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In a highly influential paper twenty years ago, Barabási and Albert [Science 286, 509 (1999)] showed that
networks undergoing generic growth processes with preferential attachment evolve towards scale-free structures.
In any finite system, the growth eventually stalls and is likely to be followed by a phase of network contraction
due to node failures, attacks, or epidemics. Using the master equation formulation and computer simulations,
we analyze the structural evolution of networks subjected to contraction processes via random, preferential, and
propagating node deletions. We show that the contracting networks converge towards an Erdős-Rényi network
structure whose mean degree continues to decrease as the contraction proceeds. This is manifested by the
convergence of the degree distribution towards a Poisson distribution and the loss of degree-degree correlations.
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I. INTRODUCTION

A central observation in contemporary science is that many
of the processes explored take place in complex network
architectures [1–3]. Therefore, it is of great importance to
analyze the geometries and topologies encountered in com-
plex networks and their temporal evolution. Since the 1960s,
mathematical studies of networks were focused on model
systems such as the Erdős-Rényi (ER) network, which ex-
hibits a Poisson degree distribution with no degree-degree
correlations [4–6]. In an ER network each pair of nodes is
connected randomly and independently, with equal proba-
bility [7]. In fact, ER networks form a maximum entropy
ensemble under the constraint that the mean degree is fixed
[8–11]. In the 1990s, the growing availability of data on large
biological, social and technological networks revolutionized
the field. Motivated by the observation that the World Wide
Web [12] and scientific citation networks [13] exhibit power-
law degree distributions, Barabási and Albert (BA) introduced
a simple model that captures the essential growth dynamics
of such networks [14]. A key feature of the BA model is the
preferential attachment mechanism, namely the tendency of
new nodes to attach preferentially to high degree nodes. Using
mean-field equations and computer simulations, it was shown
that the combination of growth and preferential attachment
leads to the emergence of scale-free networks with power-law
degree distributions [14]. This result was later confirmed and
generalized using more rigorous formulations based on the
master equation [15,16] and using combinatorial methods
[17]. It was subsequently found that a large variety of em-
pirical networks exhibit such scale-free structures, which are
remarkably different from ER networks [18,19].

Networks are often exposed to node failures, attacks and
epidemics, which may halt their growth and lead to their
contraction and eventual collapse. Since network growth and
contraction are kinetic nonequilibrium processes, they are
irreversible, namely the contraction process is not the same as
the growth process played backwards in time. This hysteretic
behavior is analogous to the response of magnetic systems to

an external magnetic field, where the magnetization depends
not only on the instantaneous field but also on its history.

One can distinguish between three generic scenarios of
network contraction: the random deletion scenario that de-
scribes inadvertent random failures of nodes [20], the pref-
erential deletion scenario that describes intentional attacks
[21], which are more likely to focus on high-degree nodes,
and the propagating deletion scenario that describes cascading
failures that spread throughout the network [22–24]. Using the
framework of percolation theory, it was shown that in the final
stages of the contraction process the network breaks down
into disconnected components [20,21,25,26]. However, the
evolution of the network structure throughout the contraction
phase has not been studied in a systematic way.

In this paper we analyze the structural evolution of net-
works during the contraction process. To this end we derive
a master equation for the time dependence of the degree
distribution during network contraction via the random, pref-
erential, and propagating node deletion scenarios. We show
that the Poisson distribution with a time dependent mean
degree ct is a solution of the master equation. Moreover, using
the relative entropy between the degree distribution Pt (k)
of the contracting network at time t and the corresponding
Poisson distribution πt (k) with the same mean degree ct =
〈K〉t , we show that the Poisson distribution is an attractive
solution for the degree distributions of random networks
that contract via these three network contraction scenarios.
Thus, the degree distribution Pt (k) converges towards πt (k)
during the contraction process. Using computer simulations
of contracting networks, we show that if the initial network
exhibits degree-degree correlations then these correlations
decay during the contraction process. We thus conclude that
the contracting networks converge towards an ER structure
whose mean degree continues to decrease as the contraction
proceeds.

