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Anisotropic line tension of domains in lipid monolayers
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We formulate a simple effective model to describe molecular interactions in a lipid monolayer and calculate
the line tension between coexisting domains. The model represents lipid molecules in terms of two-dimensional
anisotropic particles on the plane of the monolayer. These particles interact through forces that are believed to be
relevant for the understanding of fundamental properties of the monolayer: van der Waals interactions originating
from lipid chains and dipolar forces between dipole groups in the molecular heads. The model stresses the
liquid-crystalline nature of the ordered phase in lipid monolayers and explains coexistence properties between
ordered and disordered phases in terms of molecular parameters. Thermodynamic and interfacial properties of
the model are analyzed using density-functional theory. In particular, the line tension at the interface between
ordered and disordered phases turns out to be highly anisotropic with respect to the angle between the nematic
director and the interface separating the coexisting phases. This important feature mainly results from the tilt
angle of lipid chains and, to a lesser extent, from dipolar interactions perpendicular to the monolayer. The role
of the two dipolar components, parallel and perpendicular to the monolayer, is assessed by comparing with
computer simulation results for lipid monolayers.
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I. INTRODUCTION

Lipid monolayers have been intensely investigated in the
past decades because of their importance as paradigms for var-
ious interfacial problems of biological importance, in particu-
lar, for the lung surfactant system [1,2]. Monolayers made of
one- or multicomponent lipid molecules at the air-liquid water
interface are considered to be useful models for a lipid mono-
layer. One of the more extensively analyzed lipid monolay-
ers consists of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) molecules and mixtures with similar molecules of dif-
ferent saturation degrees in their aliphatic chains. Below some
critical point, pure and mixed monolayers generally show
phase separation between a phase with disordered chains or
a liquid-expanded (LE) (fluid) phase and a phase with ordered
chains or a liquid-condensed (LC) (gel- or solidlike) phase
[3,4].

The molecular structure in the LC phase consists of
molecules with straight and tightly packed molecular chains.
Molecules show a high degree of positional order, compatible
with a global or local two-dimensional crystal or glassy state
[3], although the precise molecular ordering is open to debate
(see, for example, Ref. [5] where ordered domains in bilayers
of lipid mixtures are observed to be composed of subdomains
with different orders). In the LE phase, by contrast, not only
the chains, but also the molecular centers of mass are disor-
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dered. Also, molecular chains in both phases are observed to
be tilted with respect to the monolayer normal to some degree
[3,6,7]. The tilt is believed to optimize chain contact and van
der Waals interactions [8]. In the case of the LC phase, the op-
timal contact energy compensates for the decrease in entropy
associated with the positional molecular ordering. The LC-LE
phase transition can conceptually be regarded as a classical
first-order phase transition between two-dimensional phases,
one possessing some kind of orientational and positional order
and the other exhibiting orientational and positional disorder,
such as in a standard liquid.

Lipid molecules are amphiphilic in nature, i.e., they show
polar and nonpolar characteristics that explain their tendency
to occupy the liquid interface. These characteristics may play
slightly different roles in the two-dimensional phase transi-
tions. The nonpolar part, through the condensation and order-
ing of the molecular chains, do clearly play the most important
role in the phase transition, but less is known about the role of
the polar heads. Experimental investigation of this problem
[7,9–12] is difficult, and some important questions about lipid
domains at the phase transition are still open, for example, the
intricate domains shapes, the domain structure, the stability,
and the growth kinetics of domains at coexistence. The very
role played by the polar and nonpolar interactions on the
above properties is uncertain.

From the theoretical side, progress has been slow. To
date, theoretical models have been formulated mostly at the
mesoscopic level and incorporate polar and nonpolar inter-
actions between molecules more or less implicitly [13–17].
Models have focused on the understanding of domain shape
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and domain-shape transitions, taking thermodynamic coexis-
tence as given. But thermodynamically consistent microscopic
models that start from an interaction potential energy are
scarce and not fully satisfactory: Existing models are for-
mulated on lattices and do not include dipolar interactions
[18,19]. More complete models, in the tradition of classical
liquid-state theory, are more powerful in that, not only bulk
thermodynamics (and, therefore, phase transitions), but also
interface thermodynamics and structural information, can be
calculated. This information may be very useful as an input to
mesoscopic models or to understand computer simulations.

In the present paper, we formulate a simple micro-
scopic model based on interacting two-dimensional effective
anisotropic particles. The model is inspired by recent com-
puter simulation results that use atomistic force fields [20,21].
The model includes van der Waals interactions between lipid
chains and dipolar forces with perpendicular and parallel
components with respect to the monolayer associated with
polar interactions between lipid head groups. Using density-
functional theory (DFT) and assuming that the LC phase can
be assimilated into a liquid-crystalline fluid nematic phase
[22], we obtain phase diagrams for different values of in-
teraction parameters. In particular, we study their effect on
the density gap between coexisting domains. Also, the theory
allows for the study of the microscopic structure at the inter-
face separating the two coexisting domains and the molecular
orientation at the interface. The line tension turns out to
be strongly anisotropic with respect to this orientation. The
importance of line-tension anisotropy has been stressed before
in relation to lipid domains in monolayers [23]. Our micro-
scopic model makes definite predictions about this anisotropy
in terms of parameters that have a molecular basis. The
model focuses on the orientational properties, i.e., the nematic
liquid-crystalline aspect, of the molecules in the LC phase
[22]. Contributions from any possible positional order are
neglected. Since positional order is believed to have glassy or
local characteristics [3,5], it seems sensible to believe that the
orientational order will give a larger contribution to the value
and anisotropicity of the line tension than positional order.

