N value at the intersection
of τ tot

sf with 0.9Nτ 0
sf (the number 0.9 is chosen to give 10%

deviation from asymptote at small N), and we obtain the
expression 0.36

√
Lp/

√
b. Although this boundary grows with

increased Lp, its value changes slowly from 1 to 5, when Lp

increases from 10b to 500b. On the other hand, at L = Lp, the
unbinding time τsf for the last bonded monomer with a rigid
rod, namely, 1/Ksf of Eq. (15) is about to approach the asymp-
tote of a long rod. This L point can therefore be treated as the
upper boundary for the crossover regime. But note that due to
our rod assumption (requiring L � Lp), the nondimensional
total unbinding time never fully collapses into the asymptote
L/2b in the long rod limit. This phenomenon becomes more
recognizable in less stiff filaments (a similar tendency is seen
in the acceleration ratio Ksf/K0

sf ).
In this paper, we apply the MFPT method to calculate

the step-by-step detachment kinetic rate, by using a picture
of a polymer attached to a hard-wall substrate, and study
how the entropic repulsion from this wall constraint could
affect the average time of monomer unbinding as the free
dangling length grows. We find that for a flexible polymer,
the mean rate of monomer unbinding is enhanced by a ratio
[erf (c/2Rg)/erf (a/2Rg)], depending on the lateral-bond de-
tails and the radius of gyration of the free dangling chain,
Rg. This ratio approaches (c/a), as Rg increases. For a semi-
flexible filament detaching from the substrate, we explore the
regime where the free unbound length L is smaller than the
persistence length Lp and present it as a rigid rod rotating
about the last bonded monomer above a wall. We also find an
acceleration factor approximately described by the expression
[1/2 + 1/(2 + 3L/

√
Lpb)]

−1
, which reduces to 2 for a long

rod, reflecting the fact that only half of the rotation angles are
available due to the wall constraint. The increase length of this
ratio is proportional to

√
Lpb. However, note that the validity

of our rodlike model holds only when the condition L � Lp

is satisfied. The estimated acceleration ratio at L = Lp for
less stiff filaments does not really reach the asymptotic value
2, but as the bending rigidity increases, this ratio gradually
approaches this value.

A semiflexible filament in the regime L � Lp is similar
to a flexible polymer and is expected to recover the same
acceleration factor as in the flexible chain case, with the Kuhn
length being roughly of the Lp magnitude. The crossover from
the rodlike model to flexible chain description is nontrivial, in
the sense that the acceleration ratio first decreases to a value
somewhat near 2 at L = Lp, then has to increase a bit due
to a few more rotational angles becoming available along the
increasingly bendable free filament, which eases the entropic
repulsion, and then eventually decrease to the long-flexible
chain limit (c/a).
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For both the flexible chain and semiflexible filament in
an irreversible unbinding process, the cumulative or total
detaching time shows a crossover between two linear asymp-
totic N scalings. The apparent N-scaling exponent in this
crossover regime is decreased to smaller than one, due to
the entropic driving force. In this paper, we studied only the
entropic driving force in the detaching process. In fact, some
other important driving factors for unbinding include lateral
pulling force at the polymer end (in DNA) and a natural local
curvature along the filament contour length (in microtubules).
The lateral pulling force will add a factor exp( f z′/kBT ) to
the partition function of Eq. (2) for the flexible chain, which

later needs to be integrated over z′, while an energy term
− f L sin θ to our effective potential of Eq. (13) for the semi-
flexible filament. On the other side, the natural curvature will
apparently break the geometry of a straight rod and requires
a new geometry model to work with. These topics will be
addressed in our future work.

ACKNOWLEDGMENT

This work is funded by the Theory of Condensed Matter
Critical Mass Grant from EPSRC (EP/J017639).

APPENDIX A: DERIVATION OF K0
sf

In this Appendix we calculate the MFPT of the rod-free case to obtain the expression in Eq. (14). The inverse of this MFPT
then is the detaching rate which we use in the main context. We will use the nondimensional variable in our derivations for
the benefit of neatness and then transform the final result back to the dimensional form. We choose the segment length b
and the thermal energy kBT as conversion units, writing ã = a/b, c̃ = c/b, L̃p = Lp/b, and Ṽ 0

eff = V 0
eff/kBT . In this way, the

nondimensional form of MFPT integral in Eq. (5) becomes

τ̃ 0
sf ≡ τ 0

sf D

b2
=
∫ c̃

ã
eṼ 0

sf (z̃)