The paper is organized as follows. In Sec. II we describe
the three network contraction scenarios considered in this
paper and discuss related examples of contraction processes
in empirical networks. In Sec. III we present the master
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equation for these three network contraction scenarios. In
Sec. IV we show that a Poisson distribution with a time
dependent mean degree is a stationary solution of the master
equation. In Sec. V we use direct integration of the master
equation in conjunction with computer simulations to examine
the convergence of the degree distribution of a contracting
network towards a Poisson distribution. In Sec. VI we use the
relative entropy St between the degree distribution Pt (k) of the
contracting network at time t and the corresponding Poisson
distribution πt (k) with the same mean degree ct = 〈K〉t to
quantify the rate of convergence of Pt (k) towards πt (k). In
Sec. VII we use computer simulations to evaluate the decay
rate of the degree-degree correlation function �t during the
contraction process. The results are discussed in Sec. VIII and
summarized in Sec. IX. In Appendix A we present a detailed
derivation of the master equation for the three network con-
traction scenarios. In Appendix B we present an exact solution
for the time dependent degree distribution Pt (k) of a network
contracting via the random node deletion scenario.

II. NETWORK CONTRACTION PROCESSES

We consider network contraction processes in which at
each time step a single node is deleted together with its
links. The size of the network at time t is thus Nt = N − t ,
where N0 = N is the size of the initial network. Consider a
node of degree k, whose neighbors are of degrees k′

r , r =
1, 2, . . . , k. Upon deletion of such node the degrees of its
neighbors are reduced to k′

r − 1, r = 1, 2, . . . , k. The node
deleted at each time step is selected randomly. However, the
probability of a specific node to be deleted in the next time
step may depend on its degree as well as on other properties,
according to the specific network contraction scenario. Here
we focus on three generic scenarios of network contraction:
the random node deletion scenario that describes the random,
inadvertent failure of nodes; the preferential node deletion
scenario that describes intentional attacks that are more likely
to focus on highly connected nodes; and the propagating node
deletion scenario that describes cascading failures that spread
throughout the network.

In the random deletion scenario, at each time step a random
node is selected for deletion. In this scenario each one of
the nodes in the network at time t has the same probability
to be selected for deletion, regardless of its degree or any
other properties. Since at time t there are Nt nodes in the
network, the probability of each one of them to be selected
for deletion is 1/Nt . This scenario may describe a situation
in which random nodes in a communication network become
dysfunctional independently of each other due to technical
failures or random attacks [20,25].

In the preferential deletion scenario the probability of
a node to be targeted for deletion at a given time step is
proportional to its degree. This means that the probability of
a given node of degree k to be deleted at time t is k/[Nt 〈K〉t ].
This is equivalent to picking a random edge in the network
and randomly selecting for deletion one of the two nodes at its
ends. This scenario may describe attacks in which high degree
nodes are more likely to be targeted [21].

In the propagating deletion scenario at each time step the
node to be deleted is randomly selected among the neighbors

of the node deleted in the previous time step. If the node
deleted in the previous time step does not have any yet-
undeleted neighbor, we pick a random node, randomly select
one of its neighbors for deletion, and continue the process
from there. This scenario may describe cascading failures in
which the failure of a node increases the load on its neighbors
and causing their subsequent failure. Such situations may
occur in power grids and transportation networks [27,28].
Another mechanism of cascading failures was identified in
social networks in which a user who leaves the network may
encourage some of his/her friends to leave the network too,
possibly for joining a competing network [29,30].

III. THE MASTER EQUATION

Consider an ensemble of networks of size N0 at time t = 0,
with degree distribution P0(k) and mean degree 〈K〉0, which
are exposed to network contraction via node deletion. Below
we derive a master equation that describes the time evolution
of the degree distribution Pt (k) throughout the contraction
process. The master equation consists of a set of coupled
first-order differential equations of the form [31,32]

d

dt
�Pt = M �Pt , (1)

where �Pt is a vector whose elements are the probabilities Pt (k),
k = 0, 1, 2, . . . , and M is the transition matrix.