Our results have implications at various levels. First, we
conclude that the model correctly reproduces the molecular
orientation at the LC domain boundaries if the in plane com-
ponent of molecular dipoles is absent. Therefore, our results
support the concept that this dipolar component should play
no role in determining the structure. This conclusion is in
agreement with the atomistic simulation results [21]. Second,
the dipolar component perpendicular to the monolayer does
not essentially perturb molecular orientation at the bound-
ary, although it substantially lowers the line tension. Also,
anisotropicity of the line tension with respect to molecular ori-
entation at the boundary, already present in the absence of any
dipolar interaction, is reinforced by the presence of a perpen-
dicular dipole. The anisotropic nature of the line tension is an
essential prediction of the model, and we argue that it should
be incorporated in mesoscopic models for domain shape.

II. THEORETICAL SECTION

Some features of our two-dimensional effective model
for a lipid monolayer are inspired by the recent simulation

study [20] of an atomistic model for a DPPC monolayer. In
this reference, the density of interaction units of a molecule,
projected on the plane of the monolayer, was studied sepa-
rately for domains of the LC and LE phases. A histogram
of projected molecular aspect ratios was obtained where the
aspect ratio was defined from the two gyration radii of the pro-
jected interaction units of the molecules. Despite the different
chain orderings in the LC and LE domains, the respective
histograms result in mean aspect ratios very close to 2.5 in
both phases. This means that the average shape of a lipid
molecule, projected on the plane of the monolayer, is close
to that of an ellipse with the latter aspect ratio, Fig. 1. Admit-
tedly, the distribution of aspect ratio obtained in the simulation
is quite broad since the tilt angle of the molecular chains
also fluctuates about an average value. In a more complete
model, the width of the distribution could be accounted for by
assuming that our two-dimensional effective particles have an
aspect-ratio polydispersity. The effect of length polydispersity
has been shown to play a crucial role in phase equilibria
involving phases with partial spatial order [24]. However,
its impact on the isotropic-nematic phase transition is not
expected to be crucial at the present level of modeling.

Based on these results, in the present model, we assume
that our two-dimensional effective particles consist of identi-
cal rectangular particles with an aspect ratio of 3. The reason
why a rectangular, rather than elliptical, shape is chosen,
and for the value of aspect ratio adopted, will become clear
later on. The elongated projected shape of lipid molecules
reflects the molecular geometry and the tendency of real lipid
molecules to be slightly tilted with respect to the monolayer
normal in both LC and LE phases. As regards the interaction
between two molecules, the anisotropic shape captures the
fact that side-to-side configurations have a shorter overlap
distance than end-to-end configurations. Therefore, the effec-
tive particle interaction contains a purely repulsive term rep-
resented by a two-dimensional hard-rectangle (HR) potential
for particles with length L and width σ0 with κ = L/σ0 = 3 as
the aspect ratio.

Figure 1 shows the most representative effective-particle
configurations. Let us associate a two-dimensional unit vector
êi with the ith molecule. This vector is on the plane of
the monolayer and points along the projection of the lipid
tail. Therefore, it is parallel to the long axis of the effec-
tive two-dimensional particle. If r̂ is the unit vector join-
ing particle 1 with 2, we define ai = r̂ · êi and b = ê1 · ê2.
Then, the three end-to-end configurations have (b, a1, a2) =
(+1,+1,+1), (−1,±1,∓1), whereas, for the two side-to-
side configurations, (b, a1, a2) = (+1, 0, 0) and (−1, 0, 0).
With the chain molecular structure in mind, it is clear that, as
far as van der Waals interactions are concerned, the first two
end-to-end configurations, →→ and →←, cannot have the
same energy (note that the configurations →← and ←→ are
taken as equivalent). Also, the two side-to-side configurations,
↑↑ and ↑↓, cannot have the same energy either. These two
configurations contain the most important relative difference
energetically: In the case of b = +1, lipid chains are in com-
plete contact, whereas, in the second b = −1, they interact
much less.

Thus, to the HR potential, an anisotropic attractive con-
tribution between the effective particles is added. This
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FIG. 1. Schematic of representative effective-particle configurations and corresponding lipid chain orientations. Numbers below each
cartoon correspond to values of (b, a1, a2) (see the text for details).

contribution is intended to represent the van der Waals attrac-
tion between the lipid chains and should be sensitive to the
sign of b. The model for the attractive interaction will be a
modified Gay-Berne (MGB) potential [25]. The GB potential
is an anisotropic Lennard-Jones-like potential which has been
extensively studied in three-dimensional fluids to account for
interactions between anisotropic mesogenic particles [26–28].
However, its use in two-dimensional systems is scarce, prob-
ably because it predicts a continuous, rather than first order,
phase transition between isotropic and nematic fluids. Since
the original GB model presents head-to-tail symmetry, it can-
not discriminate between the two side-to-side (or end-to-end)
configurations, and a modification is required to introduce an
energy splitting between the configurations.

