
PHYSICAL REVIEW E 100, 032410 (2019)

Classification of diffusion modes in single-particle tracking data: Feature-based versus
deep-learning approach

Patrycja Kowalek, Hanna Loch-Olszewska, and Janusz Szwabiński
Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

(Received 27 February 2019; published 20 September 2019)

Single-particle trajectories measured in microscopy experiments contain important information about dynamic
processes occurring in a range of materials including living cells and tissues. However, extracting that
information is not a trivial task due to the stochastic nature of the particles’ movement and the sampling noise.
In this paper, we adopt a deep-learning method known as a convolutional neural network (CNN) to classify
modes of diffusion from given trajectories. We compare this fully automated approach working with raw data
to classical machine learning techniques that require data preprocessing and extraction of human-engineered
features from the trajectories to feed classifiers like random forest or gradient boosting. All methods are tested
using simulated trajectories for which the underlying physical model is known. From the results it follows that
CNN is usually slightly better than the feature-based methods, but at the cost of much longer processing times.
Moreover, there are still some borderline cases in which the classical methods perform better than CNN.

DOI: 10.1103/PhysRevE.100.032410

I. INTRODUCTION

Recent advances in single-molecule microscopy and imag-
ing technologies have made single-particle tracking (SPT) a
popular method for analyzing dynamic processes in a range of
materials [1,2]. In a typical SPT measurement the molecules
of interest (e.g., proteins in a living cell) are tagged with fluo-
rescent dye particles. After illumination by a laser, the labels
produce light and their positions may be determined with a
microscope. Using lasers that flash at short time intervals al-
lows for tracking of the movement of the molecules over time.
The recorded positions are used to reconstruct trajectories of
individual molecules. These trajectories are then analyzed in
order to extract local physical properties of the molecules and
their environment, such as velocity, diffusion coefficient (or
tensor), and confinement (local density of obstacles) [3].

The SPT method is of particular importance for fundamen-
tal biology. It bridges the gap between biology, biochemistry,
and biophysics and allows for at least a partial understanding
of living cells on a microscopic basis. It has helped already
to unveil the details of the movement of molecular motors
inside cells [4,5] and target search mechanisms of nuclear
proteins [6].

The analysis of SPT trajectories is not a trivial task due
to the stochastic nature of the molecules’ movement. It
usually starts with the detection of a corresponding motion
type of a molecule, because this information may already
provide insight into mechanical properties of the molecule’s
surroundings [7]. Four basic types of motion are observed in
SPT experiments: normal diffusion (ND) [8], directed motion
(DM) [9–11], anomalous diffusion (AD) [12], and confined
diffusion (CD) [13]. The most common analysis method uses
mean square displacement (MSD) curves [11]. Within this
approach one fits the theoretical curves for various physical
models to the data and then selects the best fit with statistical
analysis [13]. However, in many cases the actual trajectories

are too short to extract meaningful information from the time-
averaged MSDs. Moreover, the finite localization precision
adds a term to the MSD, which can limit the interpretation of
the data [11,14,15]. Consequently, several alternative meth-
ods have been introduced to overcome these problems. For
instance, the full distribution of displacements may be fitted
to a mixed model in order to extract differences in diffusive
behavior between subsets of particle ensembles [16]. The mo-
ment scaling spectrum method can also be used to categorize
various modes of motion [17,18]. The distribution of direc-
tional changes [19], the mean maximum excursion method
[20], and the fractionally integrated moving average (FIMA)
framework [21] may efficiently replace the MSD estimator
for classification purposes. Hidden Markov models (HMMs)
have been proposed to check the heterogeneity within single
trajectories [22,23]. They have proved to be quite useful in
the detection of confinement [24]. Particle filtering may also
be used to locate binding sites for the processes with transient
confinement [25].

An alternative approach to an analysis of trajectories,
rooted in computer science and statistics, is also possible. Due
to algorithmic advances combined with increased data avail-
ability and more powerful computers, machine learning (ML)
methods may already outperform human experts at some
tasks including classification, i.e., the problem of identifying
to which category a new observation belongs on the basis
of a training data set containing observations with a known
category membership. Since the detection of the motion falls
into the domain of classification, one may try to tackle this
problem with machine learning algorithms. This approach is
very appealing, because it would enable an automated analysis
of many hundreds or even thousands of trajectories with a re-
duced amount of manual intervention and initial data curation.

Several attempts to analyze SPT trajectories with ML
methods have already been carried out. For instance, Mon-
nier et al. [13] used a Bayesian approach to MSD-based

2470-0045/2019/100(3)/032410(13) 032410-1 ©2019 American Physical Society

https://orcid.org/0000-0002-6992-3634
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032410&domain=pdf&date_stamp=2019-09-20
https://doi.org/10.1103/PhysRevE.100.032410

KOWALEK, LOCH-OLSZEWSKA, AND SZWABIŃSKI PHYSICAL REVIEW E 100, 032410 (2019)

classification of motion modes. Dosset and co-workers [26]
used a simple back-propagation neural network to discrimi-
nate between different types of diffusion. Wagner et al. [27]
built a random forest classifier for normal, anomalous, con-
fined and directed diffusion. Although each of these attempts
uses a different machine learning classification algorithm,
they all belong to the class of feature-based methods. Each
trajectory within this approach is described by a set of human-
engineered features, and only those features were provided as
input to a classifier model.

In contrast, deep-learning methods extract features on their
own from raw data, without any effort from human experts.
They have gained popularity in recent years and have al-
ready been successfully applied to computer vision [28–30],
speech recognition [31,32], and natural language processing
[33,34]. Among the popular methods are convolutional neural
networks (CNNs) [35], which excel in image classification.
They have already been applied to single-particle recognition
in microscopy experiments [36,37]. However, although some
attempts to do time series analysis with CNNs are known
[38–40], to the best of our knowledge they have not been
applied yet to the problem of classification of motion types
from raw trajectories.

Thus, the goal of this paper is to propose an approach
to SPT trajectory classification based on the CNN deep-
learning method and to compare its performance with two
popular feature-based methods: random forests [41,42] and
gradient boosting [43]. Since all of these methods require
large training data sets with trajectories labeled already with a
corresponding motion type, we will use synthetic data to train
and validate the models. For the traditional methods, we will
follow the approach of Wagner et al. [27] and use their set of
features for classification purposes.

The paper is divided as follows. In Sec. II we introduce
basic types of diffusion and briefly discuss the mean square
displacement curves as a common tool of trajectory analysis.
Classification methods are introduced in Sec. III. In Sec. IV
we summarize methods for computer generation of synthetic
trajectories. Features used by the traditional classification
methods are introduced in Sec. V. Results of our analysis are
presented in Sec. VI, followed by some concluding remarks.

II. DIFFUSION MODES AND THEIR ANALYSIS

We seek to classify SPT trajectories into four basic mo-
tion types: normal diffusion (ND) [8], directed motion (DM)
[9–11], anomalous diffusion (AD) [12], and confined diffu-
sion (CD) [13]. A standard way of identifying them is based
on the analysis of the mean square displacement (MSD) of
particles [44]. The MSD is defined as

ρ̂(t) ≡ 〈[X (t) − X (0)]2〉 = 1

M

M∑
j=1

[Xj (t) − Xj (0)]2, (1)

where Xj (t) is the position of the jth particle after time t and
M is the number of particles (i.e., independent trajectories).
MSD is an ensemble average of the square displacement
over the probability distribution of X (t). However, due to a
limited number of trajectories in many single-particle tracking
experiments, the ensemble averaged MSD is usually replaced

by the time-averaged MSD (TAMSD) calculated from a sin-
gle trajectory. Given a trajectory in the form of N consec-
utive two-dimensional positions Xi = (xi, yi) (i = 1, . . . , N)
recorded with a constant time interval �t , the TAMSD at time
lag n�t is defined as

ρ(n�t) = 1

N − n

N−n∑
i=1

(Xi+n − Xi)
2. (2)

It is worthwhile to mention that for an ergodic process with
stationary increments the TAMSD converges to the ensemble
averaged MSD in the limit N → ∞.