At each time step during the contraction process a single
node is deleted from the network. In addition to the primary
effect of the loss of the deleted node, the network sustains a
secondary effect as the neighbors of the deleted node lose one
link each. An intrinsic property of the secondary effect is that
it is of a preferential nature, namely the likelihood of a node to
be a neighbor of the deleted node is proportional to its degree.
The time dependent degree distribution is given by

Pt (k) = Nt (k)

Nt
, (2)

where Nt (k) is the number of nodes of degree k at time t . The
mean degree of the contracting network at time t is given by

〈K〉t =
∞∑

k=0

kPt (k), (3)

while the second moment of the degree distribution is
given by

〈K2〉t =
∞∑

k=0

k2Pt (k). (4)

Here we analyze three generic scenarios of network con-
traction: the random deletion scenario, in which a randomly
selected node is deleted at each time step; the preferential
deletion scenario, in which the probability of a node to be
targeted for deletion is proportional to its degree; and the
propagating deletion scenario, in which at each time step
we delete a random neighbor of the last deleted node. To
demonstrate the derivation of the master equation, we con-
sider below the relatively simple case of random node deletion
(for a detailed derivation of the master equation for all three
network contraction scenarios see Appendix A). The time
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dependence of Nt (k) depends on the primary effect, given
by the probability that the node selected for deletion is of
degree k, as well as on the secondary effect of node deletion
on neighboring nodes of degrees k and k + 1. In random node
deletion the probability that the node selected for deletion at
time t is of degree k is given by Nt (k)/Nt . Thus, the rate in
which Nt (k) decreases due to the primary effect of the deletion
of nodes of degree k is given by

Rt (k → ∅) = Nt (k)

Nt
, (5)

where ∅ represents the empty set. If the node deleted at time t
is of degree k′, it affects k′ adjacent nodes, which lose one link
each. The probability of each one of these k′ nodes to be of
degree k is given by kNt (k)/[Nt 〈K〉t ]. We denote by Wt (k →
k − 1) the expectation value of the number of nodes of degree
k that lose a link at time t and are reduced to degree k − 1.
Summing up over all possible values of k′, we find that the
secondary effect of random node deletion on nodes of degree
k is

Wt (k → k − 1) = kNt (k)

Nt
. (6)

Similarly, the secondary effect on nodes of degree k + 1 is

Wt (k + 1 → k) = (k + 1)Nt (k + 1)

Nt
. (7)

The time evolution of Nt (k) can be expressed in terms of the
forward difference

�t Nt (k) = Nt+1(k) − Nt (k). (8)

Combining the primary and the secondary effects on the time
dependence of Nt (k), we obtain

�t Nt (k) = −Rt (k → ∅) + [Wt (k + 1 → k)

−Wt (k → k − 1)]. (9)

Inserting the expressions for Rt (k → ∅), Wt (k → k − 1), and
Wt (k + 1 → k) from Eqs. (5), (6) and (7), respectively, we
obtain

�t Nt (k) = (k + 1)[Nt (k + 1) − Nt (k)]

Nt
. (10)

Since nodes are discrete entities the process of node dele-
tion is intrinsically discrete. Therefore, the replacement of the
forward difference �t Nt (k) by a time derivative of the form
dNt (k)/dt involves an approximation. In fact, it is closely
related to the approximation made in numerical integration
of differential equations using the Euler method [33]. In
the Euler method the time derivative dft/dt is replaced by
( ft+h − ft )/h, where h is a suitably chosen time step. In our
case h = 1. Below we evaluate the error associated with this
approximation. To this end we use a series expansion of the
form

�t Nt (k) = d

dt
Nt (k) + 1

2

d2

dt2
Nt (k) + · · · . (11)

Typical degree distributions, which are not too narrow, satisfy
Nt (k) � Nt for any value of k. For such distributions the

second time derivative satisfies

1

2

d2

dt2
Nt (k) ∼ O

(
1

N2
t

)
, (12)

and quickly vanishes for sufficiently large networks. This
means that the replacement of the forward difference by a time
derivative has little effect on the results. Thus, the difference
equation (10) can be replaced by the differential equation

d

dt
Nt (k) = (k + 1)[Nt (k + 1) − Nt (k)]

Nt
+ O

(
1

N2
t

)
. (13)

In a more rigorous approach one could define a reduced
time θ = t/N and a density n(θ, k) = Nt (k)/N , as done in
Refs. [34–38]. Using this approach, one can show that the
random variable Nt=θN (k)/N concentrates, in the large N
limit, around the deterministic density n(θ, k) which is the
solution of the corresponding differential equation.

