
PHYSICAL REVIEW E 100, 032402 (2019)

Cellular automata as convolutional neural networks

William Gilpin *

Quantitative Biology Initiative, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 17 March 2019; revised manuscript received 19 July 2019; published 4 September 2019)

Deep-learning techniques have recently demonstrated broad success in predicting complex dynamical systems
ranging from turbulence to human speech, motivating broader questions about how neural networks encode
and represent dynamical rules. We explore this problem in the context of cellular automata (CA), simple
dynamical systems that are intrinsically discrete and thus difficult to analyze using standard tools from dynamical
systems theory. We show that any CA may readily be represented using a convolutional neural network
with a network-in-network architecture. This motivates the development of a general convolutional multilayer
perceptron architecture, which we find can learn the dynamical rules for arbitrary CA when given videos of the
CA as training data. In the limit of large network widths, we find that training dynamics are nearly identical
across replicates, and that common patterns emerge in the structure of networks trained on different CA rulesets.
We train ensembles of networks on randomly sampled CA, and we probe how the trained networks internally
represent the CA rules using an information-theoretic technique based on distributions of layer activation
patterns. We find that CA with simpler rule tables produce trained networks with hierarchical structure and
layer specialization, while more complex CA produce shallower representations—illustrating how the underlying
complexity of the CA’s rules influences the specificity of these internal representations. Our results suggest how
the entropy of a physical process can affect its representation when learned by neural networks.

DOI: 10.1103/PhysRevE.100.032402

I. INTRODUCTION

Recent studies have demonstrated the surprising ability of
deep neural networks to learn predictive representations of
dynamical systems [1–5]. For example, certain types of recur-
rent neural networks, when trained on short-timescale samples
of a high-dimensional chaotic process, can learn transition
operators for that process that rival traditional simulation
techniques [2,6,7]. More broadly, neural networks can learn
and predict general features of dynamical systems—ranging
from turbulent energy spectra [8], to Hamiltonian ground
states [9,10], to topological invariants [11]. Such successes
mirror well-known findings in applied domains [12], which
have convincingly demonstrated that neural networks may
not only represent, but also learn, generators for processes
ranging from speech generation [13] to video prediction [14].
However, open questions remain about how the underlying
structure of a physical process affects its representation by
a neural network trained using standard optimization tech-
niques.

We aim to study such questions in the context of cellu-
lar automata (CA), among the simplest dynamical systems
due to the underlying discreteness of both their domain and
the dynamical variables that they model. The most widely
known CA is Conway’s Game of Life, which consists of
an infinite square grid of sites (“cells”) that can only take
on a value of zero (“dead”) or one (“alive”). Starting from
an initial binary pattern, each cell is synchronously updated

*Also at Department of Applied Physics, Stanford University,
Stanford, California 94305, USA; wgilpin@stanford.edu

based on its current state, as well as its current number of
living and nonliving neighbors. Despite its simple dynamical
rules, the Game of Life has been found to exhibit remarkable
properties ranging from self-replication to Turing universality
[15]. Such versatility offers a vignette of broader questions in
CA research, because many CA offer minimal examples of
complexity emerging from apparent simplicity [16–20]. For
this reason, CA have previously been natural candidates for
evaluating the expressivity and capability of machine learning
techniques such as genetic algorithms [21,22].

Here, we show that deep convolutional neural networks are
capable of representing arbitrary cellular automata, and we
demonstrate an example network architecture that smoothly
and repeatably learns an arbitrary CA using standard loss
gradient-based training. Our approach takes advantage of the
“mean-field limit” for large networks [23–25], for which we
find that trained networks express a universal sparse repre-
sentation of CA based on depthwise consolidation of similar
inputs. The effective depth of this representation, however,
depends on the entropy of the CA’s underlying rules.

II. EQUIVALENCE BETWEEN CELLULAR AUTOMATA
AND CONVOLUTIONAL NEURAL NETWORKS

A. Cellular automata

We define a CA as a dynamical system with M possible
states, which updates its value based on its current value and
D other cells—usually its immediate neighbors in a square
lattice. There are MD possible unique M-ary input strings to a
CA function, which we individually refer to as σ . A cellular
automaton implements an operator G(σ) that is fully specified
by a list of transition rules σ → m, m ∈ 0, 1, . . . , M − 1, and

2470-0045/2019/100(3)/032402(11) 032402-1 ©2019 American Physical Society

https://orcid.org/0000-0001-8666-6951
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032402&domain=pdf&date_stamp=2019-09-04
https://doi.org/10.1103/PhysRevE.100.032402

WILLIAM GILPIN PHYSICAL REVIEW E 100, 032402 (2019)

T = 1T = 0

Activations

3x3 filters
1x1 filters

FIG. 1. Conway’s Game of Life as a convolutional neural network. Two convolutional filters identify the value of the center pixel and
count the number of neighbors. These features are then scored and summed to generate a prediction for the system at the next timepoint.

there are MMD
possible unique G(σ), each implementing a

different ruleset. For the Game of Life, M = 2, D = 9, and
so G(σ) is a Boolean function that maps each of the 29 = 512
possible 9-bit input strings to a single bit. A defining feature of
CA is the locality of dynamical update rule, which ensures that
the rule domain is small; the size of D thus sets an upper bound
on the rate at which information propagates across space.

B. Convolutional neural networks

We define a convolutional neural network as a function that
takes as an input a multichannel image, to which it applies
a series of local convolutions via a trainable “kernel.” The
same kernel is applied to all pixels in the image, and each
convolutional layer consolidates information within a fixed
local radius of each pixel in the input image [12]. Many
standard convolutional architectures include “pooling” layers,
which downsample the previous layer and thereby consolidate
local information across progressively larger spatial scales;
however, all CNN discussed in this paper do not include
downsampling steps, and thus preserve the full dimensionality
of the input image.

C. Cellular automata as recurrent mlpconv networks

The primary analogy between cellular automata and tra-
ditional convolutional neural networks arises from (1) the
locality of the dynamics and (2) simultaneous temporal up-
dating of all spatial points. Because neural networks can,
in principle, act as universal function approximators [26], a
sufficiently complex neural network architecture can be used
to fully approximate each rule σ → m that comprises the
CA function G(σ). This single-neighborhood operator can
then be implemented as a convolutional operator as part of
a CNN, allowing it to be applied synchronously to all pixel
neighborhoods in an input image.