In the original GB model, the potential energy for two
particles with relative center-of-mass vector r = r2 − r1 and
orientations ê1 and ê2 is

�GB(r, ê1, ê2) = 4ε(r, ê1, ê2, ) f (r, ê1, ê2), (1)

with

ε(r, ê1, ê2) = εGBεν
1 (ê1, ê2)εμ

2 (r̂, ê1, ê2), (2)

and

f (r, ê1, ê2) =
(

σ0

r − σ (r̂, ê1, ê2) + σ0

)12

−
(

σ0

r − σ (r̂, ê1, ê2) + σ0

)6

. (3)

σ (r̂, ê1, ê2) is a contact distance that depends on the relative
particle angle r̂ and the two particle orientations ê1, ê2. εGB is
an energy scale, whereas μ = 2 and ν = 1 are exponents. σ0

is made to coincide with the particle width. In the standard
Gay-Berne model, the contact distance is given by the hard-
Gaussian overlap (HGO) model. The full expressions are as

follows:

σ (r̂, ê1, ê2) = σHGO(r̂, ê1, ê2)

= σ0

{
1 − χ

2

[
(a1 + a2)2

1 + χb
+ (a1 − a2)2

1 − χb

]}−1/2

,

ε1(ê1, ê2) = {1 − χ2b2}−1/2,

ε2(r̂, ê1, ê2) = 1 − χ ′

2

[
(a1 + a2)2

1 + χ ′b
+ (a1 − a2)2

1 − χ ′b

]
, (4)

where σHGO(r̂, ê1, ê2) is the contact distance of the HGO
model (which closely approximates that of hard ellipses).
In the equations above, the parameter χ is related to the
particle aspect ratio by χ = (κ2 − 1)/(κ2 + 1). Likewise,
χ ′ = (κ ′1/μ − 1)/(κ ′1/μ + 1), where κ ′ is the ratio of potential
energies in a T configuration and in a parallel configuration
[25] (see below).

In our modified model, we introduce two variations to
the standard GB model, Eqs. (4). The first is forced by the
fact that the HGO model for the hard core does not produce
a first-order phase transition between the isotropic and the
nematic phases. As discussed, this is a necessary requirement
for the model in our application to coexisting domains in the
monolayer (note that the presence of an attractive contribution
in the GB model does not modify this scenario). To correct this
unwanted feature, we have modified the hard core and adopted
a HR shape. This model is known to exhibit a first-order tran-
sition from the isotropic phase to the uniaxial nematic phase in
a range of aspect ratios [29]. In particular, for an aspect ratio
κ = 3, the phase transition is of first order and gives rise to a
density gap with a sufficiently wide coexistence region. The
modification involves substituting the contact distance in (4)
by that of the HR model σ (r̂, ê1, ê2) = σHR(r̂, ê1, ê2).

The second modification involves splitting the energy of
parallel b = +1 and antiparallel b = −1 configurations as dis-
cussed above. This is performed by modifying the ε1 function
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FIG. 2. The modified Gay-Berne potential for various relative configurations of two molecules. ê vectors for each configuration are
indicated as arrows. Values of the parameters are κ = 3, κ ′ = 0.3, μ = 2, and ν = 1. (a) δ = 0. (b) δ = 1.5.

to

ε1(ê1, ê2) = {
1 − 1

2χ2(1 + δb)
}−1/2

, (5)

where δ is an asymmetry parameter that quantifies the energy
splitting. The resulting modified potential (1) with (5) instead
of (4) for the energy function ε1 will be called the MGB
potential �MGB(r, ê1, ê2). Note that δ = 0 does not reduce
(5) to the standard GB model. This simple modification of
the original expression in (4) introduces the necessary split-
ting between the parallel and the antiparallel configurations
without spoiling the balance between the other important
configurations.

Figure 2 shows the MGB potential for various selected
relative configurations of two particles: The two side-to-side
configurations ↑↑ and ↑↓, the two T configurations ↑←
and ↑→, and the two side-to-side configurations →→ and
→←. The parameter κ ′ describes the relative energy between
parallel and T configurations in the original GB potential and
is set to 0.3. In the figure, results for two different values of
the δ are shown: δ = 0, panel (a), and δ = 1.5, panel (b). We
see how the two side-to-side configurations are degenerate
for δ = 0 but split into two distinct levels for δ > 0. The
end-to-end configurations are also affected by δ but not the
T configurations, which remain degenerate.

Therefore, our model represents lipid molecules as two-
dimensional elongated objects (on the plane of the mono-
layer), interacting through anisotropic van der Waals forces.
Note that, in our model, interactions between the effective
particles do not depend on the phase these particles belong
to. This means that the interactions are not sensitive to the
chain disorder of molecules in the LE phase as opposed to
the perfect chain order in the LC phase. We believe that the
impact of this assumption is negligible in view of the fact that
our results for the line tension are in reasonable agreement
with experiment as commented below.

In addition to the van der Waals interaction, an embedded
linear dipole pointing along some direction (not necessarily
oriented on the plane) is included. This dipole represents the
joint electrostatic charges of the neutral head group of the lipid
molecule. The pair potential energy is written as a sum of two
contributions, the modified Gay-Berne term and the dipole

energy,

�(r12, ê1, ê2) = �MGB(r, ê1, ê2) + �dip(r, ê1, ê2). (6)

The dipolar energy term is

�dip(r̂, ê1, ê2) = μ2
⊥

ε0ε⊥r3
+ μ2

‖
ε0ε‖r3

[ê1 · ê2 − 3(ê1 · r̂)(ê2 · r̂)]

= μ2
⊥

ε0ε⊥r3
+ μ2

‖
ε0ε‖r3

(b − 3a1a2). (7)

The dipole may have components normal and parallel to the
monolayer, respectively, μ⊥ = μ cos (π − φ) = −μ cos φ

and μ‖ = μ sin (π − φ) = μ sin φ, where π − φ is the polar
angle of the dipole moment (see Fig. 1). In this dipolar
model, we are assuming that the dielectric constants in the two
directions ε‖ and ε⊥ may be different. Atomistic simulations
indicate that angle θ in both LC and LE domains is very close
to 22◦ [20]. As regards the parallel component, it is assumed
to be aligned along the long axis of the effective projected
particle ê. This assumption is at variance with the results of
the latter simulation, which predicts a parallel component that
freely rotates in the azimuthal angle, essentially uncorrelated
with ê. This result may be a feature of the force field used in
the simulations and should be confirmed. In our model, this
situation would correspond to setting the in-plane component
of the dipole μ‖ to zero. Note that the model does not
contemplate the situation where ê is not on the plane spanned
by the dipole moment and the normal to the monolayer.

