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of the corticothalamic system

Dong-Ping Yang * and P. A. Robinson
School of Physics, University of Sydney, New South Wales 2006, Australia

and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia

(Received 22 May 2019; revised manuscript received 21 August 2019; published 10 September 2019)

Absence epilepsy is characterized by a sudden paroxysmal loss of consciousness accompanied by oscillatory
activity propagating over many brain areas. Although primary generalized absence seizures are supported by the
global corticothalamic system, converging experimental evidence supports a focal theory of absence epilepsy.
Here a physiology-based corticothalamic model is investigated with spatial heterogeneity due to focal epilepsy
to unify global and focal aspects of absence epilepsy. Numeric and analytic calculations are employed to
investigate the emergent spatiotemporal dynamics as well as their underlying dynamical mechanisms. They can
be categorized into three scenarios: suppressed epilepsy, focal seizures, or generalized seizures, as summarized
from a phase diagram vs focal width and characteristic axon range. The corresponding temporal frequencies
and spatial extents of cortical waves in generalized seizures and focal seizures agree well with experimental
observations of global and focal aspects of absence epilepsy, respectively. The emergence of the spatiotemporal
dynamics corresponding to focal seizures provides a biophysical explanation of the temporally higher frequency
but spatially more localized cortical waves observed in genetic rat models that display characteristics of human
absence epilepsy. Predictions are also presented for further experimental test.
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I. INTRODUCTION

Absence epilepsy is an idiopathic nonconvulsive gener-
alized epilepsy that displays a sudden paroxysmal loss of
consciousness accompanied by abnormal brain oscillatory
activity: 2.5- to 4-Hz “spike-and-wave” discharges (SWDs)
in electroencephalogram (EEG), electrocorticogram (ECoG),
and local field potentials (LFPs) [1–3]. These oscillations
propagate rapidly over many brain areas and reflect macro-
scopic dynamical properties of neuronal populations. Many
experimental results led to the corticothalamic theory that
interactions between cortex and thalamus generate absence
seizures [3–8]. However, converging evidence of animal
“models” that display SWDs similar to those of absence
epilepsy in humans [9–13] has shown that absence seizures
can be triggered from a specific cortical focus, leading to
a focal theory of absence epilepsy [2]. Also, an accurate
source analysis from dense-array surface electrodes suggested
that absence seizures in human patients were not truly “gen-
eralized,” with immediate and global cortical involvement,
but rather were initiated in specific cortical regions and then
propagated to the whole cortex within milliseconds [14,15].
There remains a hot debate over the global and focal aspects
of absence epilepsy [8,16–20].

So it is essential to study spatiotemporal dynamics of brain
activities, exploring the conditions for focal epilepsy to be
suppressed, to remain spatially localized, or to generalize and
spread over the whole brain. However, spatial interactions
involve complicated connectivity between cortical areas as
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well as subcortical structures, such as the thalamus [21–24],
which can be responsible for various spatiotemporal patterns
of large-scale brain activity [25]. In the mean-field theory,
many neurons are averaged to get equations for mean mem-
brane potential V and neuronal firing rate Q, and spatial
couplings can be described by integrating the Green function
or, in many cases, approximated by a corresponding differen-
tial form, most often a Laplacian [26–29]. Such mean-field
theory has been successfully used to account for various
macroscopic brain activities as measured through the elec-
tromagnetic signals (EEG and MEG), for normal states as
well as generalized seizures [28–31]. However, it has not yet
been explored whether the mean-field theory can provide a
framework to unify both global and focal aspects of absence
epilepsy, whether it can be used to explain the evolution from
focal epilepsy to generalized seizures, and what is the un-
derlying dynamical mechanism. Specifically, here we explore
the role of the characteristic corticocortical axon range in the
interactions between normal states and focal absence epilepsy.

The brain is a multiscale dynamical system in respect of
both complicated structure and activity. The cellular mech-
anisms for generating SWDs were thoroughly studied in
rodents [16,32,33], especially two genetic strains of rats:
the Wistar Albino Glaxo/Rijswijk (WAG/Rij) and Genetic
Absence Epilepsy Rats from Strasbourg (GAERS), which
display similarities of simultaneous electroclinical signs and
performance predictions based on behavioral and pharmaco-
logical data [32,34,35] from humans and are thus regarded as
well established models, i.e., analogs of absence epilepsy in
humans. One of the main differences is the higher frequency
of SWDs: 7–11 Hz in rats [9,11] and 2.5–4 Hz in cats, rhesus
monkeys, or humans [1,8,17]. The frequencies of SWDs have
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been proposed to be accounted for based on the properties of
GABAB receptors and T-type Ca2+-channel- (T-channel) de-
pendent burst firing in thalamocortical relay neurons [5]. The
faster oscillations in rodents were also explained by involving
GABAA conductance with fast dynamics in that population
[36]. However, the origin of the slow timescale resulting from
GABAB receptor activation has been challenged [33], and a
recent thorough experiment study of behaviors in pathological
rodents [20] has shown direct evidence against the viewpoint
that GABAB receptors and T-channel-dependent burst firing in
thalamocortical relay neurons are critical for absence seizures
[5,37]. So it is still unknown what is the origin of higher
rhythms of seizure activities in rodents, although there is no
a priori reason for the same SWD frequency in all species.
Here we propose network effects on the different frequencies,
which may also involve interplay with cellular mechanisms.

On the other hand, the spatial extent of absence seizure
activity is another significant difference between rats and
other species, with SWDs in WAG/Rij rats more spatially
localized than seizure activity in humans, which spreads
widely over the whole cortex [8,14]. In these rats, spontaneous
absence seizures are generated in a cortical “focus,” which
drives widespread corticothalamic networks, so that SWDs
are intense in the cortical focus of the anterior cortex and
corresponding thalamic nuclei, and decrease along the propa-
gation direction on the cortex [9], until activity is very nearly
normal in the occipital cortex, thalamic visual relay nuclei,
hippocampus, and limbic thalamus nuclei, as demonstrated
in the simultaneous electrophysiological recordings (LFPs,
ECoGs, or EEG with simultaneous fMRI) [2,16,38]. It is
also commonly found in experiments that lower-frequency
resonances are much more generalized in space, than higher-
frequency oscillations which are more localized to restricted
cortical areas [39,40]. So it is essential to investigate whether
and how spatial extents of seizure activities can account for
the observed oscillations with different frequencies.

To this end, the spatiotemporal dynamics of the coupled
cortex and thalamus are theoretically investigated using a
physiology-based corticothalamic model with focal spatial
heterogeneity, exploring the roles of cortical propagation
and the spatial extent of focal epilepsy. We first introduce
the corticothalamic model, numeric simulations, and ana-
lytic methods and then present the phase diagram of the
spatiotemporal dynamics vs focal width and characteristic
axon range. Specifically, the focal epilepsy with a relatively
small width can be suppressed, one with a relatively large
width can be generalized over the whole system with ∼3-Hz
traveling waves, and one with a moderate width is limited
to the focal region without generalizing into normal regions
but with a ∼10-Hz rhythm. Their spatiotemporal properties
such as spatial extents and temporal frequencies are compara-
ble with experimental observations in humans and rats. The
resulting cortical waves have robust frequencies, and their
underlying dynamical mechanisms are discovered by employ-
ing eigenvalue spectra and corresponding eigenmodes of the
critical states. Such emergence of the spatiotemporal dynam-
ics corresponding to focal seizures provides a biophysical
explanation of the temporally higher frequency, but spatially
more localized, cortical waves observed in genetic rats. Thus
we uncover a unified dynamical mechanism for the global

(a) (b)

FIG. 1. The corticothalamic model. (a) Schematic of the corti-
cothalamic interactions, showing the locations ab at which couplings
act. Connectivity and loops include intracortical (ee, ei, ie, ii),
corticothalamic (re, se), thalamocortical (es, is), and intrathalamic
(sr, rs), as well as the ascending input from brainstem sn. (a) The
physical interrelationship of the system variables: Va, Qa, and φa.

and focal aspects of absence epilepsy, and conclude with
experimentally testable predictions and further extensions for
future work.

