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Leader cells in collective chemotaxis: Optimality and trade-offs
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Clusters of cells can work together in order to follow a signal gradient, chemotaxing even when single cells do
not. Cells in different regions of collectively migrating neural crest streams show different gene expression
profiles, suggesting that cells may specialize to leader and follower roles. We use a minimal mathematical
model to understand when this specialization is advantageous. In our model, leader cells sense the gradient with
an accuracy that depends on the kinetics of ligand-receptor binding, while follower cells follow the cluster’s
direction with a finite error. Intuitively, specialization into leaders and followers should be optimal when a
few cells have more information than the rest of the cluster, such as in the presence of a sharp transition in
chemoattractant concentration. We do find this—but also find that high levels of specialization can be optimal
in the opposite limit of very shallow gradients. We also predict that the best location for leaders may not be at
the front of the cluster. In following leaders, clusters may have to choose between speed and flexibility. Clusters
with only a few leaders can take orders of magnitude more time to reorient than all-leader clusters.
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I. INTRODUCTION

Eukaryotic cells commonly chemotax, moving in response
to a chemical gradient, to locate wounds and move in a de-
veloping embryo. Clusters of cells often chemotax differently
than single cells, cooperating to improve their sensing abilities
[1–5]. Gene profiling of neural crest cells has shown that cells
in different regions of the migrating stream show varying gene
expression, including in the genes responsible for cell recep-
tors [6]. Experiments on the zebrafish lateral line primordium
demonstrated that adding chemosensing cells to a cluster with
reduced chemosensing abilities can help restore migration
[7,8]. These results suggest that cells may cooperate by spe-
cializing into leaders who sense the chemical gradient, while
others follow [2,3,6,9], as previously hypothesized by others
[10]. The leaders we describe need not be at the tissue front,
differing from the definition of leaders commonly used in
wound healing [11]. The term “leader” is also often ambigu-
ously used to describe cells responsible for any of force gen-
eration, steering, or sensing [12]; here we focus on sensing.

We expect specialization to leaders and followers to be
most important if there is a large difference between the
information different cells have about the gradient orientation,
as in sharp transitions. This may occur when cell clusters
follow a gradient that is “self-generated,” i.e., when cells
near the rear degrade or sequester chemoattractant [9,13–20],
allowing a cell cluster to migrate over distances much
longer than its size during development [9,16,19] and cancer
metastasis [17,20].

*Corresponding author: bcamley@jhu.edu

We develop a minimal model of cluster chemotaxis with
leaders and followers. Past theoretical and experimental work
on self-generated gradients [14,16] has shown that the con-
centration profile takes a sigmoidal shape, with high concen-
trations in front of the cluster and lower concentrations at
the cluster’s rear. Rather than model the details of a specific
system’s self-generated gradient, we focus on a how a cell
cluster behaves in an applied gradient shape and vary the
imposed concentration gradient. Specializing improves the
chemotactic velocity in both sharp transitions and near-linear
gradients of chemoattractant but is not always beneficial.
Although it is often assumed that cells near the front of a
cluster are best positioned to lead, we find that, depending on
the gradient shape, cells near the middle or back of the clus-
ter can have more information about the gradient direction.
Specialization not only impacts the migration speed, but also
strongly increases the cluster’s reorientation time.

II. MODEL AND METHODS

We parametrize the chemoattractant profile:

C(x) = 1

2
Cmax

[
1 + tanh

(
x

h

)]
. (1)

This function interpolates between steplike gradients and
near-linear gradients depending on h, the scale of the transi-
tion from 0 to Cmax (Fig. 1). We measure lengths in units of the
cell diameter, so h = 1 is nearly steplike on the scale of a cell
cluster. While the cluster moves in the xy plane, the position
x in Eq. (1) is measured relative to the lead cell at x = 0; the
cluster does not move relative to the gradient even as it moves
in the laboratory frame. This is consistent with measurements
of Sdf1 gradients in the zebrafish lateral line, which reach a
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FIG. 1. Geometry. The cell cluster is a rigid train with its front
defining the point x = 0. The cells move in the xy plane, with polarity
P = (cos θ, sin θ ). h sets the width of the transition regime of the
gradient in units of the cell diameter.

steady state in which they maintain their shape and move with
the cluster [9,16].

Leader cells make a measurement of the chemoattractant
gradient direction. Earlier theory [21–26] and experiments
[27–29] have established that a single cell sensing a chemical
gradient is often limited in accuracy by the stochasticity
of ligand-receptor binding [27]. We extend the model of
[22,23], assuming that leaders measuring the chemoattractant
orientation have an angular error limited by ligand-receptor
interactions. In the shallow gradient limit, this error �2

φ is
[22,23]

�2
φ ≈ 8(C0 + Kd )2

Nr p2C0Kd
(leaders in shallow gradients), (2)

where C0 = C(x) is the mean concentration near the cell, Kd is
the ligand-receptor dissociation constant, Nr is the number of
receptors, and p = 1

C0
|∇C| is the percentage change in con-

centration across the cell. This shallow-gradient assumption
may fail at sharper transitions (e.g., h = 1), so we determine
the uncertainty �2

φ without this approximation by numerical
integration (Appendix A). We plot the leader angular error �l

as a function of the position within the cluster in Fig. 2. The
follower uncertainty � f is independent of position—i.e., we
assume that this noise arises from a process independent of
chemosensing.

To relate uncertainties in sensing to cell motion, we de-
scribe cells as actively moving and reorienting particles. Each
cell i has an orientation θi, corresponding to the cell’s being
polarized in the direction Pi = (cos θi, sin θi ). Here, leader
cells align with the chemoattractant direction (x̂ or θ = 0),
while follower cells follow the cluster’s direction θc [Eq. (5)]:

dθ�

dt
= − 1

τ�

θ� + σ�ξ�(t ) (leaders), (3)

dθ f

dt
= − 1

τ f
(θ f − θc) + σ f ξ f (t ) (followers). (4)

σ and τ for the leaders and followers depend on their
accuracies (Appendix B), �l, f , and may vary depending
on the cell position. ξi(t ) is Gaussian white noise with
〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t ′)〉 = δ(t − t ′)δi j . The angles θ� and
θ f − θc are interpreted modulo 2π ; we simulate Eqs. (3) and
(4) by the Euler-Maruyama method with �t = 0.01 (simula-
tion and numerical details are presented in Appendix C).

FIG. 2. Directional uncertainty of leaders. (a) Uncertainty �φ

in a leader’s measurement of the gradient direction as a function
of leader position x for sharp (h = 1), intermediate (h = 30), and
shallow (h = 100) gradients. Arrows indicate the minima of the
curves, showing where the first leader will be added in a 50-cell
train. C(x) is shown for (b) h = 1, (c) h = 30, and (d) h = 100.
Nr = 70 000 and Cmax = 2Kd here and throughout the paper.