With this model, we attempt to describe a phase diagram
involving two phases, one with orientational disorder (equiva-
lent to the LE phase of the lipid monolayer) and another with
orientational order (akin to the LC phase). Also, the effect
of the dipolar strength on the coexistence gap can be studied
along with the stability and shape of domains and eventually
some dynamical aspects of domain growth. Some of these
issues are addressed in the present paper. Others will be left
for future work.

As formulated, the model is expected to present a number
of stable equilibrium phases. Among these are the isotropic
phase, where molecules are both spatially and orientation-
ally disordered, and the nematic phase, a fluid phase where
molecules are oriented on average along some common
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direction called the director. The model also contains an
exotic nematic phase, the tetratic, which is a fluid phase
with two equivalent directors. The tetratic can replace the
standard nematic phase when the aspect ratio of the particles
is sufficiently low. Also, the model exhibits a crystalline fully
ordered phase at high density. The existence of this sequence
of stable phases is based on the known properties of the
hard-core interaction of the model, the HR model, which
are well known. These and related models have been studied
theoretically using mean-field theory [29,30] and by means of
simulation [31]. In contrast, the effect of the addition of an
anisotropic attractive interaction and a linear dipole has not
been investigated. Although the nature of the stable phases is
not expected to be modified (based on similar models in two
and three dimensions), the effect of the new ingredients will
certainly be a profound one. In particular, we would like to
obtain some trends as to the effect of the dipole orientation and
strength. Initially, we formulate a general model and explore
the consequences on phase behavior.

The model is here analyzed using classical DFT and asso-
ciated mean-field approximations to examine the phase behav-
ior. At this point, we neglect nonuniform spatial ordering since
the introduction of this order in the theory gives rise to an
unnecessarily complicated numerical problem and, as stated
in the Introduction, its contribution to interfacial properties
can be neglected. Therefore, at the DFT level, we restrict
ourselves to a description of the uniform phases, i.e., isotropic
and nematic (we choose the aspect ratio of the particles in such
a way as to avoid the stabilization of tetratic ordering, which
is certainly not observed in lipid monolayers). These phases
will be identified with the LE and LC phases, respectively.

Note again that one crucial assumption of our approach
concerns the identification of the phases. The isotropic phase
of the model is identified with the LE phase of the monolayer,
whereas the nematic phase is meant to represent the LC
phase. This may not be a completely realistic representation,
especially in the case of the LC phase, but, at least, the model
has two essential ingredients: In the LC phase, the aliphatic
chains of the molecules are rigid and oriented to optimize
the van der Waals energy; and the components of the dipolar
moment on the monolayer should be aligned and contribute to
a global dipolar moment.

We now formulate a perturbation theory, taking the HR
model as a reference system. We write the one-particle density
without loss of generality as ρ(r, ê) = ρ(r) f (r, ê), where
ρ(r) is the local number density and f (r, ê) the orientational
distribution function. In the isotropic phase f (r, ê) = 1

2π
since

the distribution function has to be normalized

∫
d ê f (r, ê) =

∫ 2π

0
dϕ f (r, ϕ) = 1. (8)

Now the potential energy is split into hard repulsive and
attractive parts using a Barker-Henderson scheme [32]. Then,
we write a free-energy functional as a sum of ideal and excess
parts with the latter containing contributions from the MGB
and dipolar terms,

F [ρ] = Fid[ρ] + FHR[ρ] + FMGB[ρ] + Fdip[ρ], (9)

where

βFid[ρ] =
∫

dr
∫

d ê ρ(r, ê){ln [ρ(r, ê)�2] − 1}

=
∫

dr ρ(r)

{
ln

[
ρ(r)

2π
�2

]
− 1

+
∫

d ê f (r, ê) ln [2π f (r, ê)]

}
(10)

is the ideal free-energy contribution. � is the thermal wave-
length, and β = 1/kT . The hard-core contribution can be
written as

βFHR[ρ] = ψHR(ρ0)
∫

dr1

∫
d ê1ρ(r1, ê1)

∫
dr2

×
∫

d ê2ρ(r2, ê2)vexc(r2 − r1, ê1, ê2), (11)

where

vexc(r, ê1, ê2) =
{

1, r < σHC(r̂, ê1, ê2)

0, r > σHC(r̂, ê1, ê2)

}

= �[σHC(r̂, ê1, ê2) − r] (12)

is the overlap function, and ρ0 is the mean density. The exact
formulation of this functional depends on the hard-core model
considered. In the case of HR, scaled-particle theory has been
implemented in the past [29], and this is the theory used here.
Also,

FMGB[ρ] = 1

2

∫
dr1

∫
d ê1ρ(r1, ê1)

∫
dr2

∫
d ê2ρ(r2, ê2)

×�[|r2 − r1| − σHC(r̂12, ê1, ê2)]

×�MGB(r2 − r1, ê1, ê2) (13)

is the attractive MGB contribution to the free energy. Finally,

Fdip[ρ] = 1

2

∫
dr1

∫
d ê1ρ(r1, ê1)

∫
dr2

∫
d ê2ρ(r2, ê2)

×�[|r2−r1|−σHR(r̂12, ê1, ê2)]�dip(r2−r1, ê1, ê2)

(14)

is the dipolar contribution. In this expression, we are assuming
that correlations are given by a simple step function (i.e., only
the correlation hole is taken into account).