According to Saxton [14], for the four basic modes of
diffusion we have

ρND(n�t) = 4Dn�t,

ρAD(n�t) = 4D(n�t)α,

ρDM(n�t) = 4Dn�t + (vn�t)2,

ρCD(n�t) � r2
c

[
1 − A1 exp

(−4A2Dn�t

r2
c

)]
. (3)

Here, α < 1 is the anomalous exponent, v is the velocity in
the directed motion, the constants A1 and A2 characterize the
shape of the confinement, and rc is the confinement radius.

For pure trajectories with no localization errors one could
actually determine their diffusion modes simply based on the
shapes of MSD curves and their mathematical models given
by Eq. (3). However, in cases of real trajectories there is
usually a lot of noise in the data, which makes the fitting of
a mathematical model a challenging task, even in the simplest
case of the normal diffusion [11]. Moreover, according to
Eq. (2), only the MSD values corresponding to small time
lags are well averaged. The larger the lag, the smaller is the
number of displacements contributing to the averages, result-
ing in fluctuations increasing with the lag. This constitutes a
problem, in particular in cases of short trajectories, for which
the fit to mathematical models has to be limited to just the
first few time lags. This is the reason why we are interested in
classification methods that go beyond fitting of mathematical
models to the MSD curves.

III. CLASSIFICATION METHODS

Traditional machine learning is a set of methods of statis-
tical learning where each instance in a data set is described
by a set of human-engineered features or attributes [45]. In
contrast, deep-learning methods extract features from raw data
without any effort from human experts [46]. The representa-
tion of data is constructed automatically and there is no need
for complex data preprocessing as in the case of machine
learning.

The deep-learning approach constitutes nowadays the
state-of-the-art technology for automatic data classification
and overshadows a little bit the classical machine learning al-
gorithms. However, in some specific situations the latter ones
are still better to use. The reasons are at least threefold: they
work better on small data, are financially and computationally
cheaper, and usually are easier to interpret. Thus the ultimate
goal of this paper is to compare the performance of machine
and deep-learning algorithms applied to the recognition of

032410-2

CLASSIFICATION OF DIFFUSION MODES IN … PHYSICAL REVIEW E 100, 032410 (2019)

the diffusion type in single-particle tracking data. We will
examine two classical algorithms, i.e., random forests [41,42]
and gradient boosting [43], together with convolutional neural
networks (CNNs) [35].

A. Feature-based methods

Both random forests and gradient boosting algorithms
belong to the class of ensemble learning, i.e., methods that
generate many classifiers and aggregate their results. In both
cases, decision trees [47] are used as the basic classifier.

Decision trees are used very often for classification pur-
poses, because they are easy to understand and interpret. And
they usually do not require data preprocessing. However, they
are unstable in the sense that a small variation in the data may
lead to a completely different tree [48]. And they have the
tendency to overfit, i.e., they correspond closely or exactly to
a particular set of data, and may therefore fail to fit additional
data or predict future observations reliably [49]. Although
methods like pruning are known to avoid overfitting, it is the
main reason why decision trees are used as building blocks of
ensemble classifiers rather than standalone ones.

1. Random forests

In a random forest, several decision trees are constructed
from the same training data. For a given input, the predictions
of individual trees are aggregated and then their mode is
output as the class of the input data. A modern version
of the algorithm combines the bagging idea proposed by
Breiman [42] with the random subspace method invented by
Ho [41,50]. Bagging repeatedly selects a random sample with
replacement of the training set and fits trees to these samples.
In order to avoid correlations between the trees, for each
one a random subset of features is selected. Typically, in a
classification problem with N features,

√
N of them are used

to build one tree.

2. Gradient boosting

In contrast to random forests, the trees in gradient boosting
are not independent. Instead, the single classifiers are built
sequentially by learning from mistakes committed by the
ensemble [43,51] (see Fig. 1 for a schematic comparison of
the two methods).

B. Deep-learning methods

Deep-learning (DL) methods operate on raw data. They do
not require any feature selection and extraction carried out
by a human expert. Instead, they use a cascade of multiple
layers of nonlinear processing units for feature identification,
extraction, and transformation in order to learn multiple levels
of data representations [52].

In this paper, we are going to use convolutional neural
networks for trajectory classification. They have already been
successfully applied to many tasks, including a time series
analysis [53]. A schematic architecture of a CNN is shown
in Fig. 2. Such a network has usually two components. The
one consisting of hidden layers is responsible for extraction
of features from the raw input data. The layers will perform
a series of convolutions and pooling operations, during which

(a) Random forests

N independent trees

parallel training

(b) Gradient boosting

N trees

sequential training

FIG. 1. Comparison between (a) random forest and (b) gradient
boosting methods. In the random forest, N independent learners
(trees) are built in parallel from random subsets of the input data
set. In gradient boosting, the next tree is constructed from the
pseudoresiduals of the ensemble and added to it.

attributes of data are detected. Each convolution uses a dif-
ferent filter which is sliding over the input and producing
its own feature map in the form of a three-dimensional (3D)
array. All the maps are then combined together as the final
output of the component. The role of pooling is to reduce
the dimensionality of feature maps in order to decrease the
number of parameters and computations in the network. The
classification part contains few fully connected layers, as in
a regular neural network [54]. Flattening of data is usually
required at the interface between the components, because the
fully connected layers can process only 1D vectors.

IV. SYNTHETIC DATA

All three methods described in the previous section belong
to the class of supervised learning, i.e., they infer a model
from a set of training examples [55]. Each sample is a pair
consisting of an input object (a trajectory) and a desired output
value (a diffusion mode). The model is a function that maps
an input to an output and can be used for classification of new
input data.

Since thousands of labeled trajectories are needed to train
the classifiers, especially in the deep-learning case, we will
use computer-generated synthetic 2D trajectories as our train-
ing set. Simulation methods for every type of diffusion will be
briefly discussed below.

A. Normal diffusion

According to Michalet [11], the probability distribution of
the displacement’s norm in the case of the normal diffusion is
given by

Fd (u) = 2u

4D�t
exp

(−u2

4D�t

)
, u � 0 (4)

where �t is the time interval during which the displacement
is recorded. Mathematically, Eq. (4) is a Rayleigh distribution
[56]. To simulate a trajectory, we randomly choose a start
position of a particle and a random direction of displacement
α and then pick up a random step length d from Eq. (4). Then

032410-3

KOWALEK, LOCH-OLSZEWSKA, AND SZWABIŃSKI PHYSICAL REVIEW E 100, 032410 (2019)

Convolution
and pooling

Convolution
and pooling

Convolution
and pooling

Fully connected
layers

Output

Hidden layers
(feature extraction)

Classification

Input

FIG. 2. A schematic architecture of a CNN. The network consists of two components: hidden layers responsible for feature extraction from
input data and fully connected layers carrying out the classification.

we calculate the new position of the particle and take it as the
starting point for the next step. The procedure is repeated a
given number of times.