Collective migration is induced by having follower cells
align with the cluster velocity direction θc, defined by

Vcluster = |Vcluster|(cos θc, sin θc) = 1

N

∑
i

Pi. (5)

The cluster center-of-mass velocity is Vcluster = 1
N

∑
i Pi when

cells are mechanically linked, and cell i would travel at veloc-
ity Pi in the absence of mechanical linkage [30]. The align-
ment of follower cells with the cluster orientation [Eq. (4)]
is a variant of the “self-alignment” [31] mechanism of Szabo
et al. [32] and others [33–35] who showed that when cells
align their polarity with their velocity, mechanical interactions
between cells cause cells to align and migrate collectively. Our
follower model is precisely that of [32] if the cell velocity and
cluster velocity are equal, i.e., the cluster is rigid.

We choose a dependence σ (�) and τ (�) so that �2

controls the variance of the polarity angle and the correlation
time TP of a single cell’s polarity Pi is equal to 1 at all �

(Appendix B). This corresponds to the assumption that at all
levels of uncertainty �, a cell reorients at the same time scale,
which we choose as our unit time.

III. RESULTS AND DISCUSSION

A. Optimal leadership strategies depend on the
chemoattractant profile and follower accuracy

A cluster may, depending on the chemoattractant profile
C(x) and the accuracy of its followers � f , improve its mean
velocity in the chemoattractant direction 〈Vx〉 by specializing
to leader and follower roles (Fig. 3) [36]. This is similar to
results from a more complex model describing leaders and fol-
lowers and explicitly modeling the process of chemoattractant
degradation [37]. We do not assume a specific mechanism that
determines which cells lead and which ones follow. Rather,
we explore how a cluster behaves as the number of leaders
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FIG. 3. Cluster velocity depends on leader number. Trains of
N = 50 cells. Symbols are simulations with 95% confidence inter-
vals from bootstrapping; lines are the independent follower approx-
imation (Appendix D). (a) For sharp (h ∼ 1) and wide (h ∼ 100)
gradients, the cluster can migrate substantially more quickly in the
gradient direction with fewer leaders. (b) The number of leaders that
maximizes 〈Vx〉, Nmax

� , increases, then decreases as a function of the
gradient transition width h. (c) At fixed h = 30, raising the follower
noise � f lowers 〈Vx〉 at leader fractions of less than 1. (d) Nmax

�

transitions from low to high for medium and wide gradients but
remains relatively constant for sharp gradients as the follower noise
is increased.

changes. Here, and elsewhere, we add leaders from most
to least accurate. We initially study a linear train of cells
(Fig. 1), both for simplicity and as the most relevant geom-
etry for narrow, extended systems like the zebrafish lateral
line [14].

For sharp transitions (h = 1), 〈Vx〉 first increases and then
decreases as we increase the number of leaders, reaching a
maximum at Nmax

� ≈ 6 [Fig. 3(a)]. Consistent with our intu-
ition that specialization will be most effective when transitions
are sharp, 〈Vx〉 increases monotonically in the number of
leaders for the wider transition (h = 30). By contrast, in the
nearly flat concentration profile of h = 100, the chemotactic
velocity is maximized by having only a few cells be leaders
[Fig. 3(a)].

To better understand how the optimal number of leaders
depends on the chemoattractant profile, we study Nmax

� , the
number of leaders which maximizes 〈Vx〉 [Fig. 3(b)]. Nmax

� is
small at sharp gradients and initially increases as the transition
size h increases—reflecting that for sharp transitions, leaders
even a few cells away from the transition have extremely
high levels of uncertainty and will not increase 〈Vx〉. We
would expect that further increasing h places more cells in
the transition region and would increase Nmax

� monotonically.
Instead, we see that Nmax

� decreases at large h as the profile
C(x) becomes nearly linear.

This apparently counterintuitive result can be understood
directly from the leader uncertainty �� as a function of the
cell position (Fig. 2). For gradients with a sharp transition
regime (h = 1), the leader uncertainty steeply increases for
cells farther away from the train front. At wider gradients
(h = 30), there is a smaller difference between the best and the
worst leader. In fact, the most effective leaders tend to be in
the middle of the cluster. As the gradient becomes near-linear
(h = 100), instead of having cells with equal levels of uncer-
tainty, cells near the back of the cluster have a significantly
lower uncertainty. This is because in linear gradients, the
percentage change across the cell p is maximized farther from
the transition, where the baseline concentration is lower, and
p limits the accuracy [Eq. (2)]. Specialization is rewarded at
large h because there is a relevant difference in information
available across the cluster.

Specialization relies on followers accurately using infor-
mation from the leaders; the follower noise � f can quali-
tatively change how 〈Vx〉 depends on the number of leaders
[Fig. 3(c)]. If follower noise is very low (� f = 4◦), one leader
can guide the cluster more effectively than when all the cells
are leaders. For larger follower noises, 〈Vx〉 is maximized
when every cell is a leader [� f = 50◦; Fig. 3(c)]. This leads
to an even more dramatic change in Nmax

� : at h = 30, there is
a rapid switch from Nmax

� = 1 to Nmax
� = N [Fig. 3(d)] as the

follower noise is increased. However, this switching depends
on the gradient width h. For the sharp h = 1 profile, Nmax

� does
not change much as � f increases; having a small number of
leaders is a robust strategy in sharp transitions. In the wider
h = 30 and h = 100 gradients, increasing the follower noise
level causes the number of leaders which maximizes 〈Vx〉 to
switch from low to high. Again, this can be understood by
referring to Fig. 2. When there is a large difference between
the best and the worst sensors (h = 1), the magnitude of
follower noise is relatively unimportant: � f is usually larger
than �� for the few well-informed cells but smaller than
�� for the bulk of the cells. By contrast, for h = 30, most
cells have roughly the same amount of information about
the gradient direction, and changing � f can rapidly switch
between � f > �� for all cells, in which case it is optimal to
have all cells be leaders, and � f < �� for all cells, when as
few cells as possible should lead.

Though our model of Eqs. (3) and (4) has a complex long-
range collective interaction, we can quantitatively understand
Fig. 3 with a much simpler independent follower model (solid
lines in Fig. 3; see Appendix D). Our independent follower
model assumes that the follower error θrel ≡ θ f − θc is inde-
pendent of θc, and also assumes θc ≈ θL, where θL is the angle
of only the leaders, PL = 1

N�

∑
� P�. Effectively, each follower

then independently follows the leader cells. The independent
follower approximation is most effective at high levels of
follower noise � f (where follower-follower correlations are
shorter-lived and less important) and sharp gradients (low h).