Now, we give some details on how the theory is solved.
We only sketch the basic approximations and the numerical
approach, considering the more general interfacial case; the
thermodynamics of the bulk phases can be obtained from
the same interfacial approach using the corresponding bulk
distributions. The interfacial structure is computed using a
variational method where the density ρ(x) and a set of orien-
tational parameters {�n(x)} are taken as variational functions.
In the context of the present mean-field approach, we do not
consider fluctuations of the boundary and, instead, assume a
flat boundary. The reference axis x is taken along the boundary
normal. This means that the variational parameters ρ(x) and
{�n(x)} will be functions of the x coordinate only. The orien-
tational distribution function is then f (x, ϕ) = f (ϕ; {�n(x)}),
where ϕ is the angle between the long axis of a particle ê and
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FIG. 3. Definition of angle ϕ0 at the boundary between LE and
LC domains. Arrows represent the orientation of the local director,
which is taken to be uniform in our model. n̂ is the unit vector along
the inward normal.

the x axis of the laboratory reference frame. The following
parametrization is used:

f (x, ϕ) = exp
[∑∞

n=1 �n(x) cos n(ϕ − ϕ0)
]

∫ 2π

0 dϕ′ exp
[∑∞

n=1 �n(x) cos nϕ′] . (15)

In this expression, we allow for the possibility that, in the
nematic phase, the director is oriented at an angle different
from the normal direction. This effect is central to our dis-
cussion and is taken into account through angle ϕ0 in (15),
which implies a global rotation of the director, see Fig. 3.
The parameters {�n(x)} at each position x will be a measure
of particle ordering about the direction dictated by ϕ0. Note
that, in this paper, we do not assume a spatial dependence
of angle ϕ0, which means that the director is uniform across
the boundary with no deformation. This assumption is based
on our choice of a flat geometry for the boundary and on
our inability to tackle the more general problem of boundary
deformations and fluctuations within the present formulation.
We limit the number of variational parameters to the first two
parameters�1(x) and �2(x), which contain the symmetry of
the polar and uniaxial nematic phases. Once the equilibrium
values of �1(x) and �2(x) are obtained, the corresponding
local order parameters s1(x) and s2(x) in the proper frame
(i.e., the frame associated with the nematic director) can be
obtained from

sn(x) =
∫ 2π

0
dϕ f (x; ϕ) cos n(ϕ − ϕ0). (16)

The minimization is realized by discretizing the spatial coor-
dinates, which turns the problem into a minimization problem
of a function of many variables, i.e., all the values of ρ, �1,
and �2 at the discrete points defined along the x axis. Due to
the long-range nature of the dipolar interactions, many such
points have to be defined, meaning that the computation box
containing the interfacial boundary between the isotropic and
the nematic phases will be very long in the direction normal
to the boundary. The cutoff in the interactions is set to 30σ0.
We have used a box of length of 100σ0 in the direction normal
to the interface with a grid size of �x = 0.1σ0 (the effective
box length is, in fact, extended to 160σ0 to take into account
the nonlocal interactions).

Using the property of translational invariance in the di-
rection of the flat boundary (y axis), all integrals over r1 =
(x1, y1) and r2 = (x2, y2) in Eqs. (11), (13), and (14) can
be written as integrals along x coordinates only. In the
process, effective potentials ṽexc(x, ϕ1, ϕ2), �̃MGB(x, ϕ1, ϕ2),
and �̃dip(x, ϕ1, ϕ2) are defined, which can be computed in
advance. These effective potentials are already integrated on
the y coordinates and incorporate the correlation hole given by
the Heaviside function. For example, in the case of the dipolar
term, we have

Fdip[ρ] = L

2

∫ ∞

−∞
dx1ρ(x1)

∫ ∞

−∞
dx2ρ(x2)

×
∫ 2π

0
dϕ1

∫ 2π

0
dϕ2 f [ϕ1; �1(x1),�2(x1)]

× f [ϕ2; �1(x2),�2(x2)]�̃dip(x1 − x2, ϕ1, ϕ2). (17)

The factor L, which represents the length of the (flat) bound-
ary, comes by invoking translational invariance along the
boundary, which is expressed by the presence of the factor
y1 − y2. The calculation of integrals, such as those in (17),
which have the same structure in the case of the other free-
energy contributions, involves a serious numerical burden. We
must bear in mind that a minimization process over many
variables is imposed on the full free-energy functional, and
this process involves a very large number of free-energy
evaluations.