Representing a CA with a CNN thus requires two steps:
feature extraction to identify each of the MD input cases
describing each neighborhood, followed by association of
each neighborhood with an appropriate output pixel. In the
Appendix, we show explicitly how to represent any CA us-
ing a single convolutional layer, followed by repeated 1×1
convolutional layers. The appropriate weights can be found
analytically using analysis of the CA itself, rather than via
algorithmic training on input data. In fact, we find that many
representations are possible; we show that one possible ap-

proach defines a shallow network that uniquely matches each
of the MD input σ against a template, while another approach
treats layers of the network like levels in a tree search that
iteratively narrows down each input σ to the desired output
m. A key aspect of this approach is the usage of only one
nonunity convolutional layer (with size 3×3 for the case of
the Game of Life), which serves as the first hidden layer in the
network. The receptive field of these convolutional neurons is
equivalent to the neighborhood D of the CA. All subsequent
layers consist of 1×1 convolutions, which do not consolidate
any additional neighbor information.

Our use of 1×1 convolutions to implement the logic of
the CA rule table is inspired by recent work showing that
such layers can greatly increase network expressivity at low
computational cost [27]. Moreover, because CA are explic-
itly local, the network requires no pooling layers—making
the network the equivalent of fitting a small, convolutional
multilayer perceptron or “mlpconv” to the CA [27,28]. Our
general approach is comparable to previous uses of deep
convolutional networks to parallelize simple operations such
as binary arithmetic [29], and it differs from efforts using
less-common network types with sigma-pi units, in which
individual input bits can gate one another [30].

Figure 1 shows an example analytical mlpconv represen-
tation of the Game of Life, in which the two salient features
for determining the CA evolution (the center pixel value and
the number of neighbors) are extracted via an initial 3×3
convolution, the results of which are passed to additional
1×1 convolutional layers to generate a final output prediction
(exact weights are given in the Supplemental Material [31]).
The number of separate convolutions (four with the neighbor
filter with different biases, and one with the identity filter)
is affected by the choice of ReLU activations (the current
best practice for deep convolutional networks) instead of
traditional neurons with saturating nonlinearities [32]. Many
alternative and equivalent representations may be defined,
underscoring the expressivity of multilayer perceptrons when
representing simple functions like CA.

III. A GENERAL NETWORK ARCHITECTURE FOR
LEARNING ARBITRARY CELLULAR AUTOMATA

Having proven that arbitrary cellular automata may be
analytically represented by convolutional perceptrons with
finite layers and units, we next ask whether automated training

032402-2

CELLULAR AUTOMATA AS CONVOLUTIONAL NEURAL … PHYSICAL REVIEW E 100, 032402 (2019)

FIG. 2. Architecture of a trainable convolutional neural network for learning cellular automata. Dimensions, where not marked, are
determined by the dimensionality of the previous layer.

of neural networks on time series of cellular automata images
is sufficient to learn their rules. We investigate this process
by training ensembles of convolutional neural networks on
random images and random CA rulesets. We start by defining
a CA as an explicit mapping between each of 29 = 512
possible 3×3 pixel groups in a binary image, and a single
output pixel value. We then apply this map to an ensemble of
random binary images (the training data), to produce a new
output binary image set (the training labels). Here, we use
large enough images (10×10 pixels) and training data batches
(500 images) to ensure that the training data contains at least
one instance of each rule. On average, each image contains
an equal number of black and white pixels; for sufficiently
large images this ensures that each of the 512 input states
is equally probable. We note that, in principle, training the
network will proceed much faster if the network is shown an
example of only one rule at a time. However, such a process
causes the network structure to depend strongly on the order
in which individual rules were shown, whereas presenting all
input cases simultaneously forces the network to learn internal
rule representations based on their relative importance for
maximizing accuracy.

A. Network architecture and training parameters

Figure 2 shows the network used in the training experi-
ments. Our network consists of a basic mlpconv architecture
corresponding to a single 3×3 convolutional layer, followed
by a variable number of 1×1 convolutional layers [28]. No
pooling layers are used, and the parameters in the 3×3 and
1×1 layers are trained together. The final hidden layer consists
of a weighted summation, which generates the predicted value
for the next state of a lattice site. Empirically, including final
“prediction” layer with softmax classifier accelerates training
on binary CA by reducing the dependence of convergence
on initial neuron weights; however, we omit this step here
to allow the same architecture to readily be generalized for
CA with M > 2. Our network may thus be considered a fully
convolutional linear committee machine.

We trained the networks using the Adam optimizer with
an L2 norm loss function, with hyperparameters (learning
rate, initial weights, etc.) optimized via a grid search (see
Appendix for all hyperparameters). Because generating new
training data is computationally inexpensive, for each stage
of hyper parameter tuning, a new, unseen validation dataset
was generated. Additionally, validation was performed using
randomly chosen, unseen CA rulesets to ensure that network
hyperparameters were not tuned to specific CA rulesets. Dur-
ing training, a second validation dataset 20% of the size of
the training data was generated from the same CA ruleset.
Training was stopped when the network prediction accuracy
reached 100% on this secondary validation dataset, after
rounding predictions to the nearest integer. The loss used to
compute gradients for the optimizer was not rounded. The
final, trained networks were then applied to a new dataset of
unseen test data (equal in size to five batches of training data).

We found that training successfully converged for all
CA rulesets studied, and we note that the explicit use of
a convolutional network architecture simplifies learning of
the full rule table. Because we are primarily interested in
using CNN as a way to study internal representations of CA
rulesets, we emphasize that 100% performance on the second
validation dataset a condition of stopping training. As a result,
all trained networks had identical performance; however, the
duration and dynamics of training varied considerably by
CA ruleset (discussed below). Regardless of whether weight-
based regularization was used during training, we found that
performance on the unseen test data was within ∼0.3% of
the training data for all networks studied (after outputs are
rounded, performance reaches 100%, as expected). We cau-
tion, however, that this equal train-test performance should
not be interpreted as a measure of generalizability, as would
be the case for CNN used to classify images, etc. [33].
Rather, because a CA only has MD possible input-output pairs
(rather than an unlimited space of inputs), this result simply
demonstrates that training was stopped at a point where the
model had encountered and learned all inputs. In fact, we note
that it would be impossible to train a network to represent an

032402-3

WILLIAM GILPIN PHYSICAL REVIEW E 100, 032402 (2019)

Training epoch

Rule entropy Hca

Fi
na

l L
os

s

Lo
ss

10

10

10

0 2 4 6 8

Epoch 1500

Epoch 500

Epoch 50

Epoch 5

Exact

(a) (b)

FIG. 3. Training 2560 convolutional neural networks on random cellular automata. (a) A network trained on the Game of Life for different
durations, and then applied to images of each stage of the “glider” solution. (b) The loss versus time during training, colored by the rule
entropy Hca. Groups of 512 related cellular automata were generated by iteratively choosing random σ → 0 rules from the 512 possible input
configurations, and setting those sites to σ → 1. Five replicates were performed. Loss values represent the sum over the batch; values of 10 or
smaller imply that only small rounding errors were present at the end of training. The entropy of the resulting rule table is characteristic of the
CA, and it is indicated by Hca = 0 (blue, minimum entropy CA) to Hca = 9 (magenta, maximum entropy CA). (Inset) The final loss for each
network at the end of training, shown as a function of Hca.

arbitrary CA without being exposed to all of its inputs: since
an arbitrary CA can send any given input σ to any given output
m, there is no way for a network to predict the output for an
symbol without having encountered it previously. However,
we note that a network could, in principle, encode a prior
expectation for an unseen input symbol σ , if it was trained
primarily on CA of a certain type.