B. Cluster reorientation and leader strategy

Because of the correlations between followers, a
collectively sensing cluster can be highly persistent—even
if it is moving in an incorrect direction. To understand this
persistence, and the time it takes to reorient, we compute
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FIG. 4. Cluster size and leader strategy alter the mean velocity and correlation time. Trains of N = 50 cells in (a–d) a sharp h = 1 gradient
and (e–h) a wide h = 100 gradient with � f = 36◦. Lines represent strategies of allocating leaders (not the independent follower approximation
as in Fig. 3). The solid line (green crosses) corresponds to the number of leaders which maximizes 〈Vx〉. The dashed line (orange circles)
corresponds to a leader fraction of 1 and the dot-dashed line (blue squares) corresponds to a leader fraction of 2/5. (a, e) Mean velocity in the
gradient direction 〈Vx〉 as a function of cluster size and number of leaders. The corresponding slices are plotted in (c) and (g). (b, f) Cluster
correlation time Tc as a function of cluster size and number of leaders. At a fixed cluster size, this time can vary over two orders of magnitude
from low to high leader number. The corresponding slices are plotted in (d) and (h). The 95% confidence intervals from bootstrapping in (c),
(d), (g), and (h) are smaller than the symbol sizes.

the velocity autocorrelation function 〈δV(t ) · δV(t ′)〉 and fit
it to an exponential to find the cluster’s correlation time Tc

(Appendix C). A short correlation time could be advantageous
if cell clusters need to rapidly change direction (e.g.,
metastasizing clusters [38]), while long correlation times
could be preferred for cell clusters traveling in consistent
directions that must resist perturbations in the concentration
profile (e.g., the zebrafish primordium). Experimentally,
larger cell clusters exhibit slower reorientation in electric
fields [39] and generally slower spontaneous reorientation in
confinement [40], so we study both the effect of the cluster
size and the number of leaders.

The cluster velocity and correlation time vary significantly
with the cluster size N and number of leaders (Fig. 4). For
sharp gradients (h = 1), specialization N� < N improves 〈Vx〉
for all N > 5; chemotactic velocities decrease sharply for the
all-leader (N� = N) case at larger cluster sizes, as more and
more uninformed cells are leading. Most strikingly, in larger
clusters, as the number of leaders is decreased from N� = N ,
the correlation time Tc increases over two orders of magnitude

[Fig. 4(b)]. These changes are reminiscent of those observed
in a much more complex model of [41]. Tc also increases with
smaller leader numbers at large h [Fig. 4(f)]. In shallow gra-
dients (h = 100) the global maximum in velocity is achieved
at the largest cluster size considered, N = 50, because larger
clusters are more extended in the −x direction [Fig. 4(g)]. This
differs from the sharp-gradient result [Fig. 4(c)]. In shallow
gradients, increasingly large clusters gain access to the cells
that are best positioned to sense the gradient—those at smaller
x (Fig. 2).

Experiments often track gradient-sensing responses as a
function of the cluster size [1,3,39,42,43]. Our results show
that, without specifying how leaders are chosen, even the
qualitative dependence of chemotactic velocity or correlation
time on cluster size is not known. We show how 〈Vx〉 and
Tc depend on cluster size for h = 1 with three leader allo-
cation strategies (100% leaders, 40% leaders, and choosing
the number of leaders that maximizes 〈Vx〉) in Figs. 4(c) and
4(d). When all cells are leaders, 〈Vx〉 monotonically decreases
while Tc remains constant. If a fixed fraction, 2/5, of cells
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are leaders, 〈Vx〉 first increases, then decreases in cluster size,
while Tc increases. And if we choose the leaders to maximize
〈Vx〉, we see that larger clusters do not slow much—but they
do see a steep increase in Tc. These effects depend on the
gradient shape, and the situation is much different for wider
gradients, where increasing cluster size can increase 〈Vx〉 or
even decrease Tc, as in Fig. 4(h).

The correlation time can also be altered by follower noise
(Appendix E). We find that increasing follower noise can
decrease the long correlation times at small leader fractions,
but that even for high levels of follower noise, there is still
a significant increase in correlation time as the number of
leaders is decreased.

Though our results so far are for linear clusters, the most
critical qualitative features [e.g., Fig. 3(c)] are consistent
between compact and linear clusters (Appendix F). The devi-
ations between compact and extended clusters are easily un-
derstood in terms of the curves for ��. For instance, in sharp
transitions (h = 1), compact clusters have a higher Nmax

� ,
because there are more cells close to the transition x = 0.

We have also assumed that the only source of leader error
in gradient sensing is ligand-receptor binding. Intracellular
noise may also be significant at sharp enough gradients
[27]. We study adding a downstream intracellular noise in
quadrature, �2

� = �2
φ + �2

int. The qualitative dependence of
Nmax

� does not significantly change for low (∼4◦) or moderate
(∼18◦) levels of downstream noise but becomes substantially
washed out at high (∼36◦) levels (Appendix G). This is
expected: if the primary source of measurement error does
not depend on the environment, specialization to leaders and
followers will not be environmentally dependent.

Our results show that choosing whether to specialize to
leader and follower cells in a chemotaxing cluster is subtle.
Clusters can chemotax more quickly if some cells sense and
some cells follow, but the number of leaders to maximize
directed migration depends heavily on the gradient and the
accuracy of follower cells. In addition, cells at the front of the
cluster may not be the most informed. Cells near the middle or
back may be provide more accurate directional cues, consis-
tent with experiments indicating that collectives are not neces-
sarily steered by the cells at their front [12]. Our work shows
that rear-steering might be optimal in shallow gradients. Clus-
ter persistence times are dramatically increased by leader
specialization, and different strategies of allocating leaders
trade off chemotactic speed with a cluster’s ability to reorient.

Experiments on the zebrafish lateral line have tested to
what extent chemosening cells can rescue the migration of
clusters with reduced chemosensing ability [7,8]. References
[16] and [9] found that cells within 120 μm (∼10 cell diame-
ters [44]) of the front of the primordium experience a concen-
tration gradient. Reference [7] was able to restore migration
of a chemosensing reduced primordium with only a few fully
chemosensing cells near the front. However, the recent experi-
ments in [8] have shown that the chemosensing ability of cells
behind the tip of the primordium also affects its migration.
These experiments are consistent with our notion that cell
clusters are not steered just by the cells at their leading edge.

We have studied the behavior of cell clusters when we
vary the transition width, follower noise level, and cluster
size. However, because we are considering a self-generated

gradient, it is possible that the cluster velocity or size affects
the concentration profile. In past work on the zebrafish lateral
line, it was found that diffusion was the primary determinant
of the gradient shape [16], so in some cases it may be reason-
able to consider the value of h in our model to be fixed by
the ligand diffusion coefficient D and the cluster degradation
rate k−, h ∼ √

D/k−. Even if this is not a good approximation
in other cases—that is, the cluster size does affect the gradient
shape—the steady-state behavior can be analyzed with the
length scale h(N ) that emerges given the cluster size.