(∫ z̃

0
e−Ṽ 0

sf (x̃) dx̃

)
dz̃, with Ṽ 0

sf (z̃) = k̃

2
(z̃ − ã)2 − L̃p

2

[
1√

1 + (z̃ − ã)2
− 1

]
. (A1)

Under the large-k assumption, we apply the Gaussian approximation to exp(−Ṽ 0
sf ) in the first integral of Eq. (A1), and further

replace the integral limits with ±∞, giving

∫ ∞

−∞
exp

[
−1

4
(2k̃ + L̃p)(x̃ − ã)2

]
dx̃ = 2

√
π√

2k̃ + L̃p

. (A2)

The second integral of Eq. (A1) can be dealt with by Taylor-expanding the exponent of the inside integrand around z̃ = c̃ to the
first order (giving an exponential function), because the effective potential increases when the monomer moves towards c̃ from
the position ã, meaning the major contribution is around z̃ = c̃. We further replace the lower integral limit ã with −∞, for this
approximated exponential function decays fast when z̃ decreases from c̃, altogether giving

∫ c̃

−∞
exp

(
k̃

2
(c̃ − ã)2 + L̃p

2

[
1 − 1√

1 + (c̃ − ã)2

]
+ (c̃ − ã)

{
k̃ + L̃p

2[1 + (c̃ − ã)2]3/2

}
(z̃ − c̃)

)
dz̃

= 1

(c̃ − ã)
{
k̃ + L̃p

2[1+(c̃−ã)2]3/2

}exp

{
k̃

2
(c̃ − ã)2 + L̃p

2

[
1 − 1√

1 + (c̃ − ã)2

]}
. (A3)

The product of Eqs. (A2) and (A3) gives the MFPT without the rod:

τ̃ 0
sf ≈

2
√

π exp
{

k̃
2 (c̃ − ã)2 + L̃p

2

[
1 − 1√

1+(c̃−ã)2

]}
(c̃ − ã)

{
k̃ + L̃p

2[1+(c̃−ã)2]3/2

}√
2k̃ + L̃p

. (A4)

Transforming this τ̃ 0
sf expression back into the dimensional form gives the final result of τ 0

sf in Eq. (14). Without doubt, if one
applies Gaussian approximation to the second integral of MFPT calculation (instead of stopping at the first order correction as
above), a more accurate τ 0

sf expression can be obtained. Here we present only the final result with this improvement:

τ̃ 0
sf ≈

2
√

π exp
{

k̃
2 (c̃ − ã)2 + L̃p

2

[
1 − 1√

1+(c̃−ã)2

]}
(c̃ − ã)

{
k̃ + L̃p

2[1+(c̃−ã)2]3/2

}√
2k̃ + L̃p

⎧⎪⎨
⎪⎩1 +

k̃ − (2(c̃−ã)2−1)L̃p

2[1+(c̃−ã)2]5/2

(c̃ − ã)2
[
k̃ + L̃p

2[1+(c̃−ã)2]3/2

]2
⎫⎪⎬
⎪⎭. (A5)
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APPENDIX B: DERIVATION OF K∞
sf

A similar procedure to that in Appendix A is applied here, also in the nondimensional formalism. The effective potential of a
long rod is obtained by inserting θmin = 0 into Vsf of Eq. (13). Its nondimensional expression takes the form

Ṽ ∞
sf (z̃) = Ṽ 0

sf (z̃) − ln

[
1 + erf

(
φ

2

√
L̃p

)]
, (B1)

where all the nondimensional parameters and variables are defined above Eq. (A1), Ṽ 0
sf is given in Eq. (A1), and φ =

sin−1 [(z̃ − ã)/
√

1 + (z̃ − ã)2], with its expression in terms of dimensional parameters given below Eq. (13).
We put the new effective potential Ṽ ∞

sf into the MFPT integral of Eq. (A1). In order to apply the Gaussian approximation to
the first integral, we have to first find its saddle point by solving the equation: ∂Ṽ ∞

sf /∂ z̃ = 0. Since k̃ is assumed to be strong, it
is expected that this saddle point, z̃∗, has only a small shift to the spring potential well z̃ = ã. We write z̃∗ = ã + m and put this
form into the saddle point equation ∂Ṽ ∞

sf /∂ z̃ = 0. Therein, we further use Taylor expansion around m = 0 to first order (since m
is only a small shift) and solve the equation of m to obtain the saddle point as

z̃∗ = ã +
2
√

π L̃p

2k̃π + (2 + π )L̃p
, (B2)

which gradually decreases to ã, when either k̃ or L̃p increases, meaning that in the case of a strong spring spring or stiff filament,
the monomer tends to stay in its equilibrium position of the original potential (without the entropic effect from the rod) as
expected.