In a previous work that used a one-layer network to learn
the rules of a chaotic CA, it was found that training without
weight-sharing prevents full learning, because different spatial
regions on the system’s attractor have different dynamical
complexity [30]. In the results below, we deliberately use very
large networks with 12 hidden layers—one 3×3 convolutional
layer, followed by eleven 1×1 convolutional layers, all with
100 neurons per layer. These large networks ensure that the
network can represent the CA ruleset in as shallow or deep
a manner as it finds—and we expect and observe that many
fewer neurons per layer are used than are available.

B. Training dynamics of networks

Consistent with prior reports that large networks approach
a “mean-field” limit [24,25,34], we find that training is highly
repeatable for the large networks that we study, even when
different training data is used, different CA rules are learned,
or the hyperparameters are altered slightly from their optimal
values (although this extends the duration of training). We
also find that doubling the depth and width of the networks
does not qualitatively affect the results, consistent with a
large-network limit. Additionally, we trained alternative net-
works using a different optimizer (vanilla stochastic gradient
descent) and loss function (cross-entropy loss), and found
nearly identical internal structure in the trained networks
(as discussed below); however, the form of the loss curves

during training was more concave for such networks. See the
Supplemental Material [31] for further details of networks and
training.

Figure 3(a) shows the results of training a single network
on the Game of Life, and then applying the trained network to
the “glider,” a known solitonlike solution to the Game. During
the early stages of the training, the activations appear random
and intermittent. As training proceeds, the network adjusts
to the scale of output values generated by the input data,
and then begins to learn clusters of related rules—leading
to tightening of the output image and trimming of spurious
activation patterns.

IV. ANALYSIS OF TRAINED NETWORKS

We next consider the relevance of the training observations
to the general properties of binary cellular automata. Intuition
would suggest that certain sets of CA rules are intrinsically
easier to learn, regardless of M and D; for example, a null CA
that sends every input to zero in a single timestep requires
a trivial network structure, while the Game of Life should
require a structure like Fig. 1 that can identify each possible
neighborhood count. We thus repeat the training data genera-
tion and CA network training process described above, except
this time we sample CA at random from the 229 ≈ 10154 pos-
sible rulesets for binary CA. The complexity of the dynamics
produced by a given rule are generally difficult to ascertain
a priori, and typical efforts to systematically investigate the
full CA rule space have focused on comparative simulations
of different rules [16,17]. For example, the Game of Life
is a member of a unique set of “Class IV” CA capable of
both chaotic and regular dynamics depending on their initial
state; membership in this class has been hypothesized to be a
prerequisite to supporting computational universality [15,16].

032402-4

CELLULAR AUTOMATA AS CONVOLUTIONAL NEURAL … PHYSICAL REVIEW E 100, 032402 (2019)

General prediction of dynamical class is an ongoing question
in the CA literature [21]; however, there is a known, ap-
proximate relationship between the complexity of simulated
dynamics, and the relative fraction λ of transitions to zero
and one among the full set of 512 possible input cases:
λ = 0 and λ = 1 correspond to null CA, whereas λ = 0.5
corresponds to CA that sends equal numbers of input cases
to 0 and 1 [17]. This captures the general intuition that CA
typically display richer dynamics when they have a broader
range of output symbols [18,20]. Here, instead of using λ

directly, we parametrize the space of CA equivalently using
the effective “rule entropy,” Hca. We define Hca by starting
from a maximum-entropy image with a uniform distribution
of input symbols (pσ ≈ 1/MD for all σ), to which we then
apply the CA rule once and then record the new distribution
of input cases, p′

σ . The residual Shannon entropy Hca ≡
−∑

σ p′
σ log2 p′

σ provides a measure of the degree to which
the CA rules compress the space of available states. Hca(λ)
monotonically increases from Hca(0) = 0 until it reaches a
global maximum at Hca(1/2) = 9, after which it symmetri-
cally decreases back to Hca(1) = 0.

Figure 3(b) shows the result of training 2560 randomly
sampled CA with different values of Hca. Ensembles of 512
related cellular automata were generated by randomly select-
ing single symbols in the input space to transition to 1 (starting
with the null case σ → 0 for all σ), one at a time, until
reaching the case σ → 1 for all σ . This “table walk” sampling
approach [17] was then replicated 5 times for different starting
conditions.

We observe that the initial 10–100 training epochs are uni-
versal across Hca. Detailed analysis of the activation patterns
across the network (Supplemental Material [31]) suggests
that this transient corresponds to initialization, wherein the
network learns the scale and bounds of the input data. Recent
studies of networks trained on real-world data suggest that
this initialization period consists of the network finding an
optimal representation of the input data [35]. During the
next stage of training, the network begins to learn specific
rules: the number of neurons activated in each layer begins
to decrease, as the network becomes more selective regarding
which inputs provoke nonzero network outputs (see Supple-
mental Material [31]). Because Hca determines the sparsity of
the rule table—and thus the degree to which the rules may be
compressed—Hca strongly affects the dynamics of this phase
of training, with simpler CA learning faster and shallower
representations of the rule table, resulting in smaller final
loss values [Fig. 3(b), inset]. This behavior confirms general
intuition that more complicated CA rules require more precise
representations, making them harder to learn.

A key feature of using large networks to fit simple func-
tions like CA is strong repeatability of training across different
initializations and CA rulesets. In the Appendix, we reproduce
all results shown in the main text using networks with differ-
ent sizes and depths, and even a different optimizer, loss func-
tion, and other hyperparameters, and we report nearly identi-
cal results (for both training and test data) as those found using
the network architecture described above. On both the training
data and test data, we find similar universal training curves
that depend on Hca, as well as distributions of activation pat-
terns. This universality is not observed in “narrow” networks

with fewer neurons per layer, for which training proceeds as a
series of plateaus in the loss punctuated by large drops when
the stochastic optimizer happens upon new rules. In this limit,
randomly chosen CA rulesets will not consistently result in
training successfully finding all correct rules and terminating.
Moreover, small networks that do terminate do not display ap-
parent patterns when their internal structure is analyzed using
the approaches described below—consistent with a random
search. Similar loss dynamics have previously been observed
when CA are learned using genetic algorithms, in which the
loss function remains mostly flat, punctuated by occasional
leaps when a mutant encounters a new rule [21]. For gradient-
based training, similar kinetic trapping occurs in the vicinity
of shallow minima or saddle points [36,37], but these effects
are reduced in larger networks such as those used here.