The derivation of the master equation is completed by
taking the time derivative of Eq. (2), which is given by

d

dt
Pt (k) = 1

Nt

d

dt
Nt (k) − Nt (k)

N2
t

d

dt
Nt . (14)

Inserting the time derivative of Nt (k) from Eq. (13), and using
the fact that dNt/dt = −1, we obtain the master equation for
the random deletion scenario, which is given by

d

dt
Pt (k) = 1

Nt
[(k + 1)Pt (k + 1) − kPt (k)]. (15)

The derivation of the master equations for the preferential
deletion and the propagating deletion scenarios can be per-
formed along similar lines. The detailed derivations of the
master equations for all three scenarios appear in Appendix A.
Interestingly, the resulting master equations for these three
network contraction scenarios can be written in a unified
manner, in the form

d

dt
Pt (k) = At

Nt
[(k + 1)Pt (k + 1) − kPt (k)] − Bt (k)

Nt
Pt (k),

(16)
where the coefficients are given by

At =

⎧⎪⎨⎪⎩
1, random deletion,
〈K2〉t

〈K〉2
t
, preferential deletion,

〈K2〉t −2〈K〉t

〈K〉2
t

, propagating deletion

(17)

and

Bt (k) =

⎧⎪⎨⎪⎩
0, random deletion,
k−〈K〉t

〈K〉t
, preferential deletion,

k−〈K〉t

〈K〉t
, propagating deletion.

(18)

The master equation consists of a set of coupled ordinary
differential equations for Pt (k), k = 0, 1, 2, . . . , kmax. In order
to calculate the time evolution of the degree distribution Pt (k)
during the contraction process, one solves the master equation
using direct numerical integration, starting from the initial
network that consists of N0 nodes whose degree distribution
is P0(k). For any finite network the degree distribution is
bounded from above by an upper bound denoted by kmax,
which satisfies the condition kmax � N0 − 1. Since the con-
traction process can only delete edges from the remaining
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nodes and cannot increase the degree of any node, the upper
cutoff kmax is maintained throughout the contraction process.

Expressing the master equation in terms of the transition
rate matrix formulation of Eq. (1), it is found that the matrix
M is an upper bidiagonal matrix, whose diagonal elements are
given by

Mk,k = −kAt + Bt (k)

Nt
, (19)

the off-diagonal elements are given by

Mk,k+1 = (k + 1)At

Nt
, (20)

and Mk,k′ = 0 for k′ < k and k′ > k + 1.
The rate coefficients on the right-hand side of the master

equation (16) include a combination of explicit and implicit
time dependence. The overall factor of 1/Nt is the only
components that exhibits an explicit time dependence, while
the moments 〈K〉t and 〈K2〉t depend implicitly on the time
via the instantaneous degree distribution Pt (k). Since their
coefficients are time dependent they need to be updated
throughout the numerical integration of Eq. (16). In particular,
the instantaneous network size Nt should be updated at each
time step. The time derivatives of the moments 〈K〉t and 〈K2〉t

scale with the network size like 1/Nt . Therefore, they may be
considered as slow variables and updated once every several
time steps during the integration of the master equation.

Since the only explicit time dependence of the rate coef-
ficients on the right-hand side of Eq. (16) is via the overall
factor of 1/Nt , one can multiply both sides of the equation
by Nt . The time derivative on the left-hand side of Eq. (16)
can then be expressed in terms of dτ = dt/Nt . This implies
that the time dependence of Pt (k) is expressed in terms of the
ratio Nt/N0, or more specifically in terms of τ = ln(Nt/N0).
This means that the initial network size is essentially an
extensive parameter while the time is measured in terms of
the fraction of the network that remains. This conclusion is of
great practical importance because it means that for any given
degree distribution it is sufficient to perform the simulation of
network collapse for one size of the initial network.

The first term on the right-hand side of Eq. (16) is referred
to as the trickle-down term [39]. This term represents the
step by step downwards flow of probability from high to low
degrees. The coefficient At of the trickle-down term depends
on the network contraction scenario. In random deletion At =
1, because the probability of a node to be selected for deletion
does not depend on its degree. In preferential deletion At is
proportional to 〈K2〉t because the probability of a node to be
deleted is proportional to its degree k while the magnitude of
the secondary effect is also proportional to k.

The second term on the right-hand side of Eq. (16) is
referred to as the redistribution term. This term vanishes in
the random deletion scenario. However, in the preferential
and propagating deletion scenarios the redistribution term is
negative for k > 〈K〉t and positive for k < 〈K〉t . Thus the re-
distribution term decreases the probabilities Pt (k) for values of
k that are above the mean degree and increases them for values
of k that are below the mean degree. Moreover, in absolute
value the size of the redistribution term is proportional to
|k − 〈K〉t |, which means that nodes of degrees that are much

higher or much lower than 〈K〉t are most strongly affected by
this term.