We have intentionally chosen a highly simplified model
for cell-cell interactions. In a real cell cluster, there may
be a finite length scale λ over which correlations between
cells decay [45]. This might affect the correlation times of
large clusters, where cells are separated beyond the scale of
λ. Even for clusters larger than λ, our results will provide
intuition about how to specialize within subclusters of size
λ within the full cluster. Other modifications, like resolving
detailed forces between cells or modifying the alignment term
so that cells align with their nearest neighbors instead of
the collective velocity, might also alter the results. However,
the nonmonotonic dependence of Nmax

� as a function of the
transition width in Fig. 3(b) occurs in both the full model
and the independent follower model, and for multiple cluster
shapes, indicating that this result has some robustness to
model details. Future experiments varying the chemosensing
ability of cells at different positions within a cluster will be
an important way to test the leader-follower mechanism and
whether the cells best able to sense the gradient are the ones
that drive the cluster’s directionality.
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APPENDIX A: EXTENDING THE HU ET AL. RESULT
BEYOND THE SHALLOW GRADIENT APPROXIMATION

As in [22] and [23], we consider a circular cell with Nr

receptors uniformly spaced along its perimeter. Let φ denote
the direction of the gradient. We model the receptors on
the cell x1 . . . xNr as Nr independent Bernoulli trials that can
be occupied with value 1 or unoccupied with value 0. For
simple ligand-receptor kinetics, the probability of receptor
n’s being occupied given concentration Cn at the receptor
and ligand-receptor dissociation constant Kd is Cn

Cn+Kd
and the

probability of being unoccupied is Kd
Cn+Kd

. The probability that
the nth receptor is occupied is a function of the gradient
direction φ. Thus, the probability distribution function for the
nth receptor is

fn,φ (xn) =
(

Cn

Cn + Kd

)xn
(

Kd

Cn + Kd

)1−xn

. (A1)
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The likelihood function for a cell estimating the gradient
direction φ given the values at the receptors is

L(φ|x1 . . . xn) =
Nr∏
1

fn,φ (xn). (A2)

The log-likelihood function is

lnL =
∑

n

[
xnln

Cn

Cn + Kd
+ (1 − xn)ln

Kd

Cn + Kd

]
(A3)

=
∑

n

[
xnln

Cn

Kd
+ ln

Kd

Cn + Kd

]
(A4)

=
∑

n

[xn(lnCn − lnKd ) + lnKd − ln(Cn + Kd )]. (A5)

For an estimation of the gradient direction, we are interested in
computing the second derivative of the log-likelihood function
with respect to φ. Therefore, let a prime denote a derivative
taken with respect to φ. Then the first derivative of the log-
likelihood function with respect to φ is

∂

∂φ
lnL =

∑
n

[
xn

C′
n

Cn
− C′

n

Cn + Kd

]
. (A6)

Taking another derivative gives

∂2

∂φ2
lnL =

∑
n

[
xn

CnC′′
n − (C′

n)2

C2
n

− (Cn + Kd )C′′
n − (C′

n)2

(Cn + Kd )2

]
.

(A7)

To find the expectation value, first note that for the Bernoulli
trials xn, the expectation value is just the probability of oc-
cupancy 〈xn〉 = Cn

Cn+Kd
. With this expression, the expectation

value of the second derivative becomes〈
∂2

∂φ2
lnL

〉

=
∑

n

[
〈xn〉CnC′′

n − (C′
n)2

C2
n

− (Cn + Kd )C′′
n − (C′

n)2

(Cn + Kd )2

]

(A8)

=
∑

n

[
Cn

Cn + Kd

CnC′′
n − (C′

n)2

C2
n

− (Cn + Kd )C′′
n − (C′

n)2

(Cn + Kd )2

]

(A9)

=
∑

n

−
[

Kd (C′
n)2

Cn(Cn + Kd )2

]
. (A10)

This expression holds true for any gradient profile and does
not make any assumptions about its steepness.

In this work, the goal is to compute the uncertainty for
leader cells with the gradient varying the in x direction given
by C(x) = 1

2Cmax(1 + 1
2 tanh( x

h )). For the ith cell in the cluster,
the x position of the center is 1 − i, where i ranges from 1 to
the cluster size N . Since we are working in units in which the
cell diameter is 1, the x positions of the receptors are given by

x(i, αn) = 1 − i + 1
2 cos(αn − φ), (A11)

where αn is the angular position of the nth receptor. The sum
in Eq. (A10) can be approximated as an integral for a large
number of receptors. Therefore, for a given cell i, the Fisher
information is

I(i) = −
〈

∂2

∂φ2
lnL(i)

〉

≈ Nr

2π

∫ 2π

0

Kd (C′
n(α, i))2

Cn(α, i)(Cn(α, i) + Kd )2 dα, (A12)

where the concentration and its derivative are written in
terms of α and i using Eq. (A11). This expression does not
depend on the gradient direction φ because the receptors
are evenly spaced, and the cell is symmetric under rotations
in the continuum limit. We numerically integrate Eq. (A12)
with Gaussian quadrature to determine the Fisher information
for each cell in the cluster. With the Fisher information, the
Cramér-Rao bound gives the minimum uncertainty for the
gradient direction estimated by the ith cell as

�φ (i) = (I(i))−1/2. (A13)

APPENDIX B: DETERMINING σ AND τ

AS A FUNCTION OF �

We want Eqs. (3) and (4) to represent cells with given
angular uncertainties �i. How can we map between � and the
parameters of the model for each cell, τ and σ? To answer this
question, we have to understand a bit more about the solutions
of these equations, which are of the form

dθ (t )

dt
= −θ (t )

τ
+ σξ (t ) for θ ∈ [−π, π ]. (B1)

Without periodic boundary conditions, the dynamics of θ

would follow an Ornstein-Uhlenbeck process [46], which can
be described in terms of a known steady-state distribution
[normal with mean 0 and variance σ 2τ

2 , as in Eq. (B4)] and
a transition probability [Eq. (B6)], which is the distribution
of θ at a time t ′ given the value of θ at an earlier time
t . However, the periodic boundary conditions mean that the
dynamics of θ are more complicated than a standard Ornstein-
Uhlenbeck process. The steady-state distribution becomes a
truncated normal distribution determined from renormalizing
Eq. (B4) in an interval [−π, π ]. This results in the steady-state
probability distribution

p(θ ) =
(

[σ
√

πτ (erf(
√

2π/σ 2τ ))]−1exp
(− θ2

σ 2τ

)
, θ ∈ [−π, π ],

0 otherwise.
(B2)

On the other hand, the transition probability is not analytically tractable. Therefore, we use results from the Ornstein-Uhlenbeck
process in the limits of very small and very large noises �i but must use numerical methods for intermediate values of �i.

032417-6



LEADER CELLS IN COLLECTIVE CHEMOTAXIS: … PHYSICAL REVIEW E 100, 032417 (2019)

For each cell i, the fluctuations of its angle θi about its mean

value are characterized by the term σ 2
i τi

2 [Eq. (B2)]. Therefore,
we set the scale of these fluctuations equal to the angular noise
�i through the equation

�2
i = σ 2

i τi

2
. (B3)

We note here that �2
i can be larger than 2π ; here, we are

setting the variance of the parent normal that is truncated to
find Eq. (B2).

If we applied only our formula for �i [Eq. (B3)], there
would not be a unique way to choose both σi and τi; we
need to do more than just fix the variance of the angle 〈δθ2

i 〉.
Therefore, we develop a procedure to choose values for σi and
τi so that the behavior of the cell is realistic at all noise levels.
If we naively chose σi ∼ �i, then as �i became large, the cell
would undergo angular diffusion with a diverging diffusion
coefficient—physically unrealistic. We want to find functions
σ (�) and τ (�) so that the correlation time TP of a single
cell’s polarity Pi is equal to 1 at all angular uncertainties.
This corresponds to the idea that the cell has a constant time
to reorient, independent of how accurately it is measuring its
environment.