V. INFORMATION-THEORETIC QUANTIFICATION
OF ACTIVATIONS

That training thousands of arbitrary CA yields extremely
similar training dynamics suggests that deep networks trained
using gradient optimizers learn a universal approach to ap-
proximating simple functions like CA. This motivates us to
next investigate how exactly the trained networks represent
the underlying CA rule table—do the networks simply match
entire input patterns, or do they learn consolidated features
such as neighbor counts? Because the intrinsic entropy of the
CA rule table affects training, we reason that the entropy of
activated representations at each layer is a natural heuristic for
analyzing the internal states of the network. We thus define a
binary measure of activity for each neuron in a fully trained
network: When the network encounters a given input σ , any
neurons that produce a nonzero output are marked as 1 (or 0
otherwise), resulting in a new set of binary strings a(σ) denot-
ing the rounded activation pattern for each input σ . For exam-
ple, in an mlpconv network with only 3 layers, and 3 neurons
per layer, an example activation pattern for a specific input
σ1 could yield a(σ1) = {010, 000, 011}, with commas demar-
cating layers. Our approach constitutes a simplified version
of efforts to study deep neural networks by inspecting activa-
tion pattern “images” of neurons in downstream layers when
specific input images are fed into the network [25,38–40].
However, for this system binary strings (thresholded activa-
tion patterns) are sufficient to characterize the trained net-
works, due to the finite space of input-output pairs for binary
CA, and the large size of the networks; in the investigations,
no cases were found in which two different inputs (σ, σ ′)
produced different unrounded activation patterns, but identical
patterns after binarization [a(σ), a(σ ′)].

Given the ensemble of input symbols σ ∈ {0, 1}D, and a
network consisting of L layers each containing N neurons,
we can define separate symbol spaces representing activa-
tions of the entire network aT(σ) ∈ {0, 1}LN ; each individual
layer, aL,i(σ) ∈ {0, 1}N , i ∈ [0, L − 1]; and each individual
neuron aN,i j (σ) ∈ {0, 1}, i ∈ [0, L − 1], j ∈ [0, N − 1]. Aver-
aging over test data consisting of an equiprobable ensemble
of all MD unique input cases σ , we can then calculate the
probability pα,k for observing a given unique symbol ak at a
level α ∈ {T, L, N} in the network. We quantify the uniformity
of each activation symbol distribution p using the entropy

032402-5

WILLIAM GILPIN PHYSICAL REVIEW E 100, 032402 (2019)

10-2 10-11 3 5 7 9 11
Total neuron entropy Σj HN,ij/N

Layer depth i

Layer depth i

To
ta

l l
ay

er
 e

nt
ro

py
 H

L,
i/D

r(
H

ca
, H

L,
i) 1

100

10-1

100

10-1

(b)(a)

1
0

1

12

FIG. 4. Internal representations of cellular automata by trained networks. (a) The individual layerwise entropy (HL,i/D) for the 2560
networks shown in the previous figure. Noise has been added to the horizontal coordinates (layer index) to facilitate visualization. As in
previous figures, coloration corresponds to the entropy Hca of the underlying CA. Dashed lines correspond to expected trends for theoretical
networks that eliminates 0% of cases in each layer (i.e., a pattern-matching implementation), 45% of cases, and 50% (top to bottom) (Inset)
The Pearson correlation coefficient r between the rule entropy Hca and layer entropy HL,i. Error range corresponds to bootstrapped 25%–75%
quantiles. (b) The normalized layerwise entropy (HL,i/D) versus the normalized total layerwise neuron entropy (HN,i j/N), with the linear
scaling annotated.

Hα = −∑
k pα,k log2 pα,k , which satisfies Hα � dim(α). We

condense notation and refer to the activation entropies HT,
HL,i, HN,i j as the total entropy, the entropy of ith layer, and the
entropy of the jth neuron in the ith layer. We note that, in ad-
dition to readily quantifying the number of unique activation
patterns and their uniformity across input cases, the Shannon
entropy naturally discounts zero-entropy “dead neurons,” a
common artifact of training high-dimensional ReLU networks
[32]. Our general analysis approach is related to a recently
developed class of techniques for analyzing trained networks
[41], in which an ensemble of training data (here, a uniform
distribution of σ) is fed into a trained network to generate a
new statistical observable (here, H).

We expect and observe that 〈HN,i j〉i j < 〈HL,i〉i � HT. Un-
surprisingly, the maximum entropy of a single neuron is
log2 2 = 1, and all multineuron layers generate more than two
patterns across the test data. We also observe that HT ≈ 9 for
all networks trained, suggesting that the overall firing patterns
in the network differed for every unique input case—even for
trivial rules like λ = 0 where a network with all zero weights
and biases would both correctly represent the rule table,
and have identical firing patterns for all inputs (HT = 0).
This effect directly arises from training using gradient-based
methods, for which at least some early layers in the network
produce unique activation patterns for each σ that are never
condensed during later training stages. Accordingly, regular-
ization using a total weight cost or dropout both reduce HT.

Comparing HL,i across models and layers demonstrates
that early layers in the network tend to generate a broad set
of activation patterns that closely follow the uniform input
symbol distribution [Fig. 4(a)]. These early layers in the
network thus remain saturated at HL,i = HT ≈ 9; however,
in deeper layers progressively lower entropies are observed,
consistent with fewer unique activation patterns (and a less
uniform distribution across these strings) appearing in later
layers. These trends depend strongly on the CA rules (col-
oration). In the figure, dashed lines allow comparison of HL,i

to theoretical predictions for the layerwise entropy for the
different types of ways that a CNN can represent the CA. The

uppermost dashed curve corresponds to a network that gen-
erates a maximum entropy set of 512 equiprobable activation
patterns in each layer. This case corresponds to a “shallow”
network that matches each input case to a unique template at
each layer. Lower dashed curves correspond to predictions for
networks that implement the CA as layerwise search, in which
σ that map to the same output m are mapped to the same
activation pattern at some point before the final layer. This
corresponds to a progressive decrease in the number of unique
activation patterns in each layer. The two dashed curves shown
correspond to theoretical networks that eliminate 45% and
50% of unique activation patterns at each layer.