In general, the master equation accounts for the time evo-
lution of the degree distribution over an ensemble of networks
of the same initial size N0 and degree distribution P0(k), which
are exposed to the same network contraction scenario. A fun-
damental question in this context is to what extent the solution
of a deterministic differential equation describes the results of
single instances of the stochastic process in systems of finite
size. In the context of network contraction processes, a single
instance of the stochastic process at time t is described by
Nt (k), k = 0, 1, . . . . The corresponding results of the master
equation are given by 〈Nt (k)〉 = Nt Pt (k), k = 0, 1, . . . . Using
the theory of stochastic processes it was shown that under very
general conditions the results of single instances, given by
Nt (k), are narrowly distributed around 〈Nt (k)〉, thus the master
equation provides a good description of the corresponding
stochastic process [34–38].

IV. THE POISSON SOLUTION

Consider an ER network of Nt nodes with mean degree
ct = 〈K〉t . Its degree distribution follows a Poisson distribu-
tion of the form

πt (k) = e−ct ck
t

k!
. (21)

The second moment of the degree distribution satisfies
〈K2〉t = ct (ct + 1). To examine the contraction process of ER
networks we start from an initial network of N0 nodes whose
degree distribution follows a Poisson distribution π0(k) with
mean degree c0. Inserting πt (k) into the master equation (16),
we find that the time derivative on the left-hand side is given
by

d

dt
πt (k) = −dct

dt

(
1 − k

ct

)
πt (k), (22)

On the other hand, inserting πt (k) on the right-hand side of
Eq. (16), we obtain

d

dt
πt (k) = At

Nt
(ct − k)πt (k) − Bt (k)

Nt
πt (k), (23)

where

At =

⎧⎪⎨⎪⎩
1, random deletion,
ct +1

ct
, preferential deletion,

ct −1
ct

, propagating deletion
(24)

and

Bt (k) =

⎧⎪⎨⎪⎩
0, random deletion,
k−ct

ct
, preferential deletion,

k−ct
ct

, propagating deletion.

(25)

In order for πt (k) to be a solution of Eq. (16), the right-
hand sides of Eqs. (22) and (23) must coincide. In the case of
random deletion this implies that

1

ct

dct

dt
= − 1

Nt
. (26)
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Integrating both sides for t ′ = 0 to t , we obtain the condition

ct = c0
Nt

N0
= c0 − c0

N0
t . (27)

Repeating the analysis presented above for the cases of pref-
erential deletion and propagating deletion, it is found that
πt (k) solves the master equation (16) for the three network
contraction scenarios, while the mean degree ct decreases
linearly in time according to

ct = c0 − Rt, (28)

where the rate R is given by

R =

⎧⎪⎨⎪⎩
c0
N0

, random deletion,
c0+2

N0
, preferential deletion,

c0
N0

, propagating deletion.

(29)

This means that an ER network exposed to any one of the three
contraction scenarios remains an ER network at all times,
with a mean degree that decreases according to Eq. (28). The
network size at time t is Nt = N0 − t , where N0 is the initial
size.

In the case of random deletion the contraction process ends
at time t = N0, when the network vanishes completely. In the
case of preferential deletion the deleted node at each time step
is picked via a randomly selected edge. Therefore, once a
node becomes isolated it will never be selected for deletion.
As a result, the process of preferential deleted comes to a
halt once all the remaining nodes become isolated and ct = 0.
Using Eqs. (28) and (29) we find that this happens at time th =
c0N0/(c0 + 2). Thus, the number of isolated nodes that remain
is Nh = 2N0/(c0 + 2). In the case of propagating deletion one
may encounter a situation in which the node deleted at time t
becomes isolated, namely it does not have any yet-undeleted
neighbors. In this case we continue the deletion process
by selecting a random node, randomly selecting one of its
neighbors for deletion and continuing the process from there.