II. MATERIALS AND METHODS

Our corticothalamic model is described following previous
work [30,31] and specified here with spatial heterogeneity
due to focal epilepsy. Then, we describe simulation methods,
analytic calculations of steady states, and their linear stability
analysis.

A. Corticothalamic model

The corticothalamic system can be described by a con-
tinuum approach at the macroscopic level, where large-scale
neural activities are determined by interactions between sev-
eral neural populations, notably excitatory and inhibitory
cortical neurons and thalamus, including reticular and re-
lay nuclei. A schematic of these populations is presented
in Fig. 1(a), with excitatory, inhibitory, reticular, and relay
neurons represented by e, i, r, and s, respectively. Figure 1(b)
summarizes the physical interrelationship of the collective
state variables, which are the local mean values at position
r = (rx, ry) in a two-dimensional (2D) space: the local mean
cell-body potential Va, the mean firing rate Qa, and the prop-
agating axon field φa, for a = e, i, r, s [30]. The spatially
distributed corticothalamic model is illustrated in Fig. 2. The
spatial position r = (rx, ry) is assigned to both the cortex and
the thalamus, and the thalamus has a one-to-one map to the
cortex. The cortex is modelled as a square sheet with a side
length L, while the thalamus is modelled as a 2D sheet with
a tenth scaled side length L/10. Here we unify human (L =
0.5 m) and rat (L = 0.025 m) brains into a unique framework
here, with assumption of linear proportionality of other spatial
properties in these two systems.

First, the firing rate Qa is a sigmoid function of the poten-
tial Va, with

Qa(r, t ) = S[Va(r, t )] = Qmax

1 + exp[θ − Va(r, t )]/σ ′ , (1)
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FIG. 2. Illustration of the spatially distributed corticothalamic
model. The cortex is modelled as a 2D sheet with a side length L
and the thalamus is 10th rescaled with a side length L/10 (L = 0.5 m
for human brains and L = 0.025 m for rat brains). Each spatial point
r describes local mean-field dynamics of populations of excitatory
and inhibitory neurons, interacting with neurons in the spatially
corresponding specific relay and reticular nuclei of the thalamus. ee
represents the cortical wave propagation of φe as described in Eqs. (2)
and (3). Arrows indicate excitatory feedback (blue) and inhibitory
feedback (red). se is thickened to indicate that νse is strengthened to
model focal absence seizure, as discussed in detail in Sec. II B.

where Qmax is the maximal firing rate, θ is the mean firing
threshold, and σ ′π/

√
3 is the standard deviation of the differ-

ence between the steady state Va and the threshold θ .
Second, neuronal firing generates a field signal φa and

sends it through the extended axons toward other popula-
tions, approximately according to the damped wave equation
[27,28] (

Da − r2
a∇2

)
φa(r, t ) = Qa(r, t ), (2)

with

Da =
(

1

γa

∂

∂t
+ 1

)2

, (3)

where γa = va/ra governs the damping of propagating waves,
and ra and va are the characteristic range and conduction
velocity of the axons of population a, respectively [28].
The Laplacian in Eq. (2) is the differential form of a spa-
tially extended kernel that incorporates axon ranges with an
approximately exponential distribution with a characteristic
range ra [28]. The differential and integral forms are exactly
equivalent.

Finally, each population’s potential Va results when synap-
tic inputs from various types of afferent neurons are summed
after being filtered and smeared out in time due to synaptic
neurotransmitter, receptor dynamics, passage through a den-
dritic tree and effects of soma capacitance. So we have

DαVe(r, t ) =νeeφe(r, t ) + νeiφi(r, t ) + νesφs(r, t − td ), (4)

DαVr (r, t ) =νreφe(r, t − td ) + νrsφs(r, t ), (5)

DαVs(r, t ) =νseφe(r, t − td ) + νsrφr (r, t ) + νsnφn(r, t ), (6)

TABLE I. Nominal parameter values in spatially homogeneous
model from Refs. [31,44].

Parameter Value Unit Parameter Value Unit

Qmax 250 s−1 νee 1.0 mV s
θ 15 mV −νei 1.8 mV s
σ ′ 6 mV νes 3.2 mV s
α 50 s−1 −νsr 0.8 mV s
β 200 s−1 νsnφn 2.0 mV s
γe 100 s−1 νre 1.6 mV s
td 40 ms νrs 0.6 mV s

νse(r) 1.8∼4.4 mV s

with the synaptodendritic operator

Dα = 1

αβ

d2

dt2
+

(
1

α
+ 1

β

)
d

dt
+ 1, (7)

where α and β are the mean decay and rise rates of the soma
response to an impulse arriving at a dendritic synapse [28].
Notice that the dynamics of inhibitory population is retained,
but is not explicitly expressed in Eqs. (2)–(7), because in-
tracortical connectivities have been found to be proportional
to the numbers of synapses involved [41,42], so one has
Ve = Vi and Qe = Qi [30,43], which allows us to concentrate
on excitatory quantities, while implicitly retaining inhibitory
effects on the dynamics. Besides, all populations except the
excitatory population have very short axons, which lets us set
ra ≈ 0 and γa ≈ ∞ in (3), yielding φa = Qa for a = i, r, s
[30]. Input from the thalamus to the cortex and feedback from
the cortex to the thalamus are delayed by a propagation time
td . In Eqs. (4)–(6), νab is the synaptic connection strength to
population a from population b, and φn is the ascending input
from brainstem, which can be arbitrary external signals or
approximated as white noise, but here is set to a constant for
calculating phase diagrams and bifurcation diagrams.

Thus, the model includes 16 parameters: Qmax, θ , σ ′, α, β,
γe, td , re, νee, νei, νes, νse, νsr , νsnφn, νre, νrs, which are enough
to allow realistic representation of the most salient anatomy
and physiology, but few enough to yield useful interpretations.
Their values are presented in Table I.

B. Model of focal spatial heterogeneity

In WAG/Rij rats with absence seizures, the SWDs are
initiated from the deep layer neurons of the cortical focus–the
facial somatosensory cortex, due to imbalance of excitation
and inhibition therein [11,32,34]. It has been investigated that
the excitatory dendrites in the focal region have larger total
dendrite length, larger mean length of a dendritic segment, and
larger size of dendritic arbor, than those outside epileptic area
[17,34]. Additionally, the excitatory-inhibitory ratio of neuron
numbers in focal cortical areas is larger than that in other areas
and the efficiency of GABA-ergic inhibition is impaired [34].