We find that higher entropy rules Hca (red points) tend
to produce shallower networks due to the rule table being
less intrinsically compressible; whereas simpler CA (blue
points) produce networks with more binary treelike structure.
This relationship has high variance in early layers, making
it difficult to visually discern in the panel save for the last
layer. However, explicit calculation of the Pearson correlation
r(Hca,HL,i) confirms its presence across all layers of the
network, and that it becomes more prominent in deeper layers
[Fig. 4(a), inset]. This trend is a consequence of training the
network using backpropagation-based techniques, in which
loss gradients computed at the final, Lth hidden layer are
used to update the weights in the previous (L − 1)th layer,
which are then used to update the (L − 2)th layer, and so forth
[42]. During training, the entropy of the final layer increases
continuously until it reaches a plateau determined by the
network size and by Hca. The penultimate layer then increases
in entropy until reaching a plateau, and so forth until HT = 9
across all σ—at which point training stops because the test
error will reach zero (training dynamics are further analyzed
in the Supplemental Material [31]). This general correlation
between CA entropy and network structure is consistent with
earlier studies in which networks were trained to label CA
rulesets by their dynamical complexity class [43].

The role of Hca on internal representation distributions pL

can be further analyzed using Zipf plots of activation pattern
ak frequency versus rank (Supplemental Material [31]): the

032402-6

CELLULAR AUTOMATA AS CONVOLUTIONAL NEURAL … PHYSICAL REVIEW E 100, 032402 (2019)

resulting plots show that the distribution of activation symbols
is initially uniform (because the training data has a uniform
distribution of σ), but the distribution becomes progressively
narrower and more peaked in later layers. This process occurs
more sharply for networks trained on CA with smaller Hca.

We next consider how the entropy of the observed layer
activation patterns relates to the entropy of the individual
neurons HN,i j that comprise them; we suspect there is a
relation because the individual firing entropies determine the
“effective” number of neurons in a layer, Neff = 2

∑
j HN,i j .

Across all layers, we observe a linear relationship between
HN,i j and HL,i, which saturates when HL,i ≈ HT [Fig. 4(b)].
The lower-Hca CA lie within the linear portion of this plot,
suggesting that variation in activation patterns in this regime
results from layers recruiting varying numbers of neurons.
Conversely, higher-entropy CA localize in a saturated region
where each layer encodes a unique activation pattern for each
unique input state, leading to no dependence on the total
effective number of neurons. This plot explains the earlier
observation that the dynamics of training do not depend on
the exact network shape as long as the network has sufficiently
many neurons: for low Hca, layers never saturate, and are free
to recruit more neurons until they are able to pattern-match
every unique input (at intermediate and large Hca). A CA with
more possible input states (larger M or D) would thus require
more neurons per layer to enter this large-network limit.

We also consider the degree to which the decrease HL,i

versus i arises from deeper layers becoming “specialized”
to specific input features, a common observation for deep
neural networks [12,39,42]. We quantify the layer special-
ization using the total correlation, a measure of the mutual
information between the activation patterns of a layer, and the
neurons within that layer: Ii = ∑

j HN,i j − HL,i. This quan-
tity is minimized (Ii = 0) when the single neuron activations
within a layer are independent of one another; conversely, at
the maximum value individual neurons only activate jointly in
the context of forming a specific layer activation pattern. Plots
of Ii versus i (Supplemental Material [31]) reveal that during
early layers, individual neurons tend to fire independently,
consistent with multineuron features being unique to each
input case. In these early layers, Ii is large because the
number of possible activation patterns in a single layer of the
large network (2100) is much larger than the number of input
cases (29). In later layers, however, the correlation begins to
decrease, consistent with individual neurons being activated
in the context of multiple input cases—indicating that these
neurons are associated with features found in multiple input
cases, like the states of specific neighbors. Calculation of
r(Ii,Hca) confirms that this effect varies with Hca.

VI. DISCUSSION

We have shown an analogy between convolutional neural
networks and cellular automata, and demonstrated a type
of network capable of learning arbitrary binary CA using
standard techniques. Our approach uses a simple architecture
that applies a single 3×3 convolutional layer to consolidate
the neighborhood structure, followed by repeated 1×1 con-
volutions that perform local operations. This architecture is
capable of predicting output states using a mixture of shallow

pattern-matching and deep layerwise tree searching. After
training an ensemble of networks on a variety of CA, we
find that the networks structurally encode generic dynamical
features of CA, such as the relative entropy of the rule
table. Further work is necessary to determine whether neu-
ral networks can more broadly inform efforts to understand
the dynamical space of CA, including fundamental efforts
to relate a CA’s a priori rules to its apparent dynamical
complexity during simulation [16,18,22]—for example, do
Class IV and other complex CA impose unique structures
upon fitted neural networks, or can neural networks predict
their computational complexity given a rule table? These
problems and more general studies of dynamical systems
will require more sophisticated approaches, such as unsuper-
vised training and generative architectures (such as restricted
Boltzmann machines). More broadly, we note that studying
the bounded space of CA has motivated the development of
general entropy-based approaches to probing trained neural
networks. In future work we hope to relate our observations to
more general patterns observed in studies of deep networks,
such as the information bottleneck [35]. Such results may
inform analysis of open-ended dynamical prediction tasks,
such as video prediction, by showing a simple manner in
which process complexity manifests as structural motifs.

ACKNOWLEDGMENTS

W.G. was supported by the NSF-Simons Center for Math-
ematical and Statistical Analysis of Biology at Harvard Uni-
versity, from NSF Grant No. DMS-1764269, and from the
Harvard FAS Quantitative Biology Initiative. He was also
supported by the U.S. Department of Defense through the
NDSEG fellowship program, as well as by the Stanford
EDGE-STEM fellowship program.

APPENDIX

1. Representing arbitrary CA with convolutional
neural networks

Here we show explicitly how a standard mlpconv multi-
layer perceptron architecture with ReLU activation is capable
of representing an arbitrary M state cellular automaton with a
finite depth and neuron count [28]. We provide the following
explicit examples primarily as an illustration of the ways in
which 1×1 convolutions may be used to implement arbitrary
CA using a perceptron; we note that real-world networks
trained using optimizers will find many other heuristics and
representations. We provide the two analytic cases below for
concreteness, and to illustrate two important limits: pattern-
matching templates for each unique input across the entire
network, or using individual layers to eliminate cases until the
appropriate output symbol has been identified.

a. Pattern-matching the rule table with a shallow network

An arbitrary M-state cellular automaton can first be con-
verted into a one-hot binary representation. Given an L×L
image, we seek to generate an L×L×M stack of binary
activation images:

032402-7

WILLIAM GILPIN PHYSICAL REVIEW E 100, 032402 (2019)

(1) Convolve the input layer with M distinct 1×1 convo-
lutional filters with unit weights, and with biases given by
1, 0,−1, . . . − (M − 1). Now apply ReLU activation

(2) Convolve the resulting image with M 1×1 convo-
lutional filters with zero biases. Each of the first (M−1)
convolutional filters tests a different consecutive pair
[1,−b, 0, . . . , 0], [0, 1,−b, 0, . . . , 0], [0, 0, 1,−b, 0, . . . , 0],
. . . , [0, . . . , 0, 1,−b], where b is any positive constant b �
M/(M − 1). The last convolutional filter is the identity
[0, . . . , 0, 1]. Now apply ReLU activation again.