We first consider a Gaussian approximation, which does
not account for the periodicity of the angle θ , to derive the
asymptotic expressions for σ (�) and τ (�). Then we numer-
ically determine values for σ (�) and τ (�) at intermediate
levels of angular uncertainties.

1. Gaussian approximation

For an angle θ (t ) relaxing to 0 with noise σ and time
constant τ , the equation governing θ is Eq. (B1). However,
in the Gaussian approximation, the periodicity of the variable
θ is ignored. Although this result is not generally applicable,
it is asymptotically correct in the limits of very small and very
large angular noise. This is an Ornstein-Uhlenbeck process
whose steady-state distribution is a normal distribution with
mean 0 and variance σ 2τ

2 :

θ (t ) ∼ N

(
0,

σ 2τ

2

)
. (B4)

An angle at a later time θ (t + t ′), given the value of θ (t ), will
have the distribution

θ (t + t ′) ∼ N

(
θ (t )e−t ′/τ ,

σ 2τ

2
(1 − e−2t/τ )

)
. (B5)

The first equation is the marginal distribution of θ (t )
and the second equation is the conditional distribution of
θ (t + t ′) given θ (t ), so the joint probability distribution
p(θ (t + t ′); θ (t )) is just the product of the two distributions.
Let θ (t ) = x1 and θ (t + t ′) = x2 for ease of notation. Then
the joint probability density function is

f (x1, x2) = 1

πσ 2τ
√

1 − e−2t ′/τ

× e−x2
1/σ 2τ e−(x2−x1e−t ′/τ )2/σ 2τ (1−e−2t ′/τ ). (B6)

For a polarity vector P(t ) = (cosθ (t ), sinθ (t )), the time cor-
relation function is given by

φ(t ′) = (〈P(t ) · P(t + t ′)〉 − 〈P(t )〉
· 〈P(t + t ′)〉)/(〈P(t ) · P(t )〉 − 〈P(t )〉2), (B7)

which at steady state depends only on the separation in time
and is normalized so that φ(0) = 1.

The term 〈P(t ) · P(t + t ′)〉 is given by the following
expression:

〈P(t ) · P(t + t ′)〉 =
∫ ∞

−∞
dx1dx2 f (x1, x2)[cos(x1)cos(x2)

+ sin(x1)sin(x2)] (B8)

=
∫ ∞

−∞
dx1dx2 f (x1, x2)cos(x2 − x1). (B9)

To evaluate the this term, we change the variables in the joint
density function in Eq. (B6) through the following transfor-
mation:

y1 = x1,

y2 = x2 − x1e−t ′/τ . (B10)

The Jacobian from this transformation is 1, so the new joint
probability distribution is

g(y1, y2) = 1

πσ 2τ
√

1 − e−2t ′/τ
e−y2

1/στ e−y2
2/σ

2τ (1−e−2t ′/τ ).

(B11)
We can apply this transformation to Eq. (B9) and use the
distribution in Eq. (B11) to evaluate the expectation value in
the following way:

〈P(t ) · P(t + t ′)〉

=
∫ ∞

−∞
dx1dx2 f (x1, x2)cos(x2 − x1) (B12)

=
∫ ∞

−∞
dy1dy2g(y1, y2)cos(y2 + y1(e−t ′/τ − 1)) (B13)

=
∫ ∞

−∞
dy1dy2

1

πσ 2τ
√

1 − e−2t ′/τ
e−y2

1/στ

× e−y2
2/σ

2τ (1−e−2t ′/τ )cos(y2 + y1(e−t ′/τ − 1)). (B14)

Applying the integral

1√
2πσ 2

∫ ∞

−∞
cos(ax + b)e−x2/2σ 2

dx = cos(b)e−a2σ 2/2

(B15)

twice (once for y1 and once for y2) to Eq. (B14) gives the result

〈P(t ) · P(t + t ′)〉 = exp

(
σ 2τ

2
(−1 + e−t ′/τ )

)
. (B16)
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At steady state, the mean polarities will be independent of
time, and the identity

〈P(t )〉 = 〈P(t + t ′)〉 =
∫ ∞

−∞

1√
πσ 2τ

cos(θ )e−θ2/σ 2τ dθ x̂

+
∫ ∞

−∞

1√
πσ 2τ

sin(θ )e−θ2/σ 2τ dθ ŷ

(B17)

= exp(−σ 2τ/4)x̂ + 0ŷ (B18)

holds from applying Eq. (B15). Therefore, the term 〈P(t )〉 ·
〈P(t + t ′)〉 evaluates as

〈P(t )〉 · 〈P(t + t ′)〉 = exp(−σ 2τ/2). (B19)

Thus, the final expression for φ(t ′), normalized by its value at
t ′ = 0, is

φ(t ′) = exp
(

σ 2τ
2 (−1 + e−t ′/τ )

) − exp(−σ 2τ/2)

1 − exp(−σ 2τ/2)

= exp
(

σ 2τ
2 e−t ′/τ

) − 1

e
σ2τ

2 − 1
. (B20)

The correlation time is defined as the integral of this corre-
lation function from t ′ = 0 to t ′ = ∞. Only the numerator of
Eq. (B20) needs to be evaluated since the denominator does
not depend on t ′. Therefore, the integral to evaluate is the
integral I:

I =
∫ ∞

0

(
exp

(
σ 2τ

2
e−t ′/τ

)
− 1

)
dt ′. (B21)

With the substitution u = σ 2τ
2 e−t ′/τ , du = − 1

τ
udt ′, the ex-

pression for the integral becomes

I = τ

∫ σ2τ
2

0

(eu − 1)

u
du. (B22)

This integral can be solved and gives

I = Ei

(
σ 2τ

2

)
− γ − log

(
σ 2τ

2

)
, (B23)

where γ is the Euler-Mascheroni constant and the exponential
integral Ei is defined as

Ei(x) =
∫ x

−∞

et

t
dt . (B24)

Thus, the correlation time, TP, of the polarity P is

TP =
∫ ∞

0
φ(t ′)dt ′ = I

exp
(

σ 2τ
2

) − 1

= τ
−γ + Ei

(
σ 2τ

2

) − log
(

σ 2τ
2

)
exp

(
σ 2τ

2

) − 1
(B25)

in terms of the angular relaxation time τ and angular noise σ .
To ensure that at every level of angular noise the polarity

correlation time is constant, the polarity correlation time is set
equal to 1 and the angular relaxation time τ and angular noise

σ are chosen so that the angular uncertainty is as required.
This can be described by the equations

TP = 1, (B26)
σ 2τ

2
= 〈δθ2〉 = �2

φ, (B27)

so that once a cell’s angular uncertainty �2
φ is known, the

correct τ and σ for that cell can be chosen to set its polarity
correlation time equal to 1. Thus, the formulas for τ (�φ ) and
σ (�φ ) are