Later, the SWDs can be sustained and then propagate
via regional and distant layer five axonal projections within
the somatosensory cortex and to other cortical and thalamic
regions, where corticothalamic and thalamocortical neurons
drive each other forming a unified oscillatory system. Le-
sion studies also demonstrate that an excitable region is not
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FIG. 3. Spatially heterogeneous corticothalamic model. (a)
Schematic of the 2D spatial model with periodic boundary condi-
tions; Each position r = (rx, ry ) represents a corticothalamic loop
with νse(r) determined by a spatially Gaussian profile given in Eq. (8)
with σ/L = 0.05, νse(L/2) = 1.8 mV s, and νse(0) = 4.4 mV s. The
white dashed line indicates the position of the spatial profiles in (b).
(b) Spatially Gaussian profiles νse(r) along rx at ry = 0 with various
σ/L, as indicated in the legend. The white dash-dotted circle in (a)
and the black dash-dotted line in (b) indicate the threshold νc

se for
transition to absence seizures in the spatially homogeneous case.
They are also used to define the region inside for focal epilepsy and
the normal region outside.

sufficient for the occurrence of SWDs and indicate that some
thalamic nuclei seem to be important for SWD occurrence [7],
as implied by theory and simulations [30,31].

Although the excitation-inhibition imbalance in the focus
is essential for SWDs initiation, the key for sustaining the
SWDs lies in the interaction between cortex and thalamus.
Thus, here we model the focus with a higher value of νse,
which describes the excitatory influence of cortical pyramidal
cells on the specific thalamic nuclei, due to the hyperactivity
of excitatory neurons in the focus, emphasizing the interaction
between cortex and thalamus. In the model, a higher value
of νse in the focal area is set to describe focal epilepsy,
with νse peaking at the center and smoothly decreasing to
the edge, as shown in Fig. 3(a). The choice of νse is also
supported by prior implications of excitatory corticothala-
mic feedback in the pathophysiology of generalized ab-
sence seizures [9,32,38,45]. As studied in our previous work
[30,31,44], especially in the normal form analysis of Hopf
bifurcations dependent on both νse and νes [44], νes should

have similar effects on the system stability and induction of
absence seizures.

Thus, the corticothalamic model with focal spatial het-
erogeneity is employed to investigate the effect of cortical
propagation on the spatiotemporal dynamics, and to study
how focal epilepsy can be suppressed, remain localized, or
propagate over the whole brain to produce secondary general-
ized absence seizures.

For simplicity, the spatial profile is set to be an isotropically
symmetric Gaussian function

νse(r) = [νse(0) − νse(L/2)] exp(−|r|2/2σ 2) + νse(L/2),
(8)

with σ characterizing the pathological width, νse(L/2) the
background normal value and νse(0) the pathological value.
Figure 3(b) shows profiles along rx/L at ry = 0 with various
σ/L. All other parameters are spatially invariant, as given in
Table I.

The isotropic symmetry is limited by boundary, which
has little effect on the symmetry if we choose σ/L � 1 and
re/L � 1 but still brings edge effects on the spatiotemporal
dynamics, as we demonstrate in Sec. III.

C. Simulation methods

The model is simulated using the recently published NFT-
sim code written in C + + [46] to investigate the spatiotem-
poral dynamics [30,31,44], which solves our damped and
retarded 2D wave equation in Eqs. (2) and (4)–(6) with given
initial conditions and boundary conditions.

In numerical simulations, the 2D space (rx, ry) is divided
into a 120 × 120 grid with L = 0.5 m for humans and L =
0.025 m for rats, and grid point spacing δrx/L = δry/L =
1/120. We choose periodic boundary conditions and an initial
condition that each spatial point is assigned with a τd length
time series of a random constant.

In NFTsim, numerical integration is performed using a
fourth-order Runge-Kutta integrator. A cubic-spline interpo-
lator is employed in order to estimate the time-delayed values
of the midpoints required for the Runge-Kutta algorithm. A
small time step (δt = 0.1 ms) is chosen to satisfy the Courant
condition [47], that is, the Courant number C = uxδt

δrx
+ uyδt

δry
�

1, where ux and uy are the magnitudes of the velocity [46].
Long (∼1000 s) simulations, which cost ∼10 h of real time
on the cluster with Intel Xeon CPU 2.10 GHz, are performed
to guarantee the system reaches its stationary state.

Noise is ignored in the simulations for phase diagrams and
bifurcation diagrams, to simplify our analysis so as to focus on
pattern formation and its underlying dynamical mechanism.
We have checked that weak noise has no significant effect on
our findings, but strong noise can destroy pattern formation,
as demonstrated in Sec. III C.

D. Steady states and linear stability analysis

To get more insight of underlying mechanisms for various
spatiotemporal dynamics, we are introducing here analytic
methods how to derive the steady states, their linear stability
and eigenmodes.
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As introduced above, the system has a radial symmetry
with σ/L � 1 and re/L � 1, leading to the replacement of r
by r = |r| to simplify our analysis. Then the spatial interaction
in radial coordinates can be rewritten as

L � r2
e ∇2 = r2

e

(
∂2

∂r2
+ 1

r

∂

∂r

)
. (9)

As proposed in Ref. [48], the steady states can be obtained
by integrating Eqs. (2), and (4)–(6) inward toward r = 0,
starting at a large r, where the system can be linearized with r
to be [

L − L−1
CT (0, r)

]
φe(r) = 0, (10)

with the function L−1
CT (λ, r) given by Eq. (A12) in Appendix

A, which describes the resonance [at L−1
CT (λ, r) = 0] of the

corticothalamic loop at r and the eigenmode with an eigen-
value λ. The stationary state converges asymptotically to the
solution at large r, and the appropriate boundary condition at
r = 0 is

∂φa(0)/∂r = 0. (11)

Thus one of its general solutions, converging at r → L/2 

re, is

φe(r) = BK0

[
r

re

√
L−1

CT (0, r)

]
+ φe(L/2), (12)

where K0 is a modified Bessel function of the second kind
and B is an undetermined real constant, which uniquely
parametrizes the stationary solution to the nonlinear equations
(2) and (4)–(6). So our task is to search for the value of B
for which the solution [φ0

e (r),V 0
e (r),V 0

r (r),V 0
s (r)] obeys the

boundary condition (11).
To analyze linear stability of the steady state, a small

dimensionless perturbation can be introduced as follows:

χa(r, t ) = [
φa(r, t ) − φ0

a (r)
]
/Qmax, (13)

va(r, t ) = [
Va(r, t ) − V 0

a (r)
]
ηa(r)/σ ′, (14)

qa(r, t ) = [
Qa(r, t ) − Q0

a(r)
]
/Qmax, (15)

with σ ′ = σ
√

3/π , ηa(r) = q0
a(r)[1 − q0

a(r)], and q0
a(r) =

Q0
a(r)/Qmax for a = e, r, s. The perturbations can be expanded

in sums of eigenmodes as follows:

χe(r, t ) =
∑

i

Ci exp(λit )χ̂e(λi, r), (16)

qa(r, t ) =
∑

i

Ci exp(λit )q̂a(λi, r), (17)

each of which obeys[
L − L−1

CT (λi, r)
]
χ̂e(λi, r) = 0, (18)

[
D(λ) − L−1

CT (λi, r)
]
χ̂e(λi, r) = q̂a(λi, r), (19)

with the function D(λ) given by Eq. (A6) in Appendix A.
Again, a unique bounded solution for χ̂e(λi, r) at r → L/2
is

χ̂e(λi, r) = K0

[
r

re

√
L−1

CT (λi, r)

]
. (20)

Note that there is no constant B as in the steady-state equation
(12) because it has been absorbed into Ci. So now our task is
to search for the eigenvalue λi as well as the corresponding
perturbation eigenmode. The largest Re(λi) determines linear
stability of the steady state.