Our strategy was to evaluate the double angular integrals
in a single step before the minimizations. For example, for the
dipolar term, we evaluate

Vdip
(
�

(1)
1 ,�

(1)
2 ,�

(2)
1 ,�

(2)
2

)

≡
∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

× f [ϕ1; �1(x1),�2(x1)] f [ϕ2; �1(x2),�2(x2)]

× �̃dip(x1 − x2, ϕ1, ϕ2), (18)

and create a large table with four entries: The values of two
parameters �1,�2 evaluated at the first particle (coordinates
with subindex 1) and the values of two parameters �1,�2

evaluated at the second particle (coordinates with subindex
2), i.e., �

(1)
1 ≡ �1(x1), �

(1)
2 ≡ �2(x1), �

(2)
1 ≡ �1(x2), and

�
(2)
2 ≡ �2(x2). This table is then interpolated for intermediate

values of the parameters. The accuracy of this procedure
is reasonable [33]. The same procedure is applied to the
other free-energy contributions. This strategy saves a lot
of computer time and simplifies the interfacial calculations
considerably.

The relevant free-energy functional to minimize is the line
tension, which is defined as the excess grand potential per unit
length λ = (� − �0)/L, where � = F − μN is the grand
potential, L is the interface length, μ is the chemical potential
at coexistence, N is the number of particles, and �0 is the
bulk grand potential. The line-tension functional is minimized
with respect to all the independent variables defined on the
discretized x axis, ρ(x), �1(x), and �2(x) using a conjugate-
gradient method. In each case, angle ϕ0 between the nematic
director and the monolayer normal is fixed at some value in
the interval [0◦, 180◦]. This process recovers the bulk results
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and bulk coexistence very accurately. However, despite the
numerical accuracy of our strategy, very small deviations
exist for the bulk properties at different values of ϕ0. This
is a problem since the computation box is assumed to be
coupled to bulk isotropic and nematic phases at each side of
the box, and definite coexistence values for density and order
parameters, consistent with the numericals of the interfacial
problem, have to be fixed as boundary conditions. Any minor
difference in the boundary conditions will be detrimental for
the correct minimization. The solution is to obtain the bulk
coexistence consistently for each value of ϕ0, which ensures
perfect matching and a smooth minimization process.

For the bulk phases, we assume the dependence ρ(x) = ρ0

and f (x; ϕ) = f (ϕ) for the phase with the lowest symmetry,
the nematic phase. In the isotropic phase, f (ϕ) = 1/2π . In
this case, we numerically minimize the total Helmholtz free-
energy functional using the same strategy as for the interface.
Once the equilibrium (constant) values of the �1 and �2

parameters are obtained for the nematic phase, the order
parameters and the equilibrium free energy can be evaluated.
From this, the chemical potential and the pressure can be
computed numerically, and the whole phase diagram obtained
by applying the equal-pressure and equal-chemical potential
conditions at each temperature T .

III. RESULTS AND DISCUSSION

For both bulk and interface, three cases have been an-
alyzed: zero dipole, dipole in the plane of the monolayer,
and dipole perpendicular to the monolayer. The asymmetry
parameter δ is fixed to a value of δ = 1.5. This value gives an
energy gap between parallel and antiparallel configurations of
58% (see Fig. 2). As discussed previously, we do not claim
this value to be representative of any realistic situation. We
simply argue that δ reflects the asymmetry between the two
unequivalent configurations of two tilted molecular chains,
and that larger tilt angles may reasonably be associated with
larger values of δ. A proper connection between the atomistic
model and the effective two-dimensional model can be per-
formed but is outside the scope of this exploratory investiga-
tion. Larger values of δ, giving stronger energy anisotropies,
on the other hand, do not substantially change the results and
the qualitative conclusions that can be drawn from the model.
In order to check this point, a value of δ = 1.75, giving an
energy gap of 69%, was also explored. There is a technical
problem with the value of the asymmetry parameter since in
the model the value of δ cannot be chosen arbitrarily. For
example, for clearly smaller values, the density gap of the
isotropic-nematic transition becomes extremely small or even
disappears, which is not realistic for the present application.
In practice, we have checked that 1.5 is slightly above the
limiting value below which a realistic density gap for the
isotropic-nematic transition cannot be obtained. What we
mean by realistic density gap will be discussed below.

Figure 4 presents four phase diagrams on the temperature-
density plane corresponding to the cases mentioned above.
All quantities are scaled with the appropriate parameters to
give dimensionless quantities, εGB for energies and σ0 for
lengths. In the case of the dipolar strengths, we scale as μ∗

i =

μi/

√
ε0εiεGBσ 3

0 with i =‖,⊥. All phase diagrams present a
common feature: the existence of a transition between an
isotropic (LE) phase and a nematic (LC) phase. In all cases,
the transition is of first order and preempts the isotropic-vapor
transition, which is metastable and below the two isotropic-
nematic binodal curves. The latter feature is not a limitation
of the model for the present paper, which focuses on the phase
coexistence between orientationally ordered and disordered
phases. In all cases, the density gap between isotropic and ne-
matic phases rapidly decreases with temperature and eventu-
ally closes up, giving rise to a continuous phase transition at a
tricritical point. In real monolayers, the density gap disappears
at a critical point, above which LC and LE regions can be
continuously connected [4]. The different symmetries of the
phases involved in our model and the absence of fluctuations
in our mean-field treatment preclude the existence of a critical
point. Again, this shortcoming is not an essential point for our
purposes. Note that, for even higher temperatures, the density
gap has to return to a finite value since the infinite-temperature
limit of the model is the HR model, which exhibits a first-
order transition [29].