τ (�φ ) = exp
(
�2

φ

) − 1

−γ + Ei
(
�2

φ

) − log
(
�2

φ

) , (B28)

σ (�φ ) = �φ

√
2

τ (�φ )
. (B29)

However, these formulas are only asymptotically correct
because they do not account for periodic boundary conditions.
Thus, the two limits we use give the following equations for
the asymptotic forms:

τ (�φ ) ≈ 1, σ (�φ ) ≈
√

2�φ for �φ → 0, (B30)

τ (�φ ) ≈ �2
φ, σ (�φ ) ≈

√
2 for �φ → ∞. (B31)

2. Numerical interpolation

For intermediate values of �2
φ , the parameters τ and σ

determined from the Gaussian approximation can give real
correlation times that deviate by up to 25% from the desired
value of 1. This deviation is due to the wrapping of θ in the
interval [−π, π ], which is not accounted for in the Gaussian
approximation. To accurately incorporate the effects of peri-
odic boundary conditions, we want to numerically find values
for the parameters τ (�φ ) and σ (�φ ) so that the relations
TP = 1 and �2

φ = σ 2τ
2 are both true. We simulate an angle

following Eq. (B1). We ensure that θ remains in the interval
[−π, π ] by adding π , computing θ modulo 2π , then shifting
θ back to the interval [−π, π ] by subtracting π . That is, at
each time step, we apply the following formula:

θ� = ((θ� + π ) mod 2π ) − π. (B32)

In the Gaussian approximation, the quantity �2
φ = σ 2τ

2 is
the variance in the steady-state Gaussian distribution of θ .
With periodic boundaries, the steady-state distribution of θ

is a truncated normal distribution in [−π, π ]. Therefore,
�2

φ = σ 2τ
2 is the variance of the parent normal distribution to

the truncated normal distribution for θ [as in Eq. (B2)]. Thus,
small values of �2

φ result in an approximately Gaussian dis-
tribution of θ around the gradient direction, while very large
values of �2

φ correspond to a uniformly distributed value of
θ , corresponding to a cell that chooses its direction randomly.
However, the transition probability from one angle to another
is not analytically tractable with periodic boundaries, so we
need simulations to determine the correlation time TP.

As implied by the form of Eq. (B25) and the Buckingham
Pi theorem, the equation for the correlation time can be written
in terms of the parameters τ and σ as

TP
(
�2

φ

) = τ f

(
σ 2τ

2

)
. (B33)
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FIG. 5. Universality of the single-cell polarity correlation time
scaling. The scaling between the correlation time of the polarity
T (�2

φ ) normalized by the parameter τ is universal for all values of τ .

Here, τ is chosen as a parameter and σ = √
2�φ/

√
τ .

This is also shown empirically in Fig. 5, where for various
values of τ and �2

φ the polarity correlation time TP(�2
φ ) is

determined from simulations with σ = √
2�φ/

√
τ . There-

fore, without loss of generality, we choose the parameter
τ = 1 and σ = √

2�φ and simulate TP(�φ ) to find the
function f ( σ 2τ

2 ). This function is useful because choosing

τ (�φ ) = 1/ f ( σ 2τ
2 ) ensures that the correlation time of the

polarity TP = 1 at all values of �φ . Thus, we choose the
parameters according to the rule

τ (�φ ) = 1/ f

(
σ 2τ

2

)
, (B34)

σ (�φ ) = �φ

√
2 f

(
σ 2τ

2

)
. (B35)

To find the correlation time, we simulate an angle relaxing
to 0 with periodic boundaries enforced (see Appendix C). We
use a time step of �t = 0.01, as in the main simulations, and
we simulate to a time of 3000, which was found to generate
good statistics for the correlation function. The correlation
time is found by fitting an exponential to the correlation
function, though rescaling the time at which the correlation
function reaches 1/2 to determine when a 1/e decay would
have occurred gives similar trends. We repeat this procedure to
generate 100 measurements of TP for each value of �2

φ . Then
the parameters τ (�φ ) and are found through Eqs. (B34) and
(B35) and linear interpolation. A grid is created for 0.01 �
�2

φ � 10, where, for each range of orders of magnitude, the
grid spacing is 1/10 of the smallest value. Outside those lim-
its, we use the asymptotic forms derived using the Gaussian
approximation.

3. Verifying numerical scheme

To determine the accuracy of the numerical method, we
compute TP for single cells of various angular uncertainties
�φ , where we choose the parameters τ and σ according to
the procedure outlined in the previous section. In Fig. 6, we

FIG. 6. Simulated tests of the numerical scheme. The correlation
time of the polarity TP for a single cell relaxing to an angle of 0 is
plotted as a function of its uncertainty �φ . The parameters σ (�φ )
and τ (�φ ) are chosen according to the process described above. The
correlation time remains within 2% of the desired time of 1.

present values computed for angular uncertainty levels that lie
in both asymptotic limits. The computed values are within at
least 2% of the desired time of 1. Values outside the range
considered here will be at least this close to 1 because the
asymptotic limits will improve at very small or very large �φ .

APPENDIX C: SIMULATION DETAILS

Simulation code is provided at Ref. [47]. The cluster veloc-
ities are simulated until t = 5200 for various gradient widths,
cluster sizes, follower noises, and number of leaders. Steady
state is considered to be reached after t = 200, since that is
approximately the longest correlation time encountered. From
the steady-state data, we compute the correlation function
ϕ(t ′) = 〈Vc(t ) · Vc(t + t ′)〉 − 〈Vc(t )〉2 and determine a corre-
lation time by fitting an exponential function to ϕ(t ′)/ϕ(0).
We show a representative example in Fig. 7, which is the

FIG. 7. Representative exponential fit for the autocorrelation
function. The correlation function and an exponential fit are com-
pared for a train of N = 50 cells in an h = 10 gradient with 10
leader cells and followers with � f = 36◦. We use the exponential
fit to determine the correlation time.
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steady-state cluster velocity autocorrelation and its exponen-
tial fit for a train of N = 50 cells in an h = 10 gradient with 10
leader cells and followers with � f = 36◦. Rescaling the time
at which the correlation function reaches 1/2 to determine
when a 1/e decay would have occurred gives similar trends.
After the correlation time Tc for the cluster has been measured
for a run, the steady-state velocity data are broken up into
intervals of 3Tc so that the mean of each interval is an indepen-
dent measurement of the steady-state velocity. We repeat the
simulation 50 times to generate 50 measurements of the corre-
lation time and many measurements of the steady-state veloc-
ity. The 95% confidence intervals are generated for the mean
velocity in the gradient direction 〈Vx〉 and the correlation time
Tc from the 50 samples using bootstrap methods [48]. To de-
termine the error bars on Nmax

� , we use the distributions of 〈Vx〉
generated from the bootstrap procedure. For fixed gradient
and cluster properties, we draw a value of 〈Vx〉(N�) for each
possible value of N�. Then for each draw we record which
value of N� gives the highest 〈Vx〉. We draw 10 000 times to
generate a distribution for Nmax

� . This procedure produces a
distribution of the number of leaders which optimizes a given
quantity.