III. SPATIOTEMPORAL DYNAMICS

The spatiotemporal dynamics are presented starting from
the spatially homogeneous case. Then the corticothalamic
system with focal epilepsy is investigated by numeric simu-
lations to study how cortical propagation can suppress, local-
ize, or generalize the focal epilepsy, and to explore various
spatiotemporal dynamics. Traveling waves that emerge from
the focus in various phases are investigated and compared
with experimental observations in humans and rats, yielding
predictions to be further tested experimentally.

A. The spatially homogeneous case

The corticothalamic system has been employed to under-
stand and unify many features of normal EEGs, including
discrete spectral peaks in slow-wave, delta, theta, alpha, and
beta bands, observed in waking and sleeping states, and
evoked response potentials [30,49]. The normal oscillations,
i.e., ∼3-Hz waves and ∼10-Hz waves, were found to converge
to linear, near-equilibrium dynamics at macroscopic scales
[28,43,50,51], whereas pathological oscillations in general-
ized epilepsies were found to converge to nonlinear behaviors
beyond linear stability with hypersynchrony in the neuronal
populations and many nonlinear features of large-scale brain
activities comparable with experimental real data [30,31,52].
So, the relevant linear stability of large-scale brain dynamics
can be regarded as the criterion for separating normal activity
from seizurelike oscillations.

Together, the cortex and the thalamus form a complex
oscillatory network, providing a resonant circuit to amplify
and sustain the SWDs, with the resonance being an emergent
property of the corticothalamic system [3,53]. Specifically,
bifurcations have been intensively investigated via changes of
the parameter νse, and it has been demonstrated that this sys-
tem can explain primary generalized absence seizures [30,31].
Furthermore, recent analysis has established a bridge that ex-
plicitly links the tractable normal-form dynamical parameters
with the underlying physiological ones [44].

In the homogeneous case for generalized absence seizures,
the system has spatially uniform activity and the corticotha-
lamic loop experiences a supercritical Hopf bifurcation, then
a period-doubling, when νse ranging from νse(L/2) to νse(0),
as shown in the bifurcation diagram of Fig. 4(a). In Fig. 4(b),
various dynamical states are evidenced by time series of φe

at various νse, whose values are correspondingly indicated
by the red dashed lines in Fig. 4(a). Specifically, one can
find oscillating dynamics with a ∼3-Hz rhythm and the
stereotyped SWDs. The presented dynamics can be found
over a wide range of parameters. This is one example. This
result has been compared with clinical data in detail and
thus was employed to explain the pathological transition from
normal arousal states to primary generalized absence seizures
[30,31].
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FIG. 4. Bifurcation in the spatially homogeneous case. (a) Bifur-
cation diagram of φe when νse ramps up and down from νse(L/2) to
νse(0) and vice versa. The black dashed line indicates the threshold
νc

se for Hopf bifurcation. (b) Time series of φe for various νse

indicated by the red dashed lines in (a).

B. From suppressed epilepsy to generalized seizures

Here we show that secondary generalized absence seizures
can be induced by focal epilepsy. The induced absence
seizures can have various spatial extents and oscillating fre-
quencies, if we explore the roles of σ and re. Actually, both
of them are constrained by the system size L, yielding edge
effects. Thus, we investigate various spatiotemporal dynamics
vs re/L and σ/L with re/L � 1 and σ/L � 1, summarized in
the phase diagram as shown in Fig. 5, which has six different
phases, with Phases I, II, and III discussed in this subsection,
and Phases IV, V, and VI in the next.

Notice that numeric simulations in the left and bottom
white bands of Fig. 5 would require impractically long sim-
ulation time. In those regions, the default grid spacing would
need to be reduced to smaller δrx and δry, resulting in smaller
time step δt via the Courant condition [47]. For example,
halving δrx and δry will halve δt , resulting in 8 fold of the
total simulation time.

In Phase I, focal epilepsy with small σ is suppressed by ax-
onal projections from the normal region if re is large as in the
case of healthy adults [54]. The activity profile of suppressed
epilepsy stabilizes with slightly enhanced, but temporally
constant, activity in the center, as shown in Fig. 6(a).

In Phase II, the focal epilepsy with large-enough σ can re-
sist suppression, and even propagate and destabilize the whole
system, leading to secondary generalized absence seizures,
which originate from a ∼3-Hz oscillating focus and propagate
rapidly outward to the whole system, but with the wave
amplitude attenuated along r, as shown in Figs. 6(b) and 6(c).
The attenuation can be characterized by an attenuation factor
μ = ∂ log φe(r)/∂r, as indicated in Fig. 5, with larger μ at
smaller re. Here μ is scaled by 1/L, with its value charac-
terizing the times of attenuated φe amplitude when the wave
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FIG. 5. Phase diagram of spatiotemporal dynamics vs axon range
re and focal width σ both scaled by L showing six phases. The
instability line for ∼10-Hz oscillation is predicted by linear stability
analysis as indicated by the blue dash-dotted line, while other phase
separations are indicated by the black dashed lines. Six examples
are indicated by various shaped red points, with the corresponding
spatiotemporal dynamics of φe shown in Fig. 6. The attenuation
factor μ scaled by 1/L is also indicated in the colorbar for Phase II.
Note that edge effects limit Phases IV, V, and VI. The black vertical
line indicates the parameter range further investigated in Fig. 7.

travels through the system. The phase velocity is discussed
below in Sec. III D. Here the system transits continuously
from suppressed epilepsy in Phase I to generalized seizures
in Phase II via a supercritical Hopf bifurcation with the
oscillation amplitude of φe(0) increasing gradually from zero,
as indicated in the upper right corner of Fig. 5; This transition
is due to the boundary induced edge effects.

In Phase III, the direction of propagating waves is reversed
from outward in Phase II to inward if re is small enough, as
shown in Fig. 6(d), where the propagation direction is denoted
by a red arrow. In future, wave-front instability analysis could
be employed to understand this reversal [55].

C. Spatially limited focal seizures

In Phase IV, the focal epilepsy can be spatially limited to
the focal region, with cortical activity decaying rapidly in the
normal region, as demonstrated in the upper panel of Fig. 6(e),
rather than spreading over the whole system as shown in
Figs. 6(b)–6(d). More interestingly, the temporal rhythm is
not ∼3 Hz any more, but induced by the spatiotemporal
interactions to have a higher temporal frequency of ∼10 Hz.

The ∼10-Hz wave is not only spatially localized but also
temporally modulated at ∼2 Hz, as shown in Fig. 6(e), which
is reminiscent of complex-partial seizures with impaired
consciousness [56,57]. The complex-partial seizures have
stronger 1- to 2-Hz delta-range modulation in the bilateral
frontal and parietal neocortex than simple-partial seizures,
where consciousness is not impaired [56,57]. Thus the tem-
porally modulated, spatially localized ∼10-Hz activity is a
potential mechanism for the generation of complex-partial
seizures, although we do not consider this point further here.
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FIG. 6. Examples of various waves with parameter values of (re/L, σ/L) indicated by the corresponding shaped red points in Fig. 5. All
dynamics are radially symmetrical, so only 1D wave dynamics is presented. In each case, the upper panel presents the 1D wave dynamics of
points at ry = 0, indicated by the white dashed line in Fig. 3(a), while the lower panel shows the corresponding time series at seven equally
spaced points from center to edge with decreasing φe [for (a)] or its amplitude [for (b)–(f)]. The values φe in upper panels from dark blue
to yellow range from the minimal to the maximal φe in the corresponding lower panels. (a) Phase I, epilepsy suppressed. (b) Phase IIa, the
wave weakly attenuated along r. (c) Phase IIb, the wave strongly attenuated along r. (d) Phase III, the wave propagating inward from edge to
the center. (e) Phase IV, the spatially limited ∼10-Hz wave modulated by a ∼2-Hz slow wave. (F) One state in Phase V: the spatially limited
regular ∼10-Hz wave, which coexists with the suppressed epilepsy. Wave propagation is indicated by red arrows in (b)–(f), whose slopes are
the phase velocities.