The Gaussian approximation for the integrand exp(−Ṽ ∞
sf ), with z̃∗ of Eq. (B2) inserted, gives the zeroth-order term as

0th order = −2π k̃

L̃p

(
2 + π + 2π k̃

L̃p

)2 + L̃p

2

⎡
⎢⎢⎣ 1√

1 + 4π L̃p

(2L̃p+2π k̃+π L̃p)2

− 1

⎤
⎥⎥⎦+ ln

⎡
⎢⎢⎣1 + erf

⎛
⎜⎜⎝

√
π√(

2 + π + 2π k̃
L̃p

)2
+ 4π

L̃p

⎞
⎟⎟⎠
⎤
⎥⎥⎦. (B3)

We notice that 4π L̃p/(2L̃p + 2π k̃ + π L̃p)
2

in the second term on the right side of the equation is actually a small term in the

large-k̃ regime. Hence the second term can be approached by −π/[2 + π + 2π (k̃/L̃p)]
2
. Also, inside the erf function above,

4π/L̃p is negligible compared with the square term in the denominator. Altogether, we simplify the zeroth-order term as

zeroth order ≈ −π (2k̃ + L̃p)

L̃p

(
2 + π + 2π k̃

L̃p

)2 + ln

⎡
⎣1 + erf

⎛
⎝ √

π

2 + π + 2π k̃
L̃p

⎞
⎠
⎤
⎦. (B4)

The same procedures can be applied to simply the Gaussian term. The result gives a general form exp[−0.5k̃ − AL̃p(· · · ) + B],
where the last term B cannot extract any k̃ or L̃p factors out, and is negligible (verified by plotting these three terms against L̃p at
varied k̃ values over a wide range). We will hence drop off this irrelevant term B. On the other hand, although the coefficient A has
a complicated form, with the ratio k̃/L̃p being the only parameter embedded inside, it is a rather flat function which is insensitive
to the change of this ratio, and can be described very well by the value 3/8. Since all these calculations are straightforward, we
present only the final approximated expression here:

Gaussian term ≈ exp

[
−
(

k̃

2
+ 3L̃p

8

)
(z̃ − z̃∗)2

]
. (B5)

Combining Eqs. (B4) and (B5), the first integral in the MFPT becomes

∫ ∞

−∞
e−Ṽ ∞

eff (x̃)dx̃ = 2
√

2π√
4k̃ + 3L̃p

⎡
⎣1 + erf

⎛
⎝ √

π

2 + π + 2π k̃
L̃p

⎞
⎠
⎤
⎦exp

⎡
⎢⎣ −π (2k̃ + L̃p)

L̃p

(
2 + π + 2π k̃

L̃p

)2

⎤
⎥⎦. (B6)

In the second integral of the MFPT expression, we Taylor-expand the exponent of the integrand exp(Ṽ ∞
eff ) around z̃ = c̃ to the

first order, giving an exponential function that decays fast when z̃ decreases from c̃. Following this approach, the zeroth-order
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term for this exponential is

0th order = exp

⎧⎨
⎩ k̃

2
(c̃ − ã)2 + L̃p

2

[
1 − 1√

1 + (c̃ − ã)2

]
− ln

⎛
⎝1 + erf

⎧⎨
⎩
√

L̃p

2
sin−1

[
c̃ − ã√

1 + (c̃ − ã)2

]⎫⎬
⎭
⎞
⎠
⎫⎬
⎭

≈ 1

2
exp

{
k̃

2
(c̃ − ã)2 + L̃p

2

[
1 − 1√

1 + (c̃ − ã)2

]}
, (B7)

where the ln-term is roughly ln 2 with L̃p larger than five, when inserting the practical values for ã and c̃ (the parameter range is
stated in Sec. II A). On the other side, the first-order expansion of the exponent gives

first order = exp

(
(c̃ − ã)

{
k̃ + L̃p

2[1 + (c̃ − ã)2]3/2

}
− F

)
(z̃ − c̃), (B8)

with F =
√

L̃p exp
(−L̃pφ

2
c /4
)

√
π [1 + (c̃ − ã)2]

[
1 + erf

(√
L̃p

2 φc

)] .