We account for periodic boundary conditions for both the
leader and the follower cells. For follower cells, we compute
θ f − θc with the arctan2 function as

θ f − θc = arctan2(VxPf ,y − VyPf ,x,VxPf ,x + VyPf ,y ), (C1)

where the first term is the cross product Vc × P f =
|Vc||P f |sin(θ f − θc), the second is the dot product Vc · P f =
|Vc||P f |cos(θ f − θc), and arctan2(b,a) returns the angle of a
vector v = ax̂ + bŷ. Therefore, Eq. (C1) will return θ f − θc,
and the function is defined so that the angle is in the interval
[−π, π ]. For leader cells, we apply Eq. (B32) to their angles at
each time step. This is equivalent to the procedure in Eq. (C1)
if Vx = 1 and Vy = 0; in either case, the angle relative to the x
axis wrapped in [−π, π ] is returned.

To avoid numerical errors associated with division by 0,
the minimum of the concentration is taken as 10−14 to avoid
dividing by 0 when computing the leader cell uncertainty for
cells far from the transition region. Since that is a value much
lower than the dissociation constant, the leaders are just as
random as they would be if the value were truly 0, and this
does not impact the results.

APPENDIX D: INDEPENDENT FOLLOWER
APPROXIMATION

The cluster velocity is given by the mean polarity of all the
cells in the cluster, which can be decomposed into leader and
follower contributions:

Vc = 1

N

∑
i

Pi = 1

N

⎛
⎝∑

�

P� +
∑

f

P f

⎞
⎠. (D1)

Therefore, the mean x velocity of the cluster is given by

〈
V x

c

〉 = 1

N

⎛
⎝∑

�

〈
Px

�

〉 + ∑
f

〈
Px

f

〉⎞⎠

= 1

N

⎛
⎝∑

�

〈cos(θ�)〉 +
∑

f

〈cos(θ f )〉
⎞
⎠ (D2)

in terms of the leader angle θ� and follower angle θ f . The
followers relax towards the angle of the cluster θc with some
noise. The angle of a follower θ f can be written in terms of
the angle of the cluster and some angle θrel, f , which is the
angle of follower f relative to the cluster angle

θ f = θc + θrel, f . (D3)

The x polarity of a follower is just the cosine of the follower
angle, which can be rewritten using Eq. (D3) as

cos(θ f ) = cos(θc + θrel, f )

= cos(θc)cos(θrel, f ) + sin(θc)sin(θrel, f ), (D4)

and the mean is given by

〈cos(θ f )〉 = 〈cos(θc)cos(θrel, f )〉 + 〈sin(θc)sin(θrel, f )〉. (D5)

So far, the above results are exact. To develop the approxi-
mation, we make two key assumptions. First, we assume that
the relative angle of the follower θrel, f is independent of the
cluster angle θc; this can be simplified as

〈cos(θ f )〉 = 〈cos(θc)〉〈cos(θrel, f )〉 (D6)

because θc is symmetric about 0 so 〈sin(θc)〉 = 0. To evaluate
the expectation value 〈cos(θrel, f )〉, we note that its dynamics

FIG. 8. Leader signals in the independent follower approxima-
tion. In the independent follower approximation, the signal to the
followers is the cosine of the polarity vector of all the leaders. For
sharp gradients (h ∼ 1), the first few leaders are well informed and
the cosine is near 1, but it decreases as essentially random leaders
are added. For intermediate gradients (h ∼ 30), the curve is flat and
large, as all the leaders have similar and low uncertainties in the
gradient direction. For wide gradients (h ∼ 100), the direction of the
leaders becomes more accurate as more are added, with diminishing
returns on additional leaders.
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FIG. 9. The cluster correlation time decreases with increasing follower noise. The cluster correlation time Tc decreases as a function of the
follower noise � f . Although the extent of the difference in cluster correlation time between the few-leader and all-leader cases quantitatively
depends on the follower noise, the trend does not. Shown are the gradients h = 1 (a), h = 30 (b), and h = 100 (c).

are essentially that of the follower angle θ f in a reference
frame in which θc = 0. Therefore, the distribution of θrel, f will
be a truncated normal distribution in [−π, π ] with mean 0 and
whose parent normal has a standard deviation � f . From this
result, an exact expression for 〈cos(θrel, f )〉 can be applied to
find

〈cos(θ f )〉 = 〈cos(θc)〉〈cos(θrel, f )〉 (D7)

= 〈cos(θc)〉
∫ π

−π

cos(θ )

σ
√

πτ (erf(π/
√

2))

× exp
(−θ2

/
2�2

f

)
dθ (D8)

= 〈cos(θc)〉e−�2
f /2

× Re
(
erf

((
π + i�2

f

)/√
2� f

))/
erf(π/

√
2� f ).

(D9)

Let the contribution to the polarity from the leaders be defined
as the total leader polarity vector PL:

PL = 1

N�

∑
�

P� = |PL|(cos(θL ), sin(θL )). (D10)

Second, we assume that the average x component of the
cluster is approximated by the average x component of PL,
i.e.,

〈cos(θc)〉 ≈ 〈cos(θL )〉. (D11)

This assumption is generally good since the follower polari-
ties align with the leaders in steady-state. However, it breaks
down when the follower correlations contribute significantly
to the accuracy of the cluster direction.

Explicitly, the term we use to approximate cos(θc) is

cos(θL ) =
∑

� cos(θ�)√(∑
� cos(θ�)

)2 + (∑
� sin(θ�)

)2
. (D12)

We compute 〈cos(θL )〉 numerically. We draw the leader angles
θ� from their respective steady-state truncated normal distri-
butions and compute the mean value of Eq. (D12) from the
draws. We use 100 000 draws for h � 100 and 500 000 draws
for h = 125. Once this term has been computed numerically,
Eq. (D9) gives the follower contribution Px

f to the mean cluster

velocity 〈Vx〉, where we approximate the term 〈cos(θc)〉 as
〈cos(θL )〉. Then the leader contribution Px

� to 〈Vx〉 is simply

〈
Px

�

〉 = 〈cos(θ�)〉 (D13)

=
∫ π

−π

cos(θ )

σ
√

πτ (erf(π/
√

2))
exp

(−θ2
/

2�2
�

)
dθ (D14)

= e−�2
�/2Re

(
erf

((
π + i�2

�

)/√
2��

))/
erf(π/

√
2��)

(D15)

because the leaders independently align with the gradient
direction. Thus, the final expression for the gradient velocity
is

〈Vx〉 = 1

N

⎛
⎝∑

�

〈
Px

�

〉 + ∑
f

〈
Px

f

〉⎞⎠ (D16)

= 1

N

[∑
�

e−�2
�/2Re

(
erf

((
π + i�2

�

)/√
2��

))/
erf(π/

√
2��)

+
∑

f

〈cos(θL )〉e−�2
f /2Re

(
erf

((
π + i�2

f

)/√
2� f

))/

erf(π/
√

2� f )

]
, (D17)