V. NUMERICAL INTEGRATION AND
COMPUTER SIMULATIONS

To test the convergence of contracting networks towards
the ER structure, we study the three network contraction
scenarios presented above using numerical integration of
the master equation and computer simulations. As an initial
network we use the BA network, which is a scale-free
network with a power-law degree distribution of the form
P0(k) ∼ k−γ , where γ = 3 [7,14–16]. To generate the initial
networks for the computer simulations, we use the BA growth
model, in which at each time step a new node is added to
the network and is connected preferentially by undirected
edges to m of the existing nodes [14]. The m edges of the new
node are added sequentially, under the condition that each
existing node can receive at most one of these edges (multiple
edges are not allowed, thus the resulting network is a simple
graph). The preferential attachment property implies that the
probability of an existing node whose degree at time t is k
(and is not yet connected to the new node) to receive the next
link from the new node is proportional to k. The parameter
m may take any nonzero integer value. In the special case of

m = 1 the resulting network exhibits a tree structure, while
for m � 2 it includes cycles. As a seed network for the growth
process we use a complete graph of m + 1 nodes, such that at
time t = 0 all the nodes in the seed network are of degree m.
Since there are m edges that are added to the network with
each new node, and each edge connects two nodes, in the large
network limit N0 
 m the mean degree is 〈K〉0 = 2m. Thus,
the network becomes more dense as m is increased. Since
the seed network consists of a single connected component,
the resulting network consists of a single component at all
times. The growth process ends when the network reaches the
desired size, denoted by N0. The degree distribution of a BA
network is given by

P0(k) ∼ k−γ , (30)

where γ = 3. Since the degree of each new node upon
formation is m, the lower bound of the degree distribution
(30) is kmin = m. To generate the initial degree distribution
used in the direct integration of the master equation, we use
the master equation that describes the BA network growth
process [15,16], with the same seed network used in the
computer simulations.

In Fig. 1 we present the structure of a BA network with
m = 3 during growth at an intermediate size of N = 150
(left) and at the final size of N = 200 (middle). At this point
the network starts to contract via preferential node deletion.
The structure of the network during the contraction process
is presented (right), when its size is down to N = 150. To
emphasize the variation in the degrees of different nodes, each
node is represented by a circle whose area is proportional
to the degree of the node. It is apparent that the initial BA
network includes several dominant hubs, as expected in a
scale-free network, while in the network depicted during
contraction there is little variation between the degrees of
different nodes. In a supplemental movie [40] we present the
evolution of the structure of the same BA network instance
during the growth phase and the subsequent contraction phase
via random deletion and preferential deletion.

In Fig. 2 we present the degree distributions P(k) (solid
lines) of a BA network with m = 50, obtained from numerical
integration of the master equation that describes the growth
process [15,16] during growth at an intermediate size of
N = 1300 (left) and at the final size of N = 10 000 (middle).
The resulting degree distributions, presented in a log-log
scale, follow a straight line that corresponds to P(k) ∼ k−γ ,
with γ = 3. They coincide with the degree distributions ob-
tained from computer simulations of the BA growth process
(circles). The corresponding Poisson distributions with the
same value of the mean degrees, namely c = 〈K〉, are also
shown (dashed lines). They form narrow and nearly symmet-
ric distributions whose peaks are close to the mean degree c.
Clearly, the power-law distribution (solid line) and the Poisson
distribution (dashed line) are essentially as different from each
other as any two distributions with the same mean degree
could be. Starting from N = 10 000 the network contracts via
the preferential node deletion scenario. The degree distribu-
tion of the contracted network when its size is reduced to
N = 1300 nodes is shown (right). The results obtained from
numerical integration of the master equation (16) and from
computer simulations (solid line and circles, respectively) are
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FIG. 1. A BA network is shown during the growth phase, at sizes of N = 150 (left) and N = 200 (middle), and during the contraction
phase when its size is reduced to N = 150 (right). There is a striking difference between the structures of the growing network that exhibits
large hubs and the contracting network that shows little variation between the degrees of different nodes. In a supplemental movie [40] we
present the full evolution of this network during the growth phase and the subsequent contraction phase via random deletion and preferential
deletion.

found to be in excellent agreement with the corresponding
Poisson distribution with the same mean degree (dashed
line).