φc is the φ angle at z̃ = c̃. The F term is negligible compared with other terms in the exponent, due to its exponential-decay
nature as L̃p increases. Using this simplification for Eq. (B8) and together with Eq. (B7), the second integral for the MFPT
expression takes the form

∫ c

−∞
eṼ ∞

sf (z̃)dz̃ =
exp
{

k̃
2 (c̃ − ã)2 + L̃p

2

[
1 − 1√

1+(c̃−ã)2

]}
2(c̃ − ã)

{
k̃ + L̃p

2[1+(c̃−ã)2]3/2

} . (B9)

Note that here we have already replaced the original lower integral boundary ã with −∞, due to the large-k̃ assumption.
Combining Eqs. (B6) and (B9), we arrive at the expression for the MFPT in a long-rod case:

τ̃∞
sf ≈

√
2k̃ + L̃p

8k̃ + 6L̃p

⎡
⎣1 + erf

⎛
⎝ √

π

2 + π + 2π k̃
L̃p

⎞
⎠
⎤
⎦exp

⎡
⎣ −π (2k̃ + L̃p)

L̃p
(
2 + π + 2π k̃

L̃p

)2
⎤
⎦τ̃ 0

sf . (B10)

We examine this prefactor over a wide range of k̃ and L̃p values, while setting 1 � ã � 1.5 and 2 � c̃ � 3, and discover that this
factor is almost a fixed constant sitting between 0.497 and 0.505, insensitive to the variation of these parameters. We therefore
substitute the value 0.5 for this prefactor, obtaining the expression used in the main context: τ∞

sf ≈ τ 0
sf/2 and hence K∞

sf ≈ 2K0
sf .

APPENDIX C: NUMERICAL COMPARISON OF Ksf

In this Appendix, we compare the numerical calculation
and approximation for acceleration prefactor (Ksf/K0

sf ) from
Eq. (15). We specifically focus on the Lp effect on the error,
while choosing b = 1, a = 1, and c = 2 nm and keeping
these values fixed. In order to examine solely the accuracy
of the approximation for the (Ksf/K0

sf ) ratio, we deliberately
compute both Ksf and K0

sf numerically [by inserting the effec-
tive potential of Eqs. (11) and (13) into the MFPT integral,
respectively], instead of using the approximation for K0

sf ,
namely, Eqs. (14) or (A5) which may be another source of
error. We plot the numerical results and the approximation
Eq. (15) against rod length L on Fig. 7(a), at fixed spring
strength k = 10 kBT nm−2 such that the bond energy is 5 kBT ,
for a rigid and a less stiff filament (Lp = 50 and 10 nm). We
remind readers that the effective potential in the rodlike model
holds only in the regime c < L; see the argument in Sec. III A.
We do not have the needed potential in the MFPT integral
to estimate the unbinding rate Ksf in the regime 0 < L < c.
Therefore, the numerical results in this region L � c will
not be showed. Figure 7(a) shows that our approximation
does capture the trend of the numerical curves, and that the

deviation is the largest at L ≈ c and decreases as L increases.
The cause for this phenomenon (higher error occurring near
L = c) is due to the limitation of using interpolation method
to cover the region 0 < L < c.

To further explore the magnitude of the error, we divide
the ratio (Ksf/K0

sf ) given in Eq. (15) by the numerical re-
sults estimated from direct MFPT integral and plot its er-
ror percentage against the scaled rod length, L/Lp, in three
groups of different k and Lp values, in Fig. 7(b). Within each
group, the Lp value is held the same and only k values are
changed to produce three curves. We choose Lp = 10, 50,
and 100 nm, with k = 10, 15, and 20 kBT nm−2, to cover
the range of the bond energy commonly seen in biological
systems (from 5 to 10 kBT ). Figure 7(b) shows that the error
of our approximation is almost within 5%, except for the point
near L = c (10% error there), for all curves. The increase
of filament rigidity seems to increase error percentage, and
one may worry that this approximation is not suitable beyond
the range of Lp values we investigate. However, it shall not
be a major concern, because the persistence length Lp of
100 nm will contribute to a bending penalty of 27.64 kBT to
unbind [estimated by using the bending energy term inside
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FIG. 7. (a) The acceleration ratio, Ksf/K0
sf , plotted against the rod length L, with Lp = 50 nm (rigid filament, upper curve) and 10 nm (less

stiff filament, lower curve). Numerical results are shown as dots, while solid lines are produced by Eq. (15). (b) The percentage error for
Ksf/K0

sf , plotted against the scaled rod length L/Lp, at different spring strength k and persistence length Lp. The squares, triangles, and circles
are estimated at Lp = 100, 50, and 10 nm, with k = 10 (connected by the red dashed line), 15 (blue dotted), 20 (orange solid) kBT nm−2.

Eq. (11) with z = c] without the assistance of external pulling
forces. This energy penalty is so high that one would expect
this reaction unlikely to occur, or be simply too slow to

be an important kinetic process. And even at such a large-
Lp value (Lp = 100 nm), our approximation is still within
10% error.
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