FIG. 10. Illustration of a hexagonally packed cluster with 61 cells.
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FIG. 11. Cluster velocities for compact and extended clusters. We compare the mean velocity in the gradient direction 〈Vx〉 between N = 61
trains and Q = 4 oligomers. The follower noise level is 36◦. Circles represent the trains and Xs represent the oligomers. (a) In the sharp h = 1
gradient, the oligomer geometry places more cells near the sharp gradient transition, so there are more accurate leaders and the cluster can
chemotax more rapidly than the train. (b) The h = 30 gradient produces a relatively flat leader uncertainty curve, so the geometry does not
have a large impact. (c) The wide h = 100 gradient means that the most information about the gradient direction is far from the transition
regime, so the larger extent of the train geometry allows it to chemotax slightly more rapidly than the oligomer.

where 〈cos(θL )〉 is computed numerically through Eq. (D12),
as described above. Once we have 〈Vx〉 as a function of the
leader number, we can compute Nmax

� .
To illustrate the signal that the followers respond to in

this approximation, we plot cos(θL ) as leaders are added in
Fig. 8. This quantity does not vary as strongly as the x velocity
because diffusing leaders do not distort the direction in a
consistent way, which mitigates an inaccurate leader’s impact
on the directionality of PL.

APPENDIX E: FOLLOWER NOISE
AND CORRELATION TIME

In the paper, we show that the cluster correlation time
Tc depends strongly on the leader number and the cluster
size. However, one might suspect that the correlation time
might also depend on the follower noise level � f because the
followers maintain the cluster velocity at any instant, driving
its persistence. Therefore, at a fixed gradient, we show the
dependence of Tc on the leader number for low (� f = 36◦),
intermediate (� f = 72◦), and high (� f = 120◦) levels of fol-
lower noise in Fig. 9. In the sharp (h = 1), medium (h = 30),
and wide (h = 100) gradients, the trend is the same; increas-
ing the follower noise decreases the correlation time at leader
fractions less than 1. Also, even at the highest level of follower
noise considered here, there is still a significant change in Tc

from a small leader number to the all-leader case, and this
effect persists at each gradient.

APPENDIX F: CLUSTER GEOMETRY

We compare the train geometry considered in the text to
clusters with a compact geometry. We examine the geometry
of a four-layer oligomer (as considered in previous work
[30,31]), in which 61 cells are hexagonally packed in the clus-
ter, as illustrated in Fig. 10 (we choose the cluster orientation
with respect to the gradient as shown in that figure).

To exactly isolate the effects of geometry, we also simulate
trains of N = 61 cells to compare with the more compact
geometry. First, we examine how the geometry affects the
mean migration speed, 〈Vx〉. In Fig. 11, we compare the mean
velocity curves as a function of the leader number between
trains and oligomers for small (h = 1), medium (h = 30), and
large (h = 100) gradient widths at a fixed follower noise level
� f = 36◦. For the sharp gradient, the hexagonally packed
cluster has many more cells near the transition region, so
it has many cells that can accurately measure the gradient.
Therefore, adding leaders continues to increase its velocity
for a larger number of leaders than the N = 61 train, and
it can migrate more quickly than the train. In the medium
gradient width, the accuracy of the leaders does not change

FIG. 12. The number of leaders to maximize the migration speed
for compact and extended clusters. We compare Nmax

� for N = 61
trains and Q = 4 oligomers. The follower noise level is 36◦. Circles
represent the trains and Xs represent the oligomers. Lines show the
independent follower model. Both geometries follow a similar trend;
the number of leaders first increases, then decreases as the gradient
transition widens.
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FIG. 13. Cluster correlation time for compact and extended clusters. We compare the cluster correlation time Tc between N = 61 trains
and Q = 4 oligomers. The follower noise level is 36◦. Circles represent the trains and Xs represent the oligomers.

significantly as a function of the position. This is reflected
in the very similar velocities between the geometries at all
leader numbers in the h = 30 gradient. In the wide h = 100
gradient, the cells that can most accurately sense the gradient
are near the back of each cluster. Therefore, the train migrates
more quickly than the packed cluster, as the more extended
geometry gives access to more accurate leaders. However, the
differences between the geometries are not as striking as in
the sharp gradient case because the h = 100 uncertainty curve
does not vary as dramatically with the position.

One feature of the curves considered in Fig. 11 is that
the nonmonotonic behavior of the velocity as a function of
the leader number is present in both geometries. We look to
see if the nonmonotonicity in the Nmax

� as a function of the
gradient width h also is robust to geometry. Figure 12 shows
that for the Q = 4 layered oligomer, Nmax

� first increases,
then decreases as a function of the gradient width h. The
hexagonally packed cluster starts out with a higher Nmax

� at
low h because more of its cells are near the transition region.
It also experiences a steeper initial decrease in Nmax

� as h
increases, as the uncertainty curve changes from having a
minimum near the transition regime to having a minimum far
from the transition regime. This change more sharply affects
the oligomer cluster because it does not extend as far in the
x direction as the train. Finally, each has a similar number
of leaders to maximize migration in the wide gradient limit.
In this regime, the follower contribution becomes important
relative to the leader signal. This is reflected in the breakdown
of the independent follower approximation and the similar
simulated values of Nmax

� for both geometries.
We also consider the cluster correlation time Tc for each

geometry. The main qualitative trend that the correlation time
can change dramatically from a small leader fraction to the
all-leader case, is robust to the geometry, as in Fig. 13.

APPENDIX G: INTRACELLULAR NOISE

In the text we assume that the uncertainty in the leaders’
direction is due entirely to effects of the stochastic binding
between ligands and receptors. However, additional noise
may be introduced as the cell processes the information

from the bound and unbound receptors. We vary the level
of intracellular noise �int that the leaders experience. We
assume that this noise is independent of the ligand-receptor
noise and add it in quadrature with the directional uncertainty
so that a leader’s uncertainty is �� =

√
�2

φ + �2
int . As the

level of intrinsic noise increases, the effect of the gradient on
leadership strategy washes out, as shown in Fig. 14. However,
the effects do not completely wash out until the level of
intracellular noise approaches extremely high levels (∼72◦).

APPENDIX H: TABLE OF PARAMETERS

The following table presents the parameters which are
the same for all of the simulations. Varying the physical
parameters Cmax and Nr changes the results quantitatively but
not qualitatively, as long as Cmax is of the order of Kd and Nr

is within typical values.

FIG. 14. Qualitative features of leadership are robust to realistic
levels of intracellular noise. Increasing the intracellular noise �int

eventually washes out the effects of the gradient on the number
of leaders to maximize 〈Vx〉, but for physically realistic values the
qualitative features remain. Symbols represent data for N = 50 trains
with a follower noise of � f = 36◦; lines, the independent follower
approximation predictions.
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Parameter Description Value Justification

Cmax Concentration far in front of the cell cluster. Half this
value is the ambient concentration of a cell at x = 0.

2Kd Chosen so that concentrations are measurable for
the cells in the cluster

Nr Number of receptors on the surface of the cell 70 000 Cells typically have between 10 000 and 100 000
receptors [49–51].

�t Simulation time step 0.01 Convergence of 〈Vx〉 and ϕ(t )
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