In Fig. 3 we present the evolution of the mean degree 〈K〉t

as a function of time for random deletion (a), preferential
deletion (b), and propagating deletion (c). In the random
deletion scenario, the mean degree 〈K〉t decreases linearly in
time, where 〈K〉t = 〈K〉0(1 − t/N0) does not depend on the
functional form of P0(k). In the preferential and propagating
deletion scenarios the decay rate of 〈K〉t depends on the initial
degree distribution P0(k). If P0(k) is a fat tailed distribution
such as the power-law distribution, the initial decay of 〈K〉t is
fast and then it slows down. This is due to the fact that in these
two scenarios an excess of high degree nodes are targeted for
deletion in the early stages, enhancing the decrease of 〈K〉t .

VI. THE RELATIVE ENTROPY

In order to establish that networks exposed to these con-
traction scenarios actually converge towards the ER structure,

it remains to show that this asymptotic solution is attractive.
To this end we quantify the convergence rate of Pt (k) to-
wards the Poisson distribution, using the relative entropy (also
referred to as the Kullback-Leibler divergence), defined by
[41]

St =
∞∑

k=0

Pt (k) ln

[
Pt (k)

πt (k)

]
, (31)

where πt (k) is the Poisson distribution given by Eq. (21).
The relative entropy St measures the difference between the
probability distribution Pt (k) and the reference distribution
πt (k). It also quantifies the added information associated with
constraining the degree distribution Pt (k) rather than only the
mean degree ct [10,11]. The Poisson distribution is a proper
reference distribution because it satisfies πt (k) > 0 for all
the non-negative integer values of k. The relative entropy
is always non-negative and satisfies St = 0 if and only if
Pt (k) = πt (k). Therefore, St can be used as a measure of the
distance between a given network and the corresponding ER
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FIG. 2. The degree distributions P(k) of a BA network during growth, obtained from numerical integration of the master equation of
Refs. [15] and [16] (solid line) and from computer simulations (circles) at an intermediate size of N = 1300 (left) and at the final size of
N = 10 000 (middle). The Poisson distribution with the same mean degree is also shown (dashed line). At N = 10 000 the network starts to
contract via preferential node deletion. The degree distribution P(k) of the contracted network is shown (right) when it is reduced back to
N = 1300 nodes. The theoretical results (solid line) obtained from the master equation [Eq. (16)] are in very good agreement with computer
simulations (circles) and with the Poisson distribution with the same mean degree (dashed line).
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FIG. 3. The mean degrees 〈K〉t vs Nt/N , obtained from numer-
ical integration of the master equation (solid lines), for networks
that contract via random deletion (a), preferential deletion (b), and
propagating deletion (c), starting from a BA network with m = 5
of size N = 10 000. The master equation results are in very good
agreement with computer simulation results (circles). In the case
of random node deletion 〈K〉t decreases linearly in time according
to 〈K〉t = 〈K〉0 − Rt , where R = c0/N is independent of the degree
distribution of the initial network. In the preferential deletion and
propagating deletion scenarios the time dependence of 〈K〉t during
the contraction process depends on the degree distribution of the
initial network. If the initial network exhibits a power-law distribu-
tion, it is found that in the early stages 〈K〉t quickly decreases due
to the preferential deletion of high degree nodes. The decay rate of
〈K〉t gradually slows down and approaches a constant slope as Pt (k)
converges towards a Poisson distribution.

network with the same mean degree. In each of the network
contraction processes, the degree distribution Pt (k) evolves in
time according to Eq. (16). As a result, the relative entropy St

of the network also evolves as the network contracts. The time

derivative of St is given by

d

dt
St =

∞∑
k=0

ln

[
Pt (k)

πt (k)

]
d

dt
Pt (k) +

∞∑
k=0

d

dt
Pt (k)

−
∞∑

k=0

Pt (k)

πt (k)

d

dt
πt (k). (32)

Replacing the order of the summation and the derivative in the
second term on the right-hand side of Eq. (32), we obtain

∞∑
k=0

d

dt
Pt (k) = d

dt

[ ∞∑
k=0

Pt (k)

]
= 0. (33)

Inserting the derivative dπt (k)/dt from Eq. (22) into the third
term on the right-hand side of Eq. (32), and recalling that
ct = 〈K〉t , we obtain

∞∑
k=0

Pt (k)

πt (k)

d

dt
πt (k) = −dct

dt

∞∑
k=0

(
1 − k

ct

)
Pt (k) = 0. (34)

Since the second and third terms in Eq. (32) vanish, the time
derivative of the relative entropy is given by

d

dt
St =

∞∑
k=0

ln

[
Pt (k)

πt (k)

]
d

dt
Pt (k). (35)

This is a general equation that applies to any network con-
traction scenario in which the Poisson distribution πt (k) is a
solution. In order to obtain a more specific equation for a given
network contraction scenario, one should insert the expression
for the derivative dPt (k)/dt from the corresponding master
equation into Eq. (35).