The above modulation implies existence of spatiotemporal
nonlinear wave interactions. Thus, in Fig. 7, we investigate
the bifurcation diagram for the steady state of φe(0) against
σ/L at (rx, ry) = (0, 0). It shows that the system experiences
a subcritical Hopf bifurcation from a fixed point to a limit
cycle, and then a second Hopf bifurcation to a quasiperiodic
cycle, e.g., a 2-torus, then a 3-torus, then higher-dimensional
dynamics, and finally a chaotic attractor. Such a route to a
chaotic attractor is induced by the nonlinear wave interactions,
which can also terminate the chaotic dynamics and produce
secondary generalized absence seizures when σ/L is large
enough, as shown at the right end of the bifurcation diagram
in Fig. 7. It is different from that observed previously in
the homogeneous case, which is induced by the nonlinear
corticothalamic interaction loop [44].

In Phase V, the system has two stable states: suppressed
epilepsy and localized ∼10-Hz waves. In comparison with
Phase IV, Phase V has a smaller σ/L and weaker nonlinear
wave interactions. As a result, the localized ∼10-Hz wave
in Phase V is regular without low frequency modulation, as
demonstrated in Fig. 6(f). Actually, this bistability emerges
from the subcritical Hopf bifurcation with hysteresis, and
the system experiences a sudden transition from suppressed
epilepsy to focal seizures at the critical point indicated by

the green dashed line in Fig. 7. The instability boundary
is consistent with the linear stability analysis as introduced
under Methods. This subcritical Hopf bifurcation provides a
new route for the transition from normal arousal states to
epileptic seizures [6,52].

In Phase VI, the system has another two stable states:
suppressed epilepsy and generalized seizures. In comparison
with Phase IV, Phase VI has a larger σ/L and then stronger
nonlinear wave interactions, which can terminate the spatially
chaotic dynamics and turn the system into the second general-
ized seizures. This bistable region has just a narrow parameter
range and may be hard to observe in experiments.

In the previous studies of neural fields [58,59], such lo-
calized ∼10-Hz waves in Phases IV, V, and VI are called
as breathers. They emerge when the suppressed epilepsy
becomes unstable and the instability boundary can be well
predicted by linear stability analysis, as indicated by the blue
dash-dotted line in Fig. 5. All other phase boundaries are
also fully determined by the rescaled focal width σ̂ = σ/re

(the dashed lines in Fig. 5). Nonetheless, they terminate at
large σ/L and re/L due to edge effects in the upper right
corner of Fig. 5. Such spatially limited focal seizures emerge
in the system with large-enough length to avoid edge ef-
fects, indicating that such phenomenon can exist in general
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FIG. 7. Bifurcation diagram of φe(0) against σ/L, with two
bistable regions, corresponding to Phase V and VI, respectively.
The critical point for bifurcation from suppressed epilepsy to the
focal seizures with a frequency f = 10.5 Hz is consistent with linear
stability analysis, as indicated by the green dashed line. Blue circles,
ramp up; red dots, ramp down; re/L = 0.05.

boundary conditions and cortical geometries; e.g., spherical
topology brain hemisphere. Thus, our results hold for general
scenarios with various spatial scales; e.g., various axon ranges
re/L, whenever there is no edge effect, and they can also be

applied in a scenario with multiple epilepsy foci, which spread
widely in space and have weak mutual interactions.

Moreover, as demonstrated in Fig. 8, such localized waves
in the above phases are stable in the presence of weak noise
in the system, but can be disrupted by strong noise to yield
generalized ∼3-Hz traveling waves similar to those in Phase
II. Notice that the localized spatiotemporal patterns with
different σ/L can resist different noise levels. The resistance
is not monotonically dependent on σ/L as demonstrated in
Fig. 8.

D. Traveling-wave properties

The propagating waves of electrical activity in the cortex
have been observed during seizures in rats, cats, monkeys, and
humans, with wave velocities of 0.01 to 10 m s−1, depending
on the cortical states and data analysis methods [60–67].
Here we consider the phase velocity vp, defined over the
whole system for the generalized seizures, while for the focal
seizures, the wave does not propagate over the whole system
and we define its effective region to be where oscillating
amplitudes are larger than 0.03 times the maximum.

As shown in Fig. 9, for the generalized seizures,
∼3-Hz activity propagates over the whole system at the phase
velocity vp/L = 20 to 300 s−1, while for the focal seizures,
∼10-Hz activity spreads only within the effective region at
vp/L = 22 to 60 s−1, which is significantly larger than the
axon propagation speed, which can be estimated to be ve/L ≈
reγe/L � 13 s−1. In the focal seizures, vp/L depends linearly
on the width w/L of the effective region with 0.3 < w/L <

0.8, as shown in Fig. 9(a). Figures 9(b) and 9(c) show that vp
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FIG. 8. Effect of noise on the observed localized spatiotemporal pattern with various normalized pathological widths σ/L (its value for
each column is indicated on the top) and noise levels (its power density Pn for each row as indicated at the right) in the simulations of
re/L = 0.05. The spatially localized ∼10-Hz wave can stay for the presence of a weak noise in the system, but can be broken by a strong noise
into a generalized ∼3-Hz traveling wave similar to that in Phase II.
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FIG. 9. Phase velocity vp of the traveling waves. The points
represent the cases with various parameter pairs (re/L, σ/L) in
Phases II and IV with re/L � 0.05. (a) vp/L vs w/L in Phase II (open
circle) and Phase IV (plus). (b) vp/L vs re in Phase IV. (c) vp/L vs
σ in Phase IV. Linear proportionality is indicated by the dashed lines
with slope 1 in the log-log plots.

also depends linearly on σ and re, to be

vp/L = c + a1re/L + a2σ/L, (21)

with c = 0.80 ± 0.17 s−1, a1 = 440 ± 21 s−1 and a2 =
107 ± 18 s−1. These predictions are potentially testable in
experiments.

The linear dependence is consistent with the robust fre-
quencies of the localized ∼10-Hz waves, which is indepen-
dent of re/L or σ/L. As shown in the upper panel of Figs. 6(e)
and 6(f) as well as in their eigenmodes to be discussed in
the next subsection, the wave has only one peak vs r at each
time, yielding the wave number k ∝ 1/w, and then a constant
frequency f = vpk/2π .

IV. UNDERLYING DYNAMICAL MECHANISMS

From the above, our corticothalamic model with focal
spatial heterogeneity can produce secondary generalized ab-
sence seizures with ∼3-Hz traveling waves which spread over
the whole system (Phase II), and spatially more localized
∼10-Hz waves (Phase IV) as observed in the electrophys-
iological recordings (LFPs, ECoGs, or EEG) of WAG/Rij
rats [9]. The spatiotemporal properties in Phase II and Phase
IV, such as spatial extents and temporal frequencies, are
comparable with experimental observations in humans and
rats, respectively. The resulting cortical waves have robust
frequencies in each phase. Therefore, the spatiotemporal dy-
namics in these two phases can account for the global and
focal aspects of absence epilepsy, respectively, leading to the
unification of these aspects into our corticothalamic model.