This conversion step is not necessary when working with
a binary CA. It requires at total of (1 + M) + M2 parameters
and two layers to produce an activation volume of dimensions
L×L×M.

We now have an L×L×(M − 1) array corresponding the
one-hot encoding of each pixel’s value in an L×L lattice. We
now pattern match each of the MD possible inputs with its
corresponding correct output value. We note that the steps
we take below represent an upper bound; if the number of
quiescent versus active states in the cellular automaton is
known in advance (=λMD, where λ is Langton’s parameter)
[17], then the number of patterns to match (and thus total
parameters) may be reduced by a factor of λ, because only
the nonquiescent “active” rules that produce nonzero output
values need to be matched.

(1) Construct a block of MD S×S×(M − 1) convolutional
filters, where S corresponds to the neighborhood size of the
CA (S = 3 for a standard CA with a Moore neighborhood).
Each of the MD filters simply corresponds to an image of
each possible input state, with entries equaling one for each
nonzero site, and large negative values [greater than D(M −
1)] at each zero site. For cases when M > 2, the depth of
each convolutional kernel allows exact matching of different
nonzero values.

(2) Assign a bias to each of the MD filters based on
the cellular automaton’s rule table. For S×S×(M − 1) inputs
that should map to a nonzero value q, assign a bias of
(q − 1) − (L − 1), where L is the number of nonzero sites
in the neighborhood L � D(M − 1). This ensures that only
exact matches to the rule will produce positive values under
convolution. For inputs that should map to zero, assign any
bias �L, such as D(M − 1).

(3) Apply the ReLU function.

b. Searching the rule table with a deep network

Another way to represent a cellular automaton with a
multilayer perceptron constitutes searching a subset of all
possible inputs in each layer. This approach requires all input
cases σ that map to the same output symbol m, to also map to
the same activation pattern at some layer of the network. This
coalescence of different input states can occur at any point in
the network before the final layer; here we outline a general
approach for constructing maps to the same output symbol
using large networks.

Assigning input cases to a unique binary strings. Assume
there are N convolutional filters. If there are MD unique
input cases, then these filters can be used to generate an
n-hot encoding of the input states. n should be chosen such
that

(N
n

)
� MD. Here, we assume a binary CA with a Moore

neighborhood (M = 2, D = 9). If N = 100 neurons are
present in each layer, then a two-hot binary string (n = 2) is
sufficient to uniquely represent every possible input state of a
binary Moore CA, using the following steps

(1) The D pixel neighborhood is split into n subneighbor-
hoods, with sizes we refer to as D1, D2, . . , Dn. For example,
for a the binary Moore CA, we can split the neighborhood
into the first five pixels (counted from top-left to the center)
and the remaining four pixels (the center pixel to the bottom
right corner. Note that the number and dimensionality of these
sub-neighborhoods must satisfy the condition: if Q ≡ MD1 +
MD2 + · · · + MDn , then

(N
Q

)
� MD.

(2) Define MD1 + MD2 + · · · + MDn filters, which match
each possible sub-neighborhood. For example, for the neigh-
borhood reading 101000111 from upper-left to bottom-right,
two filters can be defined that will match subneighborhoods
consisting of the first 5 bits and the last 4 bits, using the
approach described above for pattern-matching. In this case,
these filters would be 1,−100, 1,−100,−100,−100, 0, 0, 0
with a bias of −1, and 0, 0, 0,−100,−100,−100, 1, 1, 1
with a bias of −2.

(3) Apply ReLU activation.
(4) The resulting activation map will be an n-hot binary

encoding of the input state, because each unique input case
will match the same n filters from the set of N , thus creating a
unique representation.

Assigning input case binary strings to matching output
symbols. At this stage in the network, each input case has
been mapped to a unique N digit binary string with exactly n
ones within it. Successive 1×1 convolutional filters may now
be used to combine different inputs into the same activation
pattern. As a simple example, if N = 5, then the possible input
cases are σ ∈ {10001, 10010,10100, 11000, 01001, 01010,
01100, 00101, 00110, 00011}. Many of these cases can be
uniquely matched by applying a filter consisting of three
ones, followed by a bias of b = 2. For example, using the
filter W = (−1,−2,−1, 0,−2) to perform the operation h =
RELU (W σ + b) will result in an output of 1 for the cases
{10010, 00110} only. To match strings with no overlapping
bits, more than two cases must be merged simultaneously. In
general, to merge H cases using this approach, two strings
must have H − 1 overlapping bits.

For the case of binary CA with a Moore radius, an example
of a network analogous to a simple binary search would
consist of filters that reduce the 512 input cases to 512 2-
hot strings (in the first 3×3 convolutional layer). Subsequent
1×1 convolutions could then map these states to 256 unique
cases, then 128, and so forth until there are only two unique
activation patterns left—the first for input states that map
to one, and the second for input states that map to zero.
Depending on the λ parameter of the CA rule table, the
depth (and thus minimum number of layers) to perform this
search would be a maximum of log2 512 − 1 = 8 layers when
λ = 0.5 (i.e., when there are equal numbers of ones and
zero outputs in the rule table). This case comprises just one
example of performing a search using the depth of a network.
However, many variations are possible, because coalescence
of two input states may occur in any layer. Moreover, while
the above examples describe two input states being combined
together for each filter in a given layer, it is not difficult to

032402-8

CELLULAR AUTOMATA AS CONVOLUTIONAL NEURAL … PHYSICAL REVIEW E 100, 032402 (2019)

construct alternative filters that can combine more than two
states together. We thus expect that there is considerably
flexibility in the different ways that a network trained algorith-
mically can internally represent input states with similar fea-
tures and similar outputs, but that these different approaches
manifest as an overall decrease in the number of unique
activation patterns observed across the depth of the network.

c. Network representation of the Game of Life

We note that there are many other ways to implement a
CA that are not exactly layerwise depth search, nor a shallow
pattern match, depending on the number and type of features
being checked at each layer of the network. For example,
each of the D pixels in the neighborhood of the CA can be
checked with separate convolutional kernels all in the first
layer, and then different combinations of these values could be
checked in subsequent steps. The shallow network described
above represents an extreme case, in which every value of the
full input space is explicitly checked in the first layer. This
implementation is efficient for many CA, because of the low
cost of performing multiple numerical convolutions. However,
for CA with large M or D, the layer-wise search method may
be preferable.