B. Directed motion

Once we have a procedure generating a normal diffusion
trajectory, simulation of the directed motion is straightfor-
ward. For a given velocity 	v, in each step we simply calculate
a correction to the position due to the active motion,

dxi = v�t cos β,

dyi = v�t sin β,
(5)

and add it to the new coordinates:

xnew = xold + d cos α + dxi,

ynew = yold + d sin α + dyi. (6)

The angle β in Eq. (5) is the direction of the velocity.
Following Wagner et al. [27], we may want to introduce a

measure of how a trajectory is influenced by the active motion,

R = v2T

4D
, (7)

with T being the time duration. This measure can be helpful
in generating similar trajectories with different values of v

and D.

C. Confined diffusion

A small modification of the normal diffusion procedure is
needed to simulate confined diffusion [27]. We assume that
a particle starts from the center of a 2D circular reflective
boundary. We divide every step of the simulation into 100
substeps with �t ′ = �t/100. In every substep we carry out
a normal diffusion step. The position of the particle after the
substeps will be updated only if the distance from the center
to new coordinates is smaller than the radius of the reflective
boundary.

Wagner et al. [27] have introduced the boundedness param-
eter B, defined as the area of the smallest ellipse enclosing a

normal diffusion trajectory (with no confinement) divided by
the area of the confinement,

B = Aellipse

πr2
c

� DN�t

r2
c

. (8)

As in the case of the directed motion, this parameter will help
to evaluate trajectories independently of the actual values of
D and rc.

D. Anomalous diffusion

Anomalous diffusion was simulated with the fractional
Brownian motion (FBM) [57]. FBM is a continuous-time
Gaussian process BH (t) on [0, T] that starts at zero, has
expectation zero for all t ∈ [0, T], and its covariance function
is given by

E [BH (t)BH (s)] = 1
2 (|t |2H + |s|2H − |t − s|2H), (9)

where the Hurst index H is a real number in (0,1]. There
is a simple relation between H and the anomalous diffusion
exponent α introduced in Eq. (3), namely

2H = α. (10)

The value of the Hurst index determines the type of motion
generated by the process. H = 1/2 (i.e., α = 1) corresponds
to normal diffusion. For H > 1/2 (α > 1), the increments of
FBM are positively correlated, resulting in a superdiffusion.
Finally, negative correlations between FBM increments occur
for H < 1/2 (α < 1), leading to subdiffusion. We focus on the
last case in this work.

We used a dedicated Python package called fbm to simulate
the fractional Brownian motion [58]. The Davies-Harte algo-
rithm [59] was utilized to generate independent trajectories of
the process.

E. Adding noise

Real trajectories can be altered by various measurement
noises such as localization errors, electronic noise, drift or
vibrations of the sample, or postprocessing errors [60]. To
account for these issues, we added normal Gaussian noise

032410-4

CLASSIFICATION OF DIFFUSION MODES IN … PHYSICAL REVIEW E 100, 032410 (2019)

with zero mean and standard deviation σ to each simulated
position.

Let us first introduce two different signal to noise ratios
(SNRs): one for ND, AD, and CD,

Q1 =
√

D�t

σ
, (11)

an another one for DM,

Q2 =
√

D�t + v2�t2

σ
. (12)

Instead of setting σ directly in our simulations, we will prefer
to set a random level of SNR first and then to calculate the
standard deviation for given D and �t from one of the above
equations.

F. Simulation details

Our training data consists of 20 000 synthetic trajectories,
i.e., 5000 for each diffusion type. Following Wagner et al. [27]
we used fixed values for two of the parameters: �t = 1/30 s
and D = 9.02 μm2/s. The time lag is a typical value in
experimental setups. The value of the diffusion coefficient D
corresponds to a freely diffusing nanoparticle with a diameter
50 nm in water at 22 ◦C. Other parameters were chosen
randomly. Their values are summarized in Table I. We used
our own codes written in Python to simulate the training set.
The codes are available upon request.

V. FEATURE EXTRACTION

We will follow the approach of Wagner et al. [27] and use
their nine features together with the diffusion coefficient fitted

TABLE I. Parameters of the simulation and their values. All
parameters except �t and D were randomly chosen from given
ranges.

Parameter Meaning Range of values

�t time lag between steps 1/30 s
D diffusion coefficient 9.02 μm2/s
N length of a trajectory 30–600
B boundedness 1–6
R active motion to diffusion ratio 1–17
α anomalous exponent 0.3–0.7
Q signal to noise ratio 1–9

from the data as the tenth one. In this section we will give
a short description of the features used for training of our
classifiers.

A. Diffusion coefficient

We will use the diffusion coefficient of the model given
by the first of Eqs. (3) fitted to the mean square displacement
curve estimated by Eq. (2).

B. Anomalous exponent

Anomalous exponent α is the exponent in the second
model defined in Eqs. (3). Again, it will be fitted to the MSD
curve obtained from Eq. (2).

C. Asymmetry

The asymmetry of a trajectory can be used to detect di-
rected motion. Following Saxton [61], we will derive it from
the gyration tensor, which describes the second moments of
positions of a particle. For a 2D random walk of N steps it is
given by

T =
⎛
⎝

1
N

∑N
j=1(x j − 〈x〉)2 1

N

∑N
j=1(x j − 〈x〉)(y j − 〈y〉)

1
N

∑N
j=1(x j − 〈x〉)(y j − 〈y〉) 1

N

∑N
j=1(y j − 〈y〉)2

⎞
⎠, (13)

where 〈x〉 = (1/N)
∑N

j=1 x j is the average of x coordinates
over all steps in the random walk. We will define the asym-
metry as [62]

A = − ln

(
1 − (λ1 − λ2)2

2(λ1 + λ2)

)
, (14)

where λ1 and λ2 are the principle radii of gyration, i.e., the
eigenvalues of the tensor T.

D. Efficiency

Efficiency relates the net squared displacement of a particle
to the sum of squared step lengths,

E = |XN−1 − X0|2
(N − 1)

∑N−1
i=1 |Xi − Xi−1|2

. (15)

It is a measure for linearity of a trajectory and, like asymmetry,
it may help to detect directed motion.

E. Fractal dimension

The fractal dimension is a measure of the space-filling
capacity of a pattern. According to Katz and George [63], the
fractal dimension of a trajectory can be calculated as

D f = ln N

ln(NdL−1)
, (16)

where L is the total length of the path, N is the number of
steps, and d is the largest distance between any two positions.

The measure takes values around 1 for straight trajectories
(direct motion), around 2 for random ones (normal diffusion),
and around 3 for constrained trajectories (confined or anoma-
lous diffusion) [63].

032410-5

KOWALEK, LOCH-OLSZEWSKA, AND SZWABIŃSKI PHYSICAL REVIEW E 100, 032410 (2019)

F. Gaussianity

A trajectory’s Gaussianity was introduced by Ernst et al.
[64] to check the Gaussian statistics on increments,

g(n) =
〈
r4

n

〉
2
〈
r2

n

〉2 , (17)

where the trajectory’s quartic moment is given by

〈
r4

n

〉 = 1

N − n

N−n∑
i=1

|Xi+n − Xi|4. (18)

For normal diffusion we should get Gaussianity equal
to 0. Since we used FBM, which has Gaussian increments, to
simulate anomalous diffusion, we expect to get the same result
for AD. The other types of motion should show deviations
from 0.