In the following, we also uncover underlying dynamical
mechanisms for various phases, using eigenvalue spectra and
corresponding eigenmodes at critical states. Then the role of
the corticothalamic loop, especially the effects of the time lag
td between cortex and thalamus, is investigated. Finally, we
show robustness of the dynamical mechanisms.

A. Dynamical mechanism of spatially localized seizures

In our previous work of the homogeneous corticothalamic
system [30,31,44], ∼3-Hz waves and ∼10-Hz waves were
generated due to resonances in two different delayed feedback
loops: e → r → s → e and e → s → e, respectively. But
here a spatially localized ∼10-Hz wave emerges from focal
epilepsy that has an intrinsic ∼3-Hz rhythm. So, it is not clear
whether the localized ∼10-Hz wave originates from the same
resonance of the underlying corticothalamic loop as in the
homogeneous system, or is induced by the focal epilepsy via
a different dynamical mechanism.

To this end, we investigate the steady states and corre-
sponding eigenvalue spectra of the induced waves, as summa-
rized in Fig. 10, where (a) and (b) show the three eigenvalues
λ with the largest Re(λ) vs σ/L: the blue curve corresponds
to the focal seizures with f = 10.5 Hz and the red ones to
the generalized seizures with f = 3.1 Hz. The largest Re(λ)
determines linear stability of the system, negative for the
system to be stable and positive to be unstable.

Now we focus on the following three typical scenarios:
(i) Phase I: suppressed epilepsy (σ/L = 0.04 m); (ii) Phase
IV: focal seizures (σ/L = 0.053 m); (iii) Phase II: general-
ized seizures (σ/L = 0.067 m), with their steady states and
corresponding eigenvalue spectra shown in Figs. 10(c)–10(h).

First, for the suppressed epilepsy, Fig. 10(c) shows consis-
tency between the analytic solution and the numeric simula-
tion of the stable steady state, with its stability indicated in
Fig. 10(d). Their excellent match verifies the assumption of
radial symmetry, and lends confidence in further analysis.

Second, for the focal seizures with larger σ/L, the steady
state becomes unstable with mismatch between the analytic
solution and the numeric simulation for the focal region,
as shown in Fig. 10(e). Its instability is indicated by one
eigenvalue having a positive real part [the rightmost blue star
in Fig. 10(f)]. Here, the focal epilepsy is not suppressed but
spatially limited without spreading over the whole system
because σ/L is only large enough to resist suppression by
the normal region. So the steady state is stable at the tail but
unstable in the focal region.

Finally, for the generalized seizures with σ/L further in-
creased, the steady state at the tail becomes unstable as well,
and a ∼3-Hz wave originating from the focal region propa-
gates over the whole system. One can find from Fig. 10(h)
that there is one more eigenvalue along the bottom branch
crossing the imaginary axis. Nonetheless, Fig. 10(g) shows
the consistency between the time-averaged activity and the
unstable steady state, suggesting that the activity at each
spatial point surrounds the unstable steady state, and the
∼3-Hz wave emerges via a supercritical Hopf bifurcation.

The dynamical pictures for the above three scenarios are
consistent with those indicated in eigenvalue spectra. Notice
that Figs. 10(d), 10(f) and 10(h) show that most eigenval-
ues (red stars) align with two branches (black lines), where
L−1

CT (λ,∞) is real and negative [L−1
CT (λ,∞) = 0 at the branch

right end]. These two branches correspond to resonances in
the two delayed feedback loops: e → r → s → e and e →
s → e, respectively, as in the spatially homogeneous case
[30,44]. It is a general property in the delayed system that an
infinite number of eigenvalues will align with such branches.
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FIG. 10. Steady states and corresponding eigenvalue spectra. (a) Re(λ) vs σ/L at re/L = 0.05 for the three eigenvalues λ with largest
Re(λ). Three vertical dash-dotted black lines indicate the values of σ/L for further analysis in (c)–(h). (b) Corresponding Im(λ) vs σ/L as in
(a). (c) Stable steady state at σ/L = 0.04; (c) corresponding rightmost eigenvalues with largest Re(λ) (stars) at σ/L = 0.04. (e) Unstable steady
state evolves to a localized ∼10-Hz wave at σ/L = 0.053; (f) corresponding rightmost eigenvalues with largest Re(λ) (stars) at σ/L = 0.053.
(g) Unstable steady state evolves to a ∼3-Hz wave at σ/L = 0.067; (h) corresponding rightmost eigenvalues with largest Re(λ) (stars) at
σ/L = 0.067. In (c), (e), and (g), steady states are compared between the time-averaged 1D spatial profile from simulations and the numerical
solutions obtained from integration of Eq. (10);

Generally, the delay leads the spectrum of the system to be
determined by the solutions of

W (λ) exp[W (λ)] = λ, (22)

where W (λ) is a complex function with an infinite number
of solutions [68]. It is continuous in the leftward spectrum
with Re(λ) converging to negative infinity, while it becomes
discrete in the rightward spectrum with Re(λ) getting close
to zero. More mathematical details can be found in Ref. [68].
So most dynamical eigenmodes along the two branches cor-
respond to resonances of the same corticothalamic loops as in
the spatially homogeneous case.

However, some eigenvalues [blue stars in Figs. 10(d), 10(f)
and 10(h)] emerge beyond these two branches, implying that
their eigenmodes are not purely induced by the resonance of
the underlying corticothalamic loops. For these eigenmodes,
L−1

CT (λ,∞) has a much larger value than those with eigen-
values (red stars) close to the two branches. That means
the steady state at the tail stays stable and far away from
a corticothalamic loop resonance, while the system’s steady
state is unstable, as indicated in Fig. 10(f) with a positive
Re(λ). Thus, such an eigenmode is confined to the focal
region, as confirmed in Figs. 11(a) and 11(b). As a result,
a different spatiotemporal wave with different frequency and
waveform emerges from those of generalized seizures. What
is more, the oscillation amplitude at each spatial point of such
an eigenmode is also confined by its steady state’s activity
level, as shown in Fig. 11(b). This is in contrast with the
eigenmode of generalized seizures, as shown in Figs. 11(c)

and 11(d), where the wave propagates outward from the focal
area, and the oscillation at each spatial point surrounds its
steady state’s activity level.

The localized ∼10-Hz waves are spatially limited due to
the spatial confinement of the intrinsic steady state’s activity
levels. It also explains why edge effects destroy the pattern
formation conditions for the focal seizures when there is not
enough space to confine the waves away from the boundary.
Furthermore, the spatially confined eigenmode in Figs. 11(a)
and 11(b) is also unstable and then further evolves to another
localized ∼10-Hz wave with a much higher amplitude, as seen
in Fig. 10(e). So the focal seizures emerge suddenly from the
suppressed instability via a subcritical Hopf bifurcation.