For the Game of Life, we can use knowledge of the
structure of a CA to design a better implementation. The
Game of Life is an outer totalistic CA, meaning that the next
state of the system is fully determined by the current value
of the center pixel, and the total number of ones and zeros
among its immediate neighbors. For this reason, only two
unique convolutional filters are needed.

The first filter is the identity, which is applied with bias 0.

0 0 0
0 1 0
0 0 0

The second filter is the neighbor counting filter

1 1 1
1 0 1
1 1 1

Due specifically to the use of ReLU activation functions
throughout the networks (rather than sigmoids), several copies
of this filter must be applied to detect different specific
neighbor counts. In particular, because the Game of Life rules
require specific information about whether the total number of
“alive” neighbors is <2, 2, 3, or �4, we need four duplicates
of the neighbor counting filter, with biases (−1,−2,−3,−4),
to produce unique activation patterns for each neighbor total
after the ReLU activation is applied.

We thus perform a single convolution of an L×L binary in-
put image with 5 total 3×3×1 convolutional filters, producing
an L×L×5 activation volume. Hereafter, we assume that the
identity filter is the lowest-indexed filter in the stack, followed
by the filters that count the successively increasing numbers
of neighbors <2, =2, =3, and � 4.

Each 5×1 pixel across the L×L face of the activation
volume now contains a unique activation pattern that can be
matched against the appropriate output case. In the next layer
of the network, two 1×1 convolutional filters with depth 5 are
applied,

(0, 0, 4/3,−8/3,−1/3),

(3/2, 5/4,−5,−1/4,−1/4),

which are combined with biases −1/3,−7/4 and then acti-
vated with ReLU activation, resulting in an L×L×2 activation
volume. To generate a final L×L output corresponding to the
next state of the automaton, this volume is summed along its
depth—which can be performed efficiently as a final convolu-
tion with a 1×1 filter with value (1,1) along its depth, and no
bias. This will produce an L×L output image corresponding
to the next state of the Game.

For an example implementation of this algorithm in Ten-
sorFlow, see the function

ca_funcs.make_game_of_life()
in https://github.com/williamgilpin/convoca/blob/master/ca_
funcs.py.

In principle, this architecture can work for any outer totalis-
tic cellular automaton, such as Life without Death, High Life,
etc.—although depending on the number of unique neighbor
count and center pixel pairings that determine the ruleset,
the number of neighbor filters may need to be adjusted. For
example, in the Game of Life the cases of 0 living and 1 living
neighbors do not need to be distinguished by the network,
because both cases result in the center pixel having a value
of zero in the next timestep.

Likewise, for a purely totalistic cellular automaton (such
as a majority vote rule), only a single convolutional filter
(consisting of 9 identical values) is necessary, because the
value of the center pixel does not need to be resolved by the
network.

2. Neural network training details

Convolutional neural networks were implemented in
Python 3.4 using TensorFlow 1.8 [44]. Source code is avail-
able at https://github.com/williamgilpin/convoca.

For all convolutions, periodic boundary conditions were
implemented by manually copying pixel values from each

TABLE I. Hyperparameters for networks used in the main text.

Parameter Value

Input dimensions 10×10 px
Number of layers 12
Neurons per layer 100
Input samples 500 images
Batch size 10 images
Weight initialization He Normal [45]
Weight scale 1
Learning rate 10−4

Max train epochs 1500
Optimizer Adam
Loss L2

032402-9

https://github.com/williamgilpin/convoca/blob/master/ca_funcs.py
https://github.com/williamgilpin/convoca

WILLIAM GILPIN PHYSICAL REVIEW E 100, 032402 (2019)

TABLE II. Hyperparameters for the large network.

Parameter Value

Input dimensions 10×10 px
Number of layers 24
Neurons per layer 200
Input samples 500 images
Batch size 10 images
Weight initialization He Normal [45]
Weight scale 1
Learning rate 10−4

Max train epochs 1500
Optimizer Adam
Loss L2

edge of the input image, and then appending them onto
the opposite edges. The padding option “VALID” was then
used for the first convolutional filter layer in the TensorFlow
graph.

Hyperparameters for the large networks described in the
main text were optimized using a grid search. For each
training run performed while optimizing hyperparameters, a
new validation set of unseen binary images associated with an
unseen cellular automaton ruleset was created, to prevent the
cellular automaton ruleset from biasing the choice of hyper-
parameters. Once hyperparameters were chosen, and training
on arbitrary cellular automata started, an additional validation
set of binary images was generated for each ruleset. These
images were used to determine when to stop training. Finally,
an unseen set of binary images was used as a test partition,
to compute the final accuracy of the trained networks. The
training and test accuracies (before rounding the CNN output
to the nearest integer) were within 0.3% for all networks
studied, which is a direct consequence of the network’s ability
to represent all input cases exactly. After rounding the CNN
output to the nearest integer, both the train and test datasets
had 100% accuracy. The unrounded train and test performance
during the training of one network are shown as a function of
training epoch in Fig. S1 of the Supplemental Material [31].

The default networks contained one 3×3 convolutional
layer followed by 11 layers of 1×1 convolutions. The con-
volutional layer, as well as the 1×1 layers, each had 100
filters. A depth of 12 layers was chosen for the network
ensembles analyzed in the main text, to facilitate analysis of
hidden layers across a variety of depths. Network and training
parameters are given in Table I.

TABLE III. Hyperparameters for the alternative network.

Parameter Value

Input dimensions 10×10 px
Number of layers 12
Neurons per layer 100
Input samples 500 images
Batch size 20 images
Weight initialization He Normal [45]
Weight scale 5×10−1

Learning rate 5×10−4

Max train epochs 3000
Optimizer S. G. D.
Loss cross-entropy

We also considered the degree to which the exact dimen-
sions of the “large network” affect the results. We trained
another ensemble of networks with loss function, hyperpa-
rameters, and optimizer identical to the main text, but with the
number of layers and the number of neurons per layer doubled
(Table II). As we observe in the main text, our results remain
almost identical (Fig. S2, left panel, of the Supplemental
Material [31]). We attribute this to the relatively small number
of unique input cases that the networks need to learn (512) as
compared to the potential expressivity of large networks.

As a control against the choice of optimizer and loss
affecting training, we also trained a replicate ensemble of
networks that had the same network shapes (12 layers with
100 neurons each) but a different loss function and optimizer,
for which different optimal hyperparameters were found using
a new grid search (Table III). We compare results using this
alternative network to the default network described in the
main text and find the results are nearly identical.