G. Kurtosis

Kurtosis measures the asymmetry and peakedness of the
distribution of points within a trajectory [62]. For its calcula-
tion the position vectors Xi are projected onto the dominant
eigenvector 	r of the gyration tensor (13), yielding scalars

xp
i = Xi · 	r. (19)

Kurtosis is defined as the fourth moment of the set of xp
i ,

K = 1

N

N∑
i=1

(
xp

i − x̄p
)4

σ 4
xp

, (20)

with x̄p being the mean projected position and σxp the standard
deviation of xp.

H. MSD ratio

The mean square displacement ratio characterizes the
shape of the MSD curve. We will define it as follows:

κ (n1, n2) =
〈
r2

n1

〉
〈
r2

n2

〉 − n1

n2
, (21)

where n1 < n2. Taking Eq. (3) into account, we see that
κ = 0 for normal diffusion, negative for direct motion, and
positive for other types of diffusion. In our analysis we simply
took n2 = n1 + �t and calculated an averaged ratio for every
trajectory.

I. Straightness

Straightness is a measure of the average direction change
between subsequent steps. Similar to efficiency it relates the

net displacement to the sum of step lengths:

S = |XN−1 − X0|∑N−1
i=1 |Xi − Xi−1|

. (22)

J. Trappedness

Trappedness is the probability that a diffusing particle with
the diffusion coefficient D and traced for a time interval t
is trapped in a bounded region with radius r0. According to
Saxton [61] it can be estimated by

P(D, t, r0) = 1 − exp

[
0.2045 − 0.25117

(
Dt

r2
0

)]
. (23)

Since the radius r0 is usually not known, we will approximate
it by half of the maximum distance between any two positions
along a given trajectory. For D, we will take its short-time
estimate, fitted to the first two points of the MSD curve.

VI. RESULTS

We decided to use existing machine learning libraries
within this project. Random forest and gradient boosting
implementations available in scikit-learn [65], the most
popular ML learning library in Python, were used to build
the feature-based classifiers. And we used mcfly [66], a
deep-learning library for time series processing, to find and
train a deep classifier working with raw diffusion data. All
codes were written in Python and are available on request.
The computations were carried out on a cluster of 24 CPUs
(2.6 GHz each) with a total memory of 50 GB. If not stated
otherwise, the synthetic trajectories were randomly split into
two subsets: a training set containing 70% of them and a test
set.

A. Featured-based classification

The random forest classifier implemented in
scikit-learn follows the original paper by Breiman
[42]. The gradient boosting algorithm available in this library
is described in Refs. [43]. The parameters of the models
were optimized with a randomized search method (the
RandomizedSearchCV function in scikit-learn). They
are summarized in Table II.

1. Accuracy

One of the basic metrics used to asses the performance of
classification models is accuracy, defined as the number of
correct predictions divided by the total number of predictions.

TABLE II. Optimal parameters for the random forest and gradient boosting models trained on our data. A randomized search method was
used to determine those values.

Random forest Gradient boosting

Number of trees 500 500
Maximum depth of a single tree 20 10
Minimum number of samples required to split an internal node 2 5
Minimum number of samples required to be at a leaf node 1 4

032410-6

CLASSIFICATION OF DIFFUSION MODES IN … PHYSICAL REVIEW E 100, 032410 (2019)

TABLE III. Accuracies of the feature-based classifiers.

Random forest Gradient boosting

Single split of data 96.43% 96.97%
Tenfold cross-validation 96.23% 96.47%

In Table III, accuracies for both feature-based classifiers
are shown. The numbers in the first row correspond to the
accuracy achieved after a single random split into training
and test sets. For the second row we used the tenfold cross-
validation method. The idea behind this technique is to ran-
domly split the data set into ten folds without replacement and
use nine of them for training and one for testing of the model.
The procedure is repeated ten times, so we obtain ten models
and accuracy estimates. An average of those estimates gives
the overall accuracy.

Since in the gradient boosting an ensemble of the decision
trees is built with the purpose of reducing the total error, we
would expect that the algorithm performs much better than
the random forest. From Table III it follows that its accuracy
is indeed higher, but the differences are actually negligible.
Both classifiers perform excellently, with an average accuracy
of more than 96%.

In Fig. 3, confusion matrices of the classifiers are pre-
sented. In both cases the classifiers made a total of 6000
predictions (sum of all matrix elements), including 1500 for
each type of diffusion (sum of all elements in a matrix row).
As far as the random forest model is concerned, the best
performance was observed for the directed diffusion: among
the 1500 directed trajectories only one was wrongly classi-
fied as an anomalous one. The performance decays slightly
for the anomalous and confined modes and is significantly
worse for the normal diffusion. The gradient boosting model
reveals similar characteristics with slightly different absolute
numbers.

The data collected in the confusion matrices may be used
to generate a more detailed description of the performance
of the models under investigation. The results are briefly
summarized in Table IV. Here, we adopted two quantities
commonly used in classification problems: precision and

TABLE IV. A brief summary of the performance of feature-based
classifiers. All results are rounded to two decimal digits.

Random forest Gradient boosting

Precision Recall Support Precision Recall Support

Anomalous 0.98 0.98 1500 0.98 0.99 1500
Confined 0.94 0.96 1500 0.94 0.96 1500
Directed 1.000 1.00 1500 1.00 1.00 1500
Normal 0.94 0.92 1500 0.95 0.93 1500
Average, total 0.96 0.96 6000 0.97 0.97 6000

Accuracy 96.43% 96.97%

recall [67]. Precision is the fraction of correct predictions
among all predictions. It tells us how often a classifier is
correct if it predicts a given class. Recall is the fraction of
correct predictions of a given class over the total number
of members of this class. Despite small differences in the
numbers, each of our models is characterized by both very
high precision and recall. Thus, they not only return much
more relevant results than the irrelevant ones (high precision),
but also yield most of the relevant results (high recall).

2. Feature importance

A nice detail of the ensemble classification methods is
that they usually allow one to easily compute the relative
importance of features for a given problem. Variables with
high importance scores are the drivers of the outcome, and
their values have a significant impact on the correctness of
a prediction. Features with low importance might usually be
omitted from a model, making it faster to fit and predict.

The scikit-learn implementations of the random forest
and gradient boosting classifiers calculate the importance
values on the fly during the training process and provide an
interface to access them. Results are shown in Fig. 4. The
linear diffusion coefficient D seems to be the most important
feature in both cases, followed by the MSD ratio, straightness,
efficiency, and the anomalous exponent α. There are some dif-
ferences between the methods as well. For instance, the domi-
nance of the diffusion coefficient over all other features is less

FIG. 3. Confusion matrices for (a) the random forest and (b) the gradient boosting classifiers.

032410-7

KOWALEK, LOCH-OLSZEWSKA, AND SZWABIŃSKI PHYSICAL REVIEW E 100, 032410 (2019)

FIG. 4. Feature importance in (a) the random forest model and (b) the gradient boosting models.

pronounced in the random forest. Instead, we observe nonvan-
ishing importance of the remaining features, i.e., trappedness,
asymmetry, kurtosis, fractal dimension, and Gaussianity. In
contrast, the importance values of those features are negligible
in the gradient boosting case, and the difference between the
first and the second rank is much higher.

To illustrate the differences between the models, in Fig. 5
we show the cumulative importance values of features. The
dashed horizontal line in this plot is the 97% level of im-
portance and could indicate a threshold for feature selection;
i.e., once the level is reached, we can omit the remaining
features without affecting the model very much. In order
to find a value of the threshold, one should check how his
model generalizes to unseen data after removing attributes
for different thresholds and then chose the one not negatively
affecting the accuracy of the model.