B. The role of corticothalamic loop

As shown in Figs. 10(d), 10(f) and 10(h), the emergence
of the localized wave is different from the corticothalamic
loop resonance in the homogeneous system. But they do not
indicate that the emergence is independent on the underlying
corticothalamic loop. To this end, we are employing the above
eigenvalue spectra to investigate how alteration of the time lag
td between cortex and thalamus affects the frequency of the
spatially localized wave. As shown in Fig. 12, the frequency
f = Im(λ)/2π is inversely dependent on td , which can be
fitted as f ≈ 2π/(0.0086td + 0.25). This means the period T
is linearly dependent on the time lag td , and thus the underly-
ing corticothalamic loop has a significant contribution to the
frequency of the emerged wave. Although this dependence is
similar to that of the corticothalamic loop resonance in the
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FIG. 11. Spatiotemporal eigenmodes of ∼10-Hz wave and
∼3-Hz wave at the respective critical points for re/L = 0.05.
(a) One-dimensional wave dynamics of φe for points at ry = 0 with
σ/L = 0.046 for the focal seizures. (b) One-dimensional spatial
profile of φe with σ/L = 0.046 for both eigenmodes and the cor-
responding steady states at ry = 0 and various instantaneous phases
ϕ0, as indicated in the bottom legend. (c) Same as in (a) but with
σ/L = 0.059 for the generalized seizures. (d) Same as in (b) but with
σ/L = 0.059.

homogeneous system, the emergence of the localized wave
does not require the resonance of the underlying corticotha-
lamic loop. Thus, the localized wave is a spatiotemporal
emergence with the contributions of both spatial confinement
as well as the underlying corticothalamic loop.

C. Robustness of dynamical mechanism

The above dynamical mechanism for focal seizures is
robust and does not require parameter fine-tuning. A large
parameter region can be found in Figs. 13(a) and 13(b) where
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FIG. 12. Dependence of the frequency of the spatially localized
wave on the time lag td between cortex and thalamus.

FIG. 13. Focal seizures due to strong nonlinear effects in the
focus. (a) Phase diagram on [σ̂ , νse(0)]; (b) phase diagram on
[νse(0), νse(L/2)] with σ̂ = 1.2. νse(L/2) has a much weaker effect
on the emergence of focal seizures, in consistent with its underlying
dynamical mechanism. The linear instability boundaries are also well
predicted by linear stability analysis.

the focal activity is too unstable to be suppressed by the
normal region, but does not generalize over the whole system,
with νse(0) much larger than the linear stability boundary of
the corticothalamic loops [the critical value νc

se ≈ 1.98 mV s,
as indicated in Fig. 3(a) and Fig. 4(a)]. Figure 13(a) also
shows that the suppressed epilepsy can transition directly to
the generalized seizures when νse(0) is not large enough to
induce the formation of focal seizures. This is the weakly
nonlinear case explored in Ref. [69]. So the focal seizures
emerge due to the combination of the spatial confinement, the
underlying corticothalamic loop, as well as strong nonlinear
effects of the focal area.

The above emergence also requires the normal region to be
stable enough to be unevoked by the focal epilepsy. However,
Fig. 13(b) shows that νse(L/2) has a much weaker effect. This
is consistent with the underlying dynamical mechanism: for
the focal seizures, the normal region is already stable and
can resist invasion of seizure activity of the focus, so further
lowering νse(L/2) to render the normal region more stable will
make little contribution, as long as νse(0) is large enough to
free the focal region from being suppressed by the normal
region. These results are also consistent with the experimental
findings in WAG/Rij and GAERS rats: pharmacological deac-
tivation by blocking the neural activity of the driving cortical
source can almost completely abolish SWDs in all cortical
regions [17], while such deactivation in other cortical regions
has little effect [70].

The simulation results are also confirmed by linear stability
analysis, as shown in Fig. 13, indicating that the dynamical
mechanism does not require some specific parameter. The
dynamical mechanism can exist whenever the corticothalamic
system has strong nonlinear effects in the focal area and the
conditions for spatial confinement are satisfied.

V. SUMMARY AND DISCUSSION

This work has investigated how focal epilepsy can be
suppressed, spatially limited, or generalized over the whole
brain, via a physiology-based corticothalamic model with
focal spatial heterogeneity. We found that the interplay be-
tween cortical propagation and the underlying corticothalamic
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circuit can generate various spatiotemporal dynamics, depen-
dent on the focal width σ and the axon range re scaled by the
system size L. The main results are:

(i) The spatiotemporal dynamics summarized in the phase
diagram (Fig. 5) have 6 phases, which can be categorized
into three scenarios: suppressed epilepsy (Phase I and V),
focal seizures (Phases IV, V, and VI), and generalized seizures
(Phases II, III, and VI).

(ii) Axonal projections from the normal region can sup-
press the focal epilepsy when σ/re � σ̂c, whose value is
mainly determined by the pathological value νse(0) of focal
corticothalamic connection strength in this study.

(iii) In the generalized seizures, ∼3-Hz focal activity
propagates rapidly over the whole system, with the temporal
frequency and the spatial extent comparable with absence
seizure activity in humans, and can be associated with the
global aspect of absence epilepsy. Besides, the direction of
propagating wave fronts can be reversed from outward to
inward if re/L is small.

(iv) In the focal seizures, the spatially limited ∼10-Hz
activity emerges due to strong nonlinear effects in the focal
region and spatial confinement by the surrounding stable
normal region, with the temporal frequency and the spatial
extent comparable with absence seizure activity in genetic
rat models, which can be associated with the focal aspect of
absence epilepsy. This also provides a biophysical explanation
of spatially more localized waves with higher oscillation
frequency observed in rodents. Besides, the emergence can
exist in the system with large-enough length to avoid edge
effects, and thus general for other boundary conditions and
cortical geometries.

(v) In both focal seizures and generalized seizures, the
oscillation frequencies are robust, independent on re/L and
σ/L, and the phase velocity vp of the waves is much larger
than the axon propagation speed.

(vi) In the focal seizures, vp is predicted to depend linearly
on the spatial extent w, which can be tested in experiments.

(vii) The underlying dynamical mechanisms for both fo-
cal seizures and generalized seizures are explained in detail
through eigenvalue spectra and corresponding eigenmodes at
critical states.

(viii) The stability in the normal region has a weaker
effect on suppressing the focal epilepsy than the instabil-
ity in the focal region. This result is consistent with the
experimental findings of the effects of pharmacological de-
activation on different cortical regions in WAG/Rij and
GAERS rats [17,70]: Pharmacological deactivation by block-
ing the neural activity of the driving cortical source can
almost completely abolish SWDs in all cortical regions [17],
whereas such deactivation in other cortical regions has little
effect [70].

Our results also have several implications for both theoret-
ical and experimental further studies:

(i) The 7- to 11-Hz activity in WAG/Rij and GAERS rats
may be explained by a relatively short axon length re/L, while
re/L in human brains may be large enough to place the system
in the regime dominated by edge effects, therefore inducing
generalized seizures that spread over the whole system.

(ii) The spatially limited waves in the focal seizures can
be modulated by ∼2-Hz slow waves. It is worth further

investigating the underlying biophysical mechanism for such
robust modulation in future.

(iii) In a narrow parameter range, the system can have
two stable states: focal seizures and generalized seizures,
referred to as Phase VI in Figs. 5 and 7. This phenomenon
may explain the on-off intermittency of SWDs durations of
absence seizures in the EEG of WAG/Rij rats [71], which also
has chaotic properties.

In this work, we have focused on the interplay between
cortical propagation and the underlying corticothalamic loop,
which goes beyond most previous work on spatially extended
heterogeneous but purely cortical models [72–75]. The emer-
gence of the breathers was explored in previous work, but
only in an abstract neural field model with Mexican hat
connection profile and feedbacks, such as spike-frequency
adaptation [58,76,77]. In most previous theoretical work, the
sigmoid function was simplified to a step function, easing
linear stability analysis [55,78]; however, the step function is
unrealistic, whereas our corticothalamic model is physiologi-
cally justifiable, and relies on parameters that are experimen-
tally measurable. Thus our results can be related back to the
underlying physiological effects.