Figures S2 (right panel) and S3 of the Supplemental Ma-
terial [31] show the results of training a network using these
parameters. The shape of the training curve is slightly differ-
ent, with the universal transient (during which the network
learns general features of the input data such as the range and
number of unique cases) being much longer for this network.
However, the later phases of training continue similarly to
the standard network, with Hca strongly affecting the later
stages of training and the final loss. Moreover, after training
has concluded, the dependence of the internal representations
of the network on Hca (Fig. S2 of the Supplemental Mate-
rial [31]) matches the patterns seen in the default network
above.

[1] L. Zdeborová, Nat. Phys. 13, 420 (2017).
[2] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys. Rev.

Lett. 120, 024102 (2018).
[3] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[4] E. P. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Nat. Phys.

13, 435 (2017).
[5] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,

and G. Carleo, Nat. Phys. 14, 447 (2018).

[6] H. Jaeger and H. Haas, Science 304, 78 (2004).
[7] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Proc. Natl.

Acad. Sci. USA 116, 15344 (2019).
[8] J. N. Kutz, J. Fluid Mech. 814, 1 (2017).
[9] G. Carleo and M. Troyer, Science 355, 602 (2017).

[10] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134 (2016).
[11] P. Zhang, H. Shen, and H. Zhai, Phys. Rev. Lett. 120, 066401

(2018).

032402-10

https://doi.org/10.1038/nphys4053
https://doi.org/10.1038/nphys4053
https://doi.org/10.1038/nphys4053
https://doi.org/10.1038/nphys4053
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevLett.120.066401

CELLULAR AUTOMATA AS CONVOLUTIONAL NEURAL … PHYSICAL REVIEW E 100, 032402 (2019)

[12] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436
(2015).

[13] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O.
Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and K.
Kavukcuoglu, arXiv:1609.03499v2.

[14] M. Mathieu, C. Couprie, and Y. LeCun, arXiv:1511.05440.
[15] A. Adamatzky, Game of Life Cellular Automata (Springer,

Berlin, 2010), Vol. 1.
[16] S. Wolfram, Rev. Mod. Phys. 55, 601 (1983).
[17] C. G. Langton, Phys. D 42, 12 (1990).
[18] D. P. Feldman, C. S. McTague, and J. P. Crutchfield,

Chaos: Interdisc. J. Nonlin. Sci. 18, 043106 (2008).
[19] E. Fredkin, Phys. D 45, 254 (1990).
[20] A. Adamatzky and J. Durand-Lose, in Handbook of Natural

Computing (Springer, Berlin, 2012), pp. 1949–1978.
[21] M. Mitchell, J. P. Crutchfield, R. Das et al., in Proceedings of

the 1st International Conference on Evolutionary Computation
and Its Applications (EvCA’96) (Russian Academy of Sciences,
Moscow, 1996), Vol. 8.

[22] M. Mitchell, J. P. Crutchfield and P. T. Hraber, arXiv:adap-
org/9306003 (1993).

[23] P.-M. Nguyen, arXiv:1902.02880.
[24] R. M. Neal, Bayesian Learning for Neural Networks (Springer

Science & Business Media, Berlin, 2012), Vol. 118.
[25] M. Chen, J. Pennington, and S. S. Schoenholz,

arXiv:1806.05394.
[26] G. Cybenko, Math. Control Signals Syst. 2, 303 (1989).
[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion (IEEE, Piscataway, NJ, 2015), pp. 1–9.

[28] M. Lin, Q. Chen, and S. Yan, arXiv:1312.4400.
[29] I. Sutskever, J. Martens, and G. E. Hinton, in Proceedings of

the 28th International Conference on Machine Learning (ICML)
(ACM, New York, 2011).

[30] N. H. Wulff and J. A. Hertz, in Advances in Neural Information
Processing Systems (MIT Press, Cambridge, MA, 1993), pp.
631–638.

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.100.032402 for supplemental data.

[32] V. Nair and G. E. Hinton, in Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML) (ACM, New
York, 2010), pp. 807–814.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[34] H. Sompolinsky, A. Crisanti, and H.-J. Sommers, Phys. Rev.
Lett. 61, 259 (1988).

[35] R. Shwartz-Ziv and N. Tishby, arXiv:1703.00810.
[36] D. Saad and S. A. Solla, Phys. Rev. E 52, 4225 (1995).
[37] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S.

Ganguli, and Y. Bengio, in Advances in Neural Informa-
tion Processing Systems (MIT Press, Cambridge, MA, 2014),
pp. 2933–2941.

[38] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein,
in Proceedings of the 34th International Conference on Machine
Learning (PMLR, 2017).

[39] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, Visualizing
higher-layer features of a deep network, Technical Report 1341,
University of Montreal, June 2009, also presented at the ICML
2009 Workshop on Learning Feature Hierarchies, Montreal,
Canada.

[40] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S.
Ganguli, in Advances in Neural Information Processing Systems
(MIT Press, Cambridge, MA, 2016), pp. 3360–3368.

[41] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, in Ad-
vances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2017), pp. 6076–6085.

[42] S. Arora, A. Bhaskara, R. Ge, and T. Ma, in Proceedings of
the 31st International Conference on Machine Learning (ICML)
(ACM, New York, 2014), pp. 584–592.

[43] J. Gorodkin, A. Sørensen, and O. Winther, Complex Syst. 7, 1
(1993).

[44] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J.
Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zhang, arXiv:1605.08695.

[45] K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the
IEEE International Conference on Computer Vision (IEEE,
Piscataway, NJ, 2015), pp. 1026–1034.

032402-11

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/arXiv:1609.03499v2
http://arxiv.org/abs/arXiv:1511.05440
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1063/1.2991106
https://doi.org/10.1063/1.2991106
https://doi.org/10.1063/1.2991106
https://doi.org/10.1063/1.2991106
https://doi.org/10.1016/0167-2789(90)90186-S
https://doi.org/10.1016/0167-2789(90)90186-S
https://doi.org/10.1016/0167-2789(90)90186-S
https://doi.org/10.1016/0167-2789(90)90186-S
http://arxiv.org/abs/arXiv:adap-org/9306003
http://arxiv.org/abs/arXiv:1902.02880
http://arxiv.org/abs/arXiv:1806.05394
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://arxiv.org/abs/arXiv:1312.4400
http://link.aps.org/supplemental/10.1103/PhysRevE.100.032402
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
http://arxiv.org/abs/arXiv:1703.00810
https://doi.org/10.1103/PhysRevE.52.4225
https://doi.org/10.1103/PhysRevE.52.4225
https://doi.org/10.1103/PhysRevE.52.4225
https://doi.org/10.1103/PhysRevE.52.4225
http://arxiv.org/abs/arXiv:1605.08695