To elaborate on that issue, we first found the feature
selection thresholds for cumulative importance levels ranging
from 90% up to 99%. Then we trained both models again with
the reduced number of features as indicated by the threshold.
Results are presented in Fig. 6. As we see, gradient boosting
reaches a given cumulative importance level with a smaller
feature set than the random forest. Consequently, it requires
fewer features to achieve high accuracies.

FIG. 5. Cumulative importance of features for both models. The
dashed line is the 97% level of importance and indicates a threshold
for feature selection.

B. Deep-learning classification

The mcfly package [66] used in this work for the deep-
learning approach is a piece of software tailor made to a
classification of time series. One of its biggest advantages is a
low entry level, because it does not require a user to define
exactly the architecture of a convolutional neural network
and to provide all hyperparameters of the model. Instead,
it carries out a search over suitable architectures and their
hyperparameters to find the best performing model. Since a
diffusion trajectory is nothing but a multichannel time series
(2D or 3D, depending on the problem at hand), it should match
the requirements of mcfly.

1. CNN architecture

The first step in the development of a deep-learning model
is to create its architecture, i.e., to specify the following set of
hyperparameters: (i) the learning rate, (ii) the regularization
rate, (iii) the number of convolutional layers, (iv) the number
of filters in each convolutional layer, and (vi) the number of
hidden nodes (in dense layers). The learning rate scales the
magnitude of weight updates in the training process in order
to minimize the network’s loss function. The regularization
helps to prevent overfitting of the network.

As it is not known a priori which architecture will be
optimal for classification of SPT trajectories, we performed
a random search to find the best one. This procedure simply
creates a number of models at random, trains them on a
relative small subset of the training data and then checks how
good they are. Different criteria for selecting the best model
are possible. The accuracy on a validation set will be used in
this work.

Once the best model is chosen, it should be trained again
on the full training data set. One full pass of the data through
the network in the process of training its weights is called
an epoch. Usually, many epochs are required to achieve a
combination of the weights that yields a good accuracy.

We used mcfly’s function find_best_architecture to
perform the random search in the hyperparameter space. We
had to specify only two input parameters: the number of
architectures for the random search procedure and the number
of epochs for training the final model. Regarding the number
of architectures, we expect intuitively that the bigger it is, the

032410-8

CLASSIFICATION OF DIFFUSION MODES IN … PHYSICAL REVIEW E 100, 032410 (2019)

FIG. 6. Comparison of the feature-based classifiers. (a) Number of features required to achieve the given threshold of cumulative
importance. (b) Accuracy of classifiers trained with the reduced number of features.

better. This is simply due to the fact that more architectures
cover a larger part of the hyperparameter space. Similarly,
more epochs should guarantee a better convergence of the
weights to the combination which minimizes the network’s
loss. Unfortunately, increasing the values of each of these
parameters leads to significantly longer computing times,
because the evaluation of an additional model as well as an
epoch of training of the final model are very time consuming
processes. Therefore, the choice of the values is usually a
tradeoff between the targeted accuracy and the computation
time.

In order to determine the right values of the input param-
eters, we checked their impact on the loss and the accuracy
of the final model as well as on the total execution time.
Results are shown in Fig. 7. The analysis of the number
of architectures (left column) was performed for 10 epochs
on the training subset. For the epochs (right column), the
final model was selected from 20 initial architectures. First
of all, we observe an almost monotonic growth of the exe-
cution time with the increase of both input parameters. As
expected, the accuracy of the network increases with the
number of architectures (middle left panel in Fig. 7). However,
it remains practically constant for values between 20 and

40 architectures. Thus, 20 architectures will be used in our
further investigation, as it seems to be a good compromise
between the accuracy and the execution time.

The behavior of the accuracy of the model as a function
of the number of epochs (middle right panel in Fig. 7)
is more interesting. We see that, starting from 30 epochs,
the difference between the accuracies on the training and
test data sets increases. This is an indicator that the model
overfits, i.e., it starts to learn the noise in the training data
as an important concept, which does not apply to the new
trajectories from the test set. Since there is a local maximum
in the accuracy at 20 epochs, we will use this value in the
following.

To summarize, our final model is the result of the random
search among 20 architectures, trained for 20 epochs on the
full training data set. Its architecture is shown in Fig. 8. It
consist of 6 convolutional layers and 2 dense ones. Besides
those building blocks, there are several others elements of the
model: (i) activation layers which define the output of neurons
given an input or set of inputs, (ii) batch normalization layers
responsible for normalization of the activation of previous
layers, (iii) flattening layers, which flatten the input without
changing its size (required by the dense layers). The values

FIG. 7. Impact of (a) the number of architectures in the random search and of (b) the number of epochs in training the final model on the
loss, accuracy, and execution time. In the random search procedure, 10 epochs were used to train the models on a small subset of the training
data. The final model analyzed in the right column was selected from 20 architectures.

032410-9

KOWALEK, LOCH-OLSZEWSKA, AND SZWABIŃSKI PHYSICAL REVIEW E 100, 032410 (2019)

batch_normalization_269

conv1d_105

batch_normalization_270

activation_269

conv1d_106

batch_normalization_271

activation_270

conv1d_107

batch_normalization_272

activation_271

conv1d_108

batch_normalization_273

activation_272

conv1d_109

batch_normalization_274

activation_273

conv1d_110

batch_normalization_275

activation_274

flatten_22

dense_63

activation_275

dense_64

batch_normalization_276

activation_276

139840690288960

FIG. 8. Architecture of the best performing network model found by mcfly.

of the most important hyperparameters of this model are
summarized in Table V.

2. Accuracy of CNN

The confusion matrix of our CNN model is shown in
Fig. 9 and its performance is summarized in Table VI. Its
overall accuracy turns out to be slightly better that the one of
feature-based methods (see Table IV for comparison). Again,
the model not only returns much more relevant results than
irrelevant ones (high precision), but also yields most of the rel-
evant results (high recall). The best performance is observed
for the directed motion and the anomalous diffusion. It decays
slightly for the confined diffusion in terms of precision and for
the normal diffusion in terms of recall.

TABLE V. Hyperparameters of the best performing network
model shown in Fig. 8.

Parameter Value

Regularization rate 0.0014064205292043147
Number of conv. layers 6
Number of filters [49, 36, 18, 83, 90, 27]
Learning rate 0.00021795428728036654
Hidden nodes in dense layers 1550

C. Feature-based versus deep-learning approach

Let us first juxtapose accuracies of the methods analyzed
in this paper together with the required processing times.
All computations were carried out on a cluster of 24 CPUs
(2.6 GHz each) with 50 GB of the total memory. Results
are collected in Table VII. As already pointed out in the
previous sections, the deep-learning approach has a slightly
higher accuracy than the feature-based methods, but at the cost
of significantly longer processing times. Thus, if the time to

FIG. 9. Confusion matrix of the CNN classifier.

032410-10

CLASSIFICATION OF DIFFUSION MODES IN … PHYSICAL REVIEW E 100, 032410 (2019)

TABLE VI. A brief summary of the performance of the CNN
classifier. All results are rounded to two decimal digits.

Precision Recall Support

Anomalous 1.00 0.99 1500
Confined 0.91 1.00 1500
Directed 1.00 1.00 1500
Normal 0.99 0.90 1500
Average, total 0.98 0.97 6000

Accuracy 97.30%

train the model constitutes an issue, one should rather go for
gradient boosting.