We first compare panels (a) and (b) of Fig. 4, both cor-
responding to zero dipole but for different values of δ. It
is clear that an increasing anisotropy, producing a larger
energy gap, does not shift the isotropic-nematic transition in
temperature but gives rise to an increased density gap. Similar
conclusions are drawn from a comparison of panels (a) and
(d), corresponding to the same value of δ but to a zero dipole
and a purely in-plane dipole, respectively. There exists an
incipient isotropic-vapor transition, and the in-plane dipole
slightly weakens the anisotropic interactions of the MGB
model and promotes the stability of the nematic phase. But,
more importantly, the in-plane dipole does not qualitatively
affect the phase diagram.

By contrast, the case of a purely perpendicular dipole
component, panel (c), is qualitatively different. Condensation
of the isotropic phase is clearly discouraged since the perpen-
dicular dipole introduces a purely repulsive interaction. Also,
the effective anisotropic interactions promoting the ordering
transition decrease with the result that the density gap at a
given temperature is considerably reduced, and the tricritical
point (not visible at the scale of the other panels) moves to
lower temperatures.

Figure 5 presents the line-tension λ(ϕ0) as a function of
angle ϕ0 between the average projection of the molecular
chains in the LC domains (director) and the normal to the
phase boundary n̂, see Fig. 3. The four panels correspond to
the four cases shown in Fig. 4. As a reference, in each case, the
value of the temperature is chosen such that the density gap is
close or on the same order as that observed in the atomistic
simulations [20], which is approximately 27% with respect
to the density of the LC phase. Therefore, the temperatures
are kT/εGB = 0.13 in panel (a), 0.1825 in panel (b), 0.12
in panel (c), and 0.15 in panel (d), giving density gaps of
27%, 27%, 22%, and 12%, respectively.

The first observation is that the line tension is consider-
ably reduced when dipole interactions, either perpendicular
or parallel to the monolayer, are introduced. This reduction
cannot be explained alone by the density gap since their values
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FIG. 4. Phase diagrams for different values of the parameters. (a) δ = 1.5, μ∗
⊥ = 0, μ∗

‖ = 0. (b) δ = 1.75, μ∗
⊥ = 0, μ∗

‖ = 0. (c) δ =
1.5, μ∗

⊥ = 0.6, μ∗
‖ = 0. And (d) δ = 1.5, μ∗

⊥ = 0, μ∗
‖ = 0.6.

are similar, see, e.g., panels (a) and (c). Also, the gap in
the order parameters, e.g., the nematic order parameter S2,
at the transition, cannot explain by itself the drop in line
tension. The conclusion is that the dipolar interactions are
responsible for the substantial reduction in λ. Experimental
values of λ for lipid monolayers, extracted from domain size
distributions [34], are in the range of 1–10 fN (although
values measured using other techniques may be higher by
even two orders of magnitude depending on the system
[35–37]). Using σ0 ∼ 0.4 nm (estimated from experimental
values of area per lipid in LC domains of DPPC monolay-
ers) and εGB ∼ 50 kT (estimated from atomistic force-field
simulations [20], and see Ref. [8]), we obtain values of
λ ∼ 2–15 fN, i.e., within the same order of magnitude as in
Ref. [34].

Interestingly, line tensions exhibit well-defined minima
which correspond to equilibrium oblique configurations at the
boundary between LE and LC phases. This is indicating the
existence of an anisotropic line tension. In cases where no
dipole exists, panels (a) and (b), there is a global minimum
at ϕ0 � 135◦ and a local minimum at ϕ0 � 40◦. These two
angles are close to being supplementary which means that,
in both configurations, the long axes of the effective particles
lie on the same straight line, but the projected chains point
in opposite directions. The most stable configuration corre-
sponds to chains pointing towards the bulk of LE regions at an

angle of 135◦ − 90◦ = 45◦ with respect to the boundary. Panel
(c) corresponds to a model where a dipole perpendicular to
the monolayer is added. Clearly, the barrier between minima
is reduced, but the locations of the minima do not change.
This indicates that a perpendicular dipole does not affect the
anisotropy introduced by the MGB component. Finally, in
panel (d), a purely in-plane dipole has been added. In this
case, the situation drastically changes as only one minimum is
visible at an angle of ϕ0 = 90◦. This corresponds to molecular
projections parallel to the phase boundary. In all cases, the
line tension is anisotropic, meaning that the interface pins the
molecular orientation, which is transmitted to the bulk via
elastic forces, a situation similar to the anchoring phenomena
in liquid crystals.

Another interesting question is the degree of anisotropy of
the line tension. A possible measure of the anisotropy ξ is
given by the amplitude of its variation in the whole range of
ϕ0,�λ, divided by the mean value λ0, i.e., ξ = �λ/λ0. In
the cases shown in Fig. 5, the values for the anisotropy are
ξ = 0.16, 0.22, and 0.87 in panels (a), (c), and (d), respec-
tively. Dipolar interactions parallel to the monolayer have a
profound impact on the line-tension anisotropy, whereas the
perpendicular components also add some anisotropy over that
of the pure MGB potential which, at ξ = 16%, is already
substantial. We are not aware of any experimental values of
line-tension anisotropies in lipid monolayers.
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FIG. 5. Line tension as a function of the molecular orientation with respect to the domain boundary normal. (a) δ = 1.5, μ∗
‖ =

0, μ∗
⊥ = 0 (kT/εGB = 0.13), (b) δ = 1.75, μ∗

‖ = 0, μ∗
⊥ = 0 (kT/εGB = 0.1825). (c) δ = 1.5, μ∗

‖ = 0, μ∗
⊥ = 0.6 (kT/εGB = 0.12). (d) δ =

1.5, μ∗
‖ = 0.6, μ∗

⊥ = 0 (kT/εGB = 0.15). The continuous line is a cubic spline fitting intended only as a guide to the eye.