This work presents dynamical mechanisms for understand-
ing how the characteristic range of corticocortical axons con-
tributes to the interactions between normal arousal states and
focal absence epilepsy and how the spatial extent of the focal
seizure can account for the observed faster oscillations. The
dynamical mechanism also provides a biophysical explana-
tion of the temporally higher frequency, but spatially more
localized, cortical waves observed in rodents. The key finding
is the emergence of a different spectral peak from the macro-
scopic spatiotemporal interactions between normal states and
seizure activities due to the underlying loop resonances. Such
emergence is not connected to the time scales of microscopic
cellular mechanisms. Hence, the spatiotemporal interactions
are essential for understanding focal seizures and our work
here provides a unified dynamical framework for both global
and focal aspects of absence epilepsy.

This dynamical mechanism is different from the corti-
cothalamic loop resonance in the spatially homogeneous case
[30,31,44], which can be attributed to some specific under-
lying pathways, such as e → r → s → e. However, here,
the localized wave with a new oscillating frequency is an
emergence phenomenon, due to the combination of spatial
confinement, strong nonlinear effects in the focal area as
well as the underlying corticothalamic loop. These effects are
beyond that of the homogeneous system. At present, it is hard
to say what kind of underlying pathways can lead the system
to produce a localized wave with a new frequency. In our
future work, more work should be conducted to explore the
potential underlying pathways of the corticothalamic system
for the emergence.

Additionally, our analysis of eigenvalue spectra and the
corresponding eigenmodes uncovers the underlying dynam-
ical mechanism of the emergence. The eigenmode for focal
seizures provides a new perspective for analyzing the real
data, e.g., ECoG and MEG signals on human patients, and
initiates some further questions about the interplay of mi-
croscopic and macroscopic mechanisms for seizure activi-
ties, especially in absence seizures; for example: whether the
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macroscopic brain dynamics is enough to describe seizure
activities; what more biophysical properties are required, e.g.,
neuronal bursting; what is the interplay between microscopic
and macroscopic mechanisms; whether the real data of ab-
sence seizures reflect the newly discovered spatiotemporal
eigenmodes: temporally faster but spatially localized waves;
what is the contribution of the macroscopic mechanisms in
the observed data; and whether the eigenmodes can be used to
track the macroscopic brain states for seizure prediction. We
are currently seeking experimental data to validate our results
and predictions, as well as to apply our newly discovered
spatiotemporal patterns in real data analysis.

Some extensions could be investigated in future to account
for more features of absence seizure activities:

(i) Thalamic relay neurons have well-characterized dual
firing modes: bursting and tonic spiking. It was found recently
in experiments that the rhythmic synchronized phasic firing
of thalamic relay neuronal population can initiate SWDs
and seems necessary for absence seizure maintenance [19].
The origin of such synchronization is shown from cortical
drive and temporally framing via feedforward inhibition from
cortical neurons to reticular neurons and then to relay neu-
rons [20]. So it is essential to study the effect of neuronal
firing modes and its interaction with the corticothalamic
loop to bridge the gap between microscale mechanisms and
macroscopic cortico-thalamo-cortical oscillations in absence
epilepsy.

(ii) The specific somatosensory-thalamo-cortical network
should be considered to further study the dynamical mech-
anism for SWD initiation, maintenance, and termination in
genetic rat models [18,79]. The exact interactions between
cortex and different thalamic nuclei are essential for under-
standing how the cortical ‘focus’ within the perioral subregion
of the somatosensory cortex drives other parts of the cortex
and the ventral basal complex of the thalamus.

(iii) SWDs are also affected by lesions and pharmacologi-
cal manipulations of the basal ganglia (BG) and neuromodu-
lator pathways [80,81]. The effect of BG has been proposed
to be important for maintaining absence seizures over several
tens of seconds by the dynamical loop of the BG-thalamo-
cortical network [82], which also provides a modulation site
and an intervention pathway to prevent absence seizures
[83,84]. So it is essential to investigate the effect of BG
modulation of focal epilepsy.

(iv) The transitions from the suppressed epilepsy to the
focal seizures or the generalized seizures can be more sys-
tematically studied by employing normal form theory [44].
However, their canonical nature in the sense of normal form
theory has not yet been rigorously justified for spatiotempo-
ral evolution equations. But with some special perturbation
modes, it can still be employed to understand the effects
on bifurcation types of other biophysical properties, such
as bursting activities in thalamic populations [5], the slow
dynamics of extracellular potassium ion concentration [33],
and spike frequency adaptation [85].

(v) Recently, the combination of homogeneous and het-
erogeneous spatial connectivity kernels has been proposed to
be critical for synchronous seizure termination, which is a
commonly observed phenomenon during seizures [86,87]. So
it would be significant to extend our corticothalamic model

with heterogeneous long-range spatial connectivity to study
spatiotemporal dynamics of seizure activities.
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APPENDIX: DERIVATION OF LCT(λ, r)

Here we present the derivation of the radially symmetric
linear operator LCT(λ, r) for each spatial point of the cor-
ticothalamic system and each eigenmode corresponding to
eigenvalue λ. The eigenvalue λ = 0 is for the stationary solu-
tion in Eqs. (10) and (12) and others for general eigenmodes
in Eqs. (18) and (20).

We derive LCT(λ, r) for both cases by imposing a small
perturbation on either [φ0

e (L/2),V 0
e (L/2),V 0

r (L/2),V 0
s (L/2)]

or [φ0
e (r),V 0

e (r),V 0
r (r),V 0

s (r)]. Here the general perturbation
with eigenvalue λ at position r is denoted as [φ̂e, V̂e, V̂r, V̂s],
where the arguments (λ, r) are omitted for simplicity, which
yields

[D(λ) − L ]φ̂e = Q̂e, (A1)

V̂e = L(λ)[νeeφ̂e + νeiQ̂e + νesQ̂sE (λ)], (A2)

V̂r = L(λ)[νreφ̂eE (λ) + νrsQ̂s], (A3)

V̂s = L(λ)[νse(r)φ̂eE (λ) + νsrQ̂r], (A4)

with

E (λ) = exp(−λtd ), (A5)

D(λ) = (1 + λ/γe)2, (A6)

L(λ) = (1 + λ/α)−1(1 + λ/β )−1. (A7)

By linearizing the sigmoid function near the steady state,
Eqs (A2)–(A4) yield

Q̂e = [x + yszs]φ̂e, (A8)

with

x = Jee

1 − Jei
, (A9)

ys = Jes

1 − Jei
, (A10)

zs = Jse + Jsre

1 − Jsrs
, (A11)

where Jabc = JabJbc, and Jab(λ, r) = Gab(r)L(λ) for
connections within cortex or thalamus, and Jab(λ, r) =
Gab(r)L(λ)E (λ) for connections between cortex and thalamus
with time delay td . Here x, ys, and zs are transfer functions for
the signal propagating along axons from cortex to cortex, from
thalamic relay nucleus to cortex, and from cortex to thalamic
relay nucleus, respectively, as shown in Fig. 2 of Ref. [44].
The gain Gab(r) = νabηa(r)Qmax/σ

′ is the additional output
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produced by neurons a per unit additional input from neurons
b. Using Eqs (A1)–(A11), LCT(λ, r) can be expressed as

L−1
CT (λ, r) = D(λ) − x(λ, r) − ys(λ, r)zs(λ, r), (A12)

which at L−1
CT (λ, r) = 0 yields the resonance of the corticotha-

lamic loop for each radial distance r and each eigenmode with
eigenvalue λ.
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