It would be interesting to see how the methods perform in
some limiting cases, in which we expect them to fail anyway.
For instance, an anomalous diffusion with the exponent α

approaching 1 should be practically indistinguishable form a
normal diffusion. The same holds for a directed motion with
small velocities. To elaborate on that issue, we first generated
four separate validation sets for the anomalous diffusion. Each
set contained 1500 trajectories with the values of α randomly
chosen from a corresponding interval: α(1) ∈ (0.55, 0.65〉 for
the first set, α(2) ∈ (0.65, 0.75〉 for the second one, α(3) ∈
(0.75, 0.85〉 for the third one, and finally α(4) ∈ (0.85, 0.95〉.
Then we classified those sets with all three methods by mak-
ing use of the already trained models. Results are shown in
the left panel of Fig. 10. In case of the feature-based methods
we observe an almost linear decrease of the average accuracy
with increasing α. The CNN method performs better and the
decrease is slower for α < 0.85. However, in the interval close
to the limiting value (α = 1), there is a sudden drop in the
performance of CNN and the deep-learning approach starts to
be the worst one.

We did a similar analysis for the directed motion with
small velocities. This time, we generated only one additional
validation set with R ∈ {1, 2, 3} [see Eq. (7) for the definition
of R]. Again, we classified it with all methods. Results are
shown in the right panel of Fig. 10. The CNN method turned
out to be the best one, followed by the gradient boosting.

TABLE VII. Comparison of all three classification methods.
The processing time is understood as data preparation (if required),
feature extraction (if required), searching for best performing model,
and finally training and validation of the classifier. A cluster of
24 CPUs with 50 GB total memory was used to perform the
computations

Feature based Deep learning

Random forest Gradient boosting CNN

Accuracy 96.43% 96.97% 97.30%
Processing time 1 h, 26 min 1 h, 9 min 3 d, 5 h, 50 min

Although the random forest still performs reasonably, there is
already a noticeable gap in the accuracy to the other methods.

In this paper, we used four basic models of diffusion
to generate artificial training data. However, they are not
exhaustive and other models are possible for a given type of
diffusion. For instance, FBM with α < 1 is not the only model
that produces subdiffusive trajectories. Continuous time ran-
dom walks (CTRW) with heavy-tailed waiting times [68] or
fractional Levy stable motion [69] are known to have the
characteristics of subdiffusion. Similarly, FBM with α > 1
[69] or CTRW with long-tailed spatial distribution [70] are,
alongside the directed motion model, examples of a superdif-
fusive process.

Now one may ask, for instance, if a classifier trained
on the directed motion model as the only expression of
superdiffusion will recognize trajectories generated with other
superdiffusive models. To check that, we took FBM with α ∈
(1.3, 1.7) to generate an additional validation set consisting
of 5000 trajectories. Results of their classification with our
models are shown in Table VIII. We see that all methods per-
form really poorly in this test. Only 28% of the trajectories are
classified as directed motion (i.e., superdiffusion) by gradient
boosting, 25% by random forest, and only 0.2% by CNN.
Thus, the models do not generalize well to unseen models,
even though they are supposed to produce the same diffusion
type as the ones used for training. This constitutes an issue in

FIG. 10. Average accuracy of the methods in some limiting cases. (a) Performance of the classifiers for anomalous diffusion for four
different ranges of the exponent α. The lines in the plot are used to guide the eye. (b) Same for directed motion with small velocities,
corresponding to R ∈ {1, 2, 3} [see Eq. (7) for the definition of R].

032410-11

KOWALEK, LOCH-OLSZEWSKA, AND SZWABIŃSKI PHYSICAL REVIEW E 100, 032410 (2019)

TABLE VIII. Classification results for superdiffusive trajectories
generated with a model other than the directed motion used to train
the classifiers. In this particular example, FBM with α ∈ (1.3, 1.7)
was used to prepare the validation set.

Anomalous Confined Directed Normal

Random forest 206 399 1231 3164
Gradient boosting 545 784 1380 2291
CNN 0 33 9 4958

applications to real SPT data. Since it is rather impossible to
provide a large set of experimental trajectories already labeled
with correct diffusion types, we have to resort to artificially
created training sets. As already shown, the machine learning
methods work excellently on unseen and noisy data, but are
not able to generalize well to unseen models. Therefore, we
should include as many models as possible in our training sets
in order to get some conclusive results for real trajectories.

VII. CONCLUSIONS

We proposed an approach to analysis of SPT trajectories
that makes use of convolutional neural networks, i.e., one
of the popular modern deep-learning methods. The biggest
advantage of this approach is that it works with raw SPT data.
It does not require any complex data preprocessing nor the
extraction of human-engineered features from data in order to
feed a classifier. Instead, it learns the features on its own from
the trajectories.

Deep learning is seen already as the state-of-the-art clas-
sification method in many areas. From our results it follows

that, indeed, it has a slightly better accuracy than the tradi-
tional feature-based methods in most cases, but at the cost of
significantly longer training times.

We have shown that more models of diffusive processes
have to be taken into account before applying ML to classi-
fication of trajectories. All methods considered in this paper
perform excellently on unseen data, provided it was generated
with the models already used in the preparation of the training
sets. Unfortunately, they fail to correctly classify trajectories
produced with other models. Interestingly, CNN turned out to
be the worst in this respect. Therefore, exhaustive data sets
including as many models of diffusion as possible are needed
to get conclusive classification results for real trajectories.

The excellent performance of the traditional methods ob-
served in our experiments may be related to the fact that we
assumed the movement of the particles to be homogeneous,
i.e., one generated trajectory represents only one type of mo-
tion. In real experiments the type of the diffusion may change
multiple times within one trajectory due to the interaction of
the particle with the medium. To cope with that issue one
usually divides the trajectory into short segments and then
tries to classify each segment independently of the others.
Classifiers trained on data with short lengths are required for
that purpose. The CNN method could work better than the
feature-based ones in this case, because most of the features
relate to MSD estimates which are worse (much noisier) for
short trajectories.

ACKNOWLEDGMENTS

H.L.-O. and J.S. were partially supported by NCN-DFG
Beethoven Grant No. 2016/23/G/ST1/04083. Computations
were performed on the BEM cluster in the Wrocław Center
for Networking and Supercomputing (WCSS).

[1] C. Manzo and M. F. Garcia-Parajo, Rep. Prog. Phys. 78, 124601
(2015).

[2] H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B.
Shuang, and C. F. Landes, Chem. Rev. 117, 7331 (2017).

[3] D. Holcman, N. Hoze, and Z. Schuss, Biophys. J. 109, 1761
(2015).

[4] C. Kural, H. Kim, S. Syed, G. Goshima, V. I. Gelfand, and P. R.
Selvin, Science 308, 1469 (2005).

[5] A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman,
and P. R. Selvin, Science 300, 2061 (2003).

[6] I. Izeddin, V. Récamier, L. Bosanac, I. I. Cissé, L. Boudarene,
C. Dugast-Darzacq, F. Proux, O. Bénichou, R. Voituriez,
O. Bensaude, M. Dahan, and X. Darzacq, eLife 3, e02230
(2014).

[7] J. Mahowald, D. Arcizet, and D. Heinrich, ChemPhysChem 10,
1559 (2009).

[8] S. B. Alves, G. F. de Oliveira, Jr., L. C. de Oliveira, T. P. de
Silans, M. Chevrollier, M. Oriá, and H. L. de S. Cavalcante,
Physica A 447, 392 (2016).

[9] G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie, J. Am. Chem.
Soc. 129, 14759 (2007).

[10] A. M. Bannunah, D. Vllasaliu, J. Lord, and S. Stolnik, Mol.
Pharmaceutics 11, 4363 (2014).