These results should be compared with available evidence
on molecular structure and ordering. An important source of
information comes from atomistic computer simulations. Two
such simulations on DPPC monolayers have recently been
published [20,21]. The two use the same force fields, and
the only difference is system size. We focus on Ref. [21]
in which complete phase separation was probed along the
coexistence region, and pictures of representative molecular
configurations were shown. Invariably, an angle ϕ0 at the
domain boundaries different from 90◦ can be seen in the
configurations. Direct visual estimates of the angle provide
a value of ∼30◦ (see panel 3, Fig. 2 of Ref. [21]).

The above results imply that the in-plane dipolar compo-
nent cannot be large or, at least, cannot influence the structural
properties of the domain. This is supported by the results of
Ref. [20] that the in-plane component of the dipoles show
almost complete rotational motion about the monolayer nor-
mal. This could imply that the in-plane dipolar components
of neighboring molecules interact weakly because of strong
screening [38] or otherwise. Therefore, the only relevant or
effective dipolar component would be the perpendicular one.
The line tension is strongly affected by this component, which
reduces its value. The angular anisotropy of the line tension,
which is otherwise contained in the model with no dipole
interactions, increases moderately when perpendicular dipole

forces are present. Therefore, the main contribution to the
anisotropy is due to the molecular tilt; the perpendicular
dipoles contributing to a lesser extent. The angular depen-
dence of the line tension can be represented by

λ(ϕ0) = λ0 +
∞∑

n=1

λn cos nϕ0. (19)

The different behaviors shown in Fig. 5 can be explained in
terms of the n = 1–4 components. Minima at �45◦ and 135◦
are due to the n = 4 term. The n = 1 and 3 components affect
the relative stability of these two minima. The minimum at 90◦
is due to the n = 2 component. A model potential with no gap
between ↑↑ and ↑↓ configurations promotes a 90◦ angle at the
boundary [39] (planar orientation). In-plane dipoles also favor
this configuration. The presence of a tilt-induced energy gap
is responsible for the preferred orientations at oblique angles.

Competition between bulk interactions from perpendicular
dipoles and an isotropic line-tension λ0 has been invoked as a
mechanism to determine domain shape in mesoscopic mod-
els [13–17]. Dipole interactions promote elongated shapes,
whereas an isotropic line tension favors circular domains. Dif-
ferent shape regimes emerge from this competition. However,
the angle-dependent terms (19), which are present even in the
absence of dipolar interactions, play the same role as these
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interactions. In this alternative scenario, long linear sectors
of the domain boundary would optimize the line free en-
ergy, thus, favoring the formation of elongated domains with
long linear boundaries. In fact, the results presented in this
section correspond to a value of the line-tension-to-dipolar
strength ratio of � = λ∗

0/(μ∗
⊥�ρ∗)2 � 0.02, i.e., to a regime

dominated by dipolar interactions. A reduction of μ∗
⊥ to 0.1

would increase � to ∼1. Even in this case, domains with a
high number of lobes are stabilized, according to mesoscopic
models [13,16,17]. Anisotropic line tensions are expected to
suppress or, at least, reduce the stability of these highly lobed
structures in favor of shapes with lower overall curvature.
Other factors, such as nematic director distortion, and possible
defects in the director field, may also play a role in the final
free-energy balance.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have formulated a very simple model to
study the interfacial structure at the boundary between LC
and LE domains in DPPC monolayers. The model predicts
an anisotropic line-tension λ(ϕ0) with respect to angle ϕ0

between the nematic director (which describes orientation
of the projected molecular chains in LC domains) and the
normal to the boundary. The minimum line tension occurs
at oblique angles, which is in agreement with results from
atomistic simulation [20,21]. Anisotropy in the line tension is
already implicit in a model with only van der Waals lipid chain
interactions (modified Gay-Berne potential), and dipolar com-
ponents perpendicular to the monolayer only marginally in-
crease the anisotropy. Indirectly, our model also supports
the concept that in-plane dipolar components should play a
minor role since these components favor a planar orientation

at the boundary, which is incompatible with the results from
atomistic simulations. This may be explained by the stronger
screening of in-plane dipoles as compared to perpendicular
dipoles. This conclusion supports the commonly accepted
assumption made in previous mesoscopic models [13–17].

Our results indicate that theoretical mesoscopic models
aimed at predicting domain shape and domain shape transi-
tions should be extended to account for anisotropy in the line
tension. On one hand, in-plane dipolar components may not be
relevant to construct realistic models (see Ref. [38] where the
effect of such contributions is discussed). On the other, models
with perpendicular dipoles should also reflect the anisotropy
in the line tension stemming from the combined effect of
nonzero tilt angles of lipid chains and perpendicular dipoles.
We should recall that all atomistic simulations to date consis-
tently predict nonzero lipid-chain tilt angles in LC domains
[20,21,40]. In our model, the perpendicular dipole component
seems to play an important role in reducing the line tension
but only induces a small incremental anisotropy. Of course,
competition between (long-range) dipolar bulk interactions
and line tension is a relevant factor for the global domain
morphology as indicated by mesoscopic models [13–17]. But
an anisotropic line tension competing with dipolar energy and
an elastic energy associated with director distortion [23,41]
together with the possible excitation of defects or grain bound-
aries [5] may be a crucial requirement.
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