[11] X. Michalet, Phys. Rev. E 82, 041914 (2010).
[12] G. R. Kneller, J. Chem. Phys. 141, 041105 (2014).
[13] N. Monnier, S.-M. Guo, M. Mori, J. He, P. Lénárt, and M.

Bathe, Biophys. J. 103, 616 (2012).
[14] M. J. Saxton and K. Jacobson, Annu. Rev. Biophys. Biomol.

Struct. 26, 373 (1997).
[15] E. Kepten, A. Weron, G. Sikora, K. Burnecki, and Y. Garini,

PLoS ONE 10, e0117722 (2015).
[16] G. Schütz, H. Schindler, and T. Schmidt, Biophys. J. 73, 1073

(1997).
[17] R. Ferrari, A. Manfroi, and W. Young, Physica D 154, 111

(2001).
[18] H. Ewers, A. E. Smith, I. F. Sbalzarini, H. Lilie, P.

Koumoutsakos, and A. Helenius, Proc. Natl. Acad. Sci. USA
102, 15110 (2005).

[19] S. Burov, S. M. A. Tabei, T. Huynh, M. P. Murrell, L. H.
Philipson, S. A. Rice, M. L. Gardel, N. F. Scherer, and A. R.
Dinner, Proc. Natl. Acad. Sci. USA 110, 19689 (2013).

[20] V. Tejedor, O. Bénichou, R. Voituriez, R. Jungmann, F. Simmel,
C. Selhuber-Unkel, L. B. Oddershede, and R. Metzler, Biophys.
J. 98, 1364 (2010).

[21] K. Burnecki, E. Kepten, Y. Garini, G. Sikora, and A. Weron,
Sci. Rep. 5, 11306 (2015).

032410-12

https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1016/j.bpj.2015.09.003
https://doi.org/10.1016/j.bpj.2015.09.003
https://doi.org/10.1016/j.bpj.2015.09.003
https://doi.org/10.1016/j.bpj.2015.09.003
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1108408
https://doi.org/10.1126/science.1084398
https://doi.org/10.1126/science.1084398
https://doi.org/10.1126/science.1084398
https://doi.org/10.1126/science.1084398
https://doi.org/10.7554/eLife.02230
https://doi.org/10.7554/eLife.02230
https://doi.org/10.7554/eLife.02230
https://doi.org/10.7554/eLife.02230
https://doi.org/10.1002/cphc.200900226
https://doi.org/10.1002/cphc.200900226
https://doi.org/10.1002/cphc.200900226
https://doi.org/10.1002/cphc.200900226
https://doi.org/10.1016/j.physa.2015.12.049
https://doi.org/10.1016/j.physa.2015.12.049
https://doi.org/10.1016/j.physa.2015.12.049
https://doi.org/10.1016/j.physa.2015.12.049
https://doi.org/10.1021/ja074936k
https://doi.org/10.1021/ja074936k
https://doi.org/10.1021/ja074936k
https://doi.org/10.1021/ja074936k
https://doi.org/10.1021/mp500439c
https://doi.org/10.1021/mp500439c
https://doi.org/10.1021/mp500439c
https://doi.org/10.1021/mp500439c
https://doi.org/10.1103/PhysRevE.82.041914
https://doi.org/10.1103/PhysRevE.82.041914
https://doi.org/10.1103/PhysRevE.82.041914
https://doi.org/10.1103/PhysRevE.82.041914
https://doi.org/10.1063/1.4891357
https://doi.org/10.1063/1.4891357
https://doi.org/10.1063/1.4891357
https://doi.org/10.1063/1.4891357
https://doi.org/10.1016/j.bpj.2012.06.029
https://doi.org/10.1016/j.bpj.2012.06.029
https://doi.org/10.1016/j.bpj.2012.06.029
https://doi.org/10.1016/j.bpj.2012.06.029
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1371/journal.pone.0117722
https://doi.org/10.1016/S0006-3495(97)78139-6
https://doi.org/10.1016/S0006-3495(97)78139-6
https://doi.org/10.1016/S0006-3495(97)78139-6
https://doi.org/10.1016/S0006-3495(97)78139-6
https://doi.org/10.1016/S0167-2789(01)00234-2
https://doi.org/10.1016/S0167-2789(01)00234-2
https://doi.org/10.1016/S0167-2789(01)00234-2
https://doi.org/10.1016/S0167-2789(01)00234-2
https://doi.org/10.1073/pnas.0504407102
https://doi.org/10.1073/pnas.0504407102
https://doi.org/10.1073/pnas.0504407102
https://doi.org/10.1073/pnas.0504407102
https://doi.org/10.1073/pnas.1319473110
https://doi.org/10.1073/pnas.1319473110
https://doi.org/10.1073/pnas.1319473110
https://doi.org/10.1073/pnas.1319473110
https://doi.org/10.1016/j.bpj.2009.12.4282
https://doi.org/10.1016/j.bpj.2009.12.4282
https://doi.org/10.1016/j.bpj.2009.12.4282
https://doi.org/10.1016/j.bpj.2009.12.4282
https://doi.org/10.1038/srep11306
https://doi.org/10.1038/srep11306
https://doi.org/10.1038/srep11306
https://doi.org/10.1038/srep11306

CLASSIFICATION OF DIFFUSION MODES IN … PHYSICAL REVIEW E 100, 032410 (2019)

[22] R. Das, C. W. Cairo, and D. Coombs, PLoS Comput. Biol. 5,
e1000556 (2009).

[23] P. J. Slator, C. W. Cairo, and N. J. Burroughs, PLOS ONE 10,
e0140759 (2015).

[24] P. J. Slator and N. J. Burroughs, Biophys. J. 115, 1741
(2018).

[25] J. Bernstein and J. Fricks, J. Theor. Biol. 401, 109 (2016).
[26] P. Dosset, P. Rassam, L. Fernandez, C. Espenel, E. Rubinstein,

E. Margeat, and P.-E. Milhiet, BMC Bioinf. 17, 197 (2016).
[27] T. Wagner, A. Kroll, C. R. Haramagatti, H.-G. Lipinski, and M.

Wiemann, PLoS ONE 12, e0170165 (2017).
[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Proceedings

of the Conference on Neural Information Processing Systems
(NIPS12) (NIPS Foundation, San Diego, 2012), pp. 1097–1105.

[29] K. Simonyan and A. Zisserman, arXiv:1409.1556.
[30] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei, in 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2014), June 2014, Columbus,
OH (IEEE, Piscataway, NJ, 2014).

[31] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams, Y. Gong, and A. Acero, in
Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), May 2013, Vancouver
(IEEE, Piscataway, NJ, 2013).

[32] A. Graves, A. Mohamed, and G. Hinton, in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), May 2013, Vancouver (IEEE, Piscataway,
NJ, 2013).

[33] R. Collobert and J. Weston, in Proceedings of the 25th Inter-
national Conference on Machine Learning (ACM, New York,
2008).

[34] Y. Kim, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (ACL, Stroudsburg,
PA, 2014).

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Proc. IEEE 86,
2278 (1998).

[36] Y. Zhu, Q. Ouyang, and Y. Mao, BMC Bioinf. 18, 348 (2017).
[37] E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, Optica

5, 458 (2018).
[38] M. Längkvist, L. Karlsson, and A. Loutfi, Pattern Recognit.

Lett. 42, 11 (2014).
[39] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga,

in Proceedings of 2014 IEEE Symposium on Computational
Intelligence in Ensemble Learning (CIEL) (IEEE, Piscataway,
NJ, 2014), pp. 1–6.

[40] J. C. B. Gamboa, arXiv:1701.01887.
[41] T. K. Ho, in Proceedings of the Third International Conference

on Document Analysis and Recognition, Vol. 1 (IEEE Computer
Society, Washington 1995).

[42] L. Breiman, Mach. Learn. 45, 5 (2001).
[43] J. H. Friedman, Comput. Stat. Data Anal. 38, 367 (2002).
[44] H. Qian, M. P. Sheetz, and E. L. Elson, Biophys. J. 60, 910

(1991).
[45] T. Mitchel, Machine Learning (McGraw-Hill, New York, 1997).

[46] N. Hatami, Y. Gavet, and J. Debayle, in Proceedings of SPIE,
Tenth International Conference on Machine Vision (ICMV
2017), edited by A. Verikas, P. Radeva, D. Nikolaev, and J.
Zhou (SPIE, Bellingham, WA, 2018), p. 10696.

[47] Y.-Y. Song and Y. Lu, Shanghai Arch. Psychiatry 27, 130
(2015).

[48] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduc-
tion to Statistical Learning with Applications in R (Springer,
New York, 2013).

[49] M. Bramer, Principles of Data Mining, 2nd ed. (Springer, New
York, 2013).

[50] T. K. Ho, IEEE Trans. Pattern Anal. Mach. Intell. 20, 832
(1998).

[51] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, Ann. Stat.
26, 1651 (1998).

[52] L. Deng and D. You, Found. Trends Signal Process. 7, 197
(2014).

[53] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S.
Krishnaswamy, in Proceedings of the 24th International Con-
ference on Artificial Intelligence, IJCAI’15 (AAAI Press, Palo
Alto, CA, 2015), pp. 3995–4001.

[54] M. Gardner and S. Dorling, Atmos. Environ. 32, 2627 (1998).
[55] S. Raschka, Python Machine Learning (Packt, Birmingham,

UK, 2015).
[56] A. Papoulis and S. U. Pillai, Probability, Random Variables, and

Stochastic Processes, 4th ed. (McGraw Hill, Boston, 2002).
[57] B. B. Mandelbrot and J. W. V. Ness, SIAM Rev. 10, 422 (1968).
[58] C. Flynn, FBM: Exact methods for simulating fractional Brow-

nian motion (FBM) or fractional Gaussian noise (FGN) in
Python, https://github.com/crflynn/fbm, accessed 21-02-2019.

[59] R. B. Davies and D. S. Harte, Biometrika 74, 95 (1987).
[60] Y. Lanoiselée, G. Briand, O. Dauchot, and D. S. Grebenkov,

Phys. Rev. E 98, 062112 (2018).
[61] M. J. Saxton, Biophys. J. 64, 1766 (1993).
[62] J. A. Helmuth, C. J. Burckhardt, P. Koumoutsakos, U. F. Greber,

and I. F. Sbalzarini, J. Struct. Biol. 159, 347 (2007).
[63] M. J. Katz and E. B. George, Bull. Math. Biol. 47, 273 (1985).
[64] D. Ernst, J. Köhler, and M. Weiss, Phys. Chem. Chem. Phys.

16, 7686 (2014).
[65] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, J. Mach. Learn. Res. 12, 2825
(2011).

[66] D. van Kuppevelt, C. Meijer, V. van Hees, P. Bos, J. Spaaks,
M. Kuzak, F. Huber, J. Hidding, and A. van der Ploeg,
mcfly: deep learning for time series, version v1.0.4, 2017, doi:
10.5281/zenodo.2541698.

[67] J. W. Perry, A. Kent, and M. M. Berry, Am. Doc. 6, 242 (1955).
[68] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Phys.

Rev. Lett. 103, 180602 (2009).
[69] K. Burnecki and A. Weron, Phys. Rev. E 82, 021130 (2010).
[70] M. Magdziarz, R. Metzler, W. Szczotka, and P. Zebrowski,

J. Stat. Mech.: Theory Exp. (2012) P04010.

032410-13

https://doi.org/10.1371/journal.pcbi.1000556
https://doi.org/10.1371/journal.pcbi.1000556
https://doi.org/10.1371/journal.pcbi.1000556
https://doi.org/10.1371/journal.pcbi.1000556
https://doi.org/10.1371/journal.pone.0140759
https://doi.org/10.1371/journal.pone.0140759
https://doi.org/10.1371/journal.pone.0140759
https://doi.org/10.1371/journal.pone.0140759
https://doi.org/10.1016/j.bpj.2018.09.005
https://doi.org/10.1016/j.bpj.2018.09.005
https://doi.org/10.1016/j.bpj.2018.09.005
https://doi.org/10.1016/j.bpj.2018.09.005
https://doi.org/10.1016/j.jtbi.2016.04.013
https://doi.org/10.1016/j.jtbi.2016.04.013
https://doi.org/10.1016/j.jtbi.2016.04.013
https://doi.org/10.1016/j.jtbi.2016.04.013
https://doi.org/10.1186/s12859-016-1064-z
https://doi.org/10.1186/s12859-016-1064-z
https://doi.org/10.1186/s12859-016-1064-z
https://doi.org/10.1186/s12859-016-1064-z
https://doi.org/10.1371/journal.pone.0170165
https://doi.org/10.1371/journal.pone.0170165
https://doi.org/10.1371/journal.pone.0170165
https://doi.org/10.1371/journal.pone.0170165
http://arxiv.org/abs/arXiv:1409.1556
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1186/s12859-017-1757-y
https://doi.org/10.1186/s12859-017-1757-y
https://doi.org/10.1186/s12859-017-1757-y
https://doi.org/10.1186/s12859-017-1757-y
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1016/j.patrec.2014.01.008
http://arxiv.org/abs/arXiv:1701.01887
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0006-3495(91)82125-7
https://doi.org/10.1016/S0006-3495(91)82125-7
https://doi.org/10.1016/S0006-3495(91)82125-7
https://doi.org/10.1016/S0006-3495(91)82125-7
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://github.com/crflynn/fbm
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1103/PhysRevE.98.062112
https://doi.org/10.1103/PhysRevE.98.062112
https://doi.org/10.1103/PhysRevE.98.062112
https://doi.org/10.1103/PhysRevE.98.062112
https://doi.org/10.1016/S0006-3495(93)81548-0
https://doi.org/10.1016/S0006-3495(93)81548-0
https://doi.org/10.1016/S0006-3495(93)81548-0
https://doi.org/10.1016/S0006-3495(93)81548-0
https://doi.org/10.1016/j.jsb.2007.04.003
https://doi.org/10.1016/j.jsb.2007.04.003
https://doi.org/10.1016/j.jsb.2007.04.003
https://doi.org/10.1016/j.jsb.2007.04.003
https://doi.org/10.1007/BF02460036
https://doi.org/10.1007/BF02460036
https://doi.org/10.1007/BF02460036
https://doi.org/10.1007/BF02460036
https://doi.org/10.1039/C4CP00292J
https://doi.org/10.1039/C4CP00292J
https://doi.org/10.1039/C4CP00292J
https://doi.org/10.1039/C4CP00292J
https://doi.org/10.5281/zenodo.2541698
https://doi.org/10.1002/asi.5090060411
https://doi.org/10.1002/asi.5090060411
https://doi.org/10.1002/asi.5090060411
https://doi.org/10.1002/asi.5090060411
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1103/PhysRevE.82.021130
https://doi.org/10.1088/1742-5468/2012/04/P04010
https://doi.org/10.1088/1742-5468/2012/04/P04010
https://doi.org/10.1088/1742-5468/2012/04/P04010