In Fig. 4 we present the relative entropy St obtained from
numerical integration of the master equation (solid lines) for
random deletion (a), preferential deletion (b), and propagating
deletion (c), starting from a BA network with m = 5 and
size N = 10 000. The master equation results are in very
good agreement with the results obtained from computer
simulations (circles). The + symbols mark the points at which
St decays to 1/e of its initial values. In the case of random
deletion this occurs around Nt/N � 0.4, while in the other
two scenarios it occurs much earlier, at Nt/N � 0.9, following
the deletion of only about 10% of the nodes. Note that in the
preferential and the propagating deletion scenarios St decays
very quickly and practically vanishes when more than a half
of the nodes still remain.

VII. THE DEGREE-DEGREE CORRELATION FUNCTION

An important distinction in network theory is between un-
correlated random networks and networks that exhibit degree-
degree correlations. These correlations are positive (negative)
in assortative (disassortative) networks, in which high degree
nodes tend to connect to high (low) degree nodes and low de-
gree nodes tend to connect to low (high) degree nodes [42,43].
To quantify the degree-degree correlations, we define the joint
degree distribution Pt (k, k′) of pairs of nodes that reside on
both sides of a randomly selected edge. The marginal degree
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FIG. 4. The relative entropy St vs Nt/N , obtained from numerical
integration of the master equation (solid lines) for random deletion
(a), preferential deletion (b), and propagating deletion (c), starting
from a BA network with m = 5 and size N = 10 000. The master
equation results are in very good agreement with the results obtained
from computer simulations (circles). The + symbols mark the points
at which St decays to 1/e of its initial values. In the case of
random deletion this occurs around Nt/N � 0.4, while in the other
two scenarios it occurs much earlier, at Nt/N � 0.9, following the
deletion of only about 10% of the nodes. Note that in the preferential
deletion and the propagating deletion St decays very quickly and
practically vanishes when more than a half of the nodes still remain.

distribution, obtained by tracing over all possible values of k′,
is given by

P̃t (k) = k

〈K〉t
Pt (k). (36)

The degree-degree correlation function is given by

�t = 〈KK ′〉t − 〈K̃〉t 〈K̃〉t . (37)

The first term in Eq. (37) is a mixed second moment of the
form

〈KK ′〉t =
∞∑

k=1

∞∑
k′=1

kk′Pt (k, k′), (38)

where the sums run over all the possible combinations of
the degrees of pairs of adjacent nodes. In the second term
of Eq. (37), the mean degree 〈K̃〉t of the degree distribu-
tion P̃t (k) of nodes adjacent to a randomly selected edge is
given by

〈K̃〉t =
∞∑

k=1

kP̃t (k). (39)

If there are no degree-degree correlations, the joint degree
distribution of pairs of adjacent nodes is given by

Pt (k, k′) = P̃t (k)P̃t (k
′), (40)

and the correlation function satisfies �t = 0. This is indeed
the case in configuration model networks. However, BA net-
works exhibit degree-degree correlations and are disassorta-
tive, namely high degree nodes tend to connect to low degree
nodes and vice versa [44].

The master equation (16) follows the time evolution of the
degree distribution Pt (k) during the contraction process, but
does not account for degree-degree correlations. Therefore, it
cannot be used to explore the time dependence of the degree-
degree correlation function �t . To examine the effect of net-
work contraction processes on degree-degree correlations, we
use computer simulations.

In Fig. 5 we present the degree-degree correlation func-
tion �t obtained from computer simulations (circles) of the
contraction process of BA networks of size N = 10 000 with
m = 5, via random deletion (a), preferential deletion (b),
and propagating deletion (c). In the case of random deletion
the simulation results are very well fitted by �t ∼ (Nt/N )2,
while the simulation results of the preferential deletion and
the propagating deletion processes are very well fitted by an
exponential fit (dashed lines). The + symbols mark the points
at which �t decays to 1/e of its initial values. In the case
of random deletion this occurs around Nt/N � 0.6, while in
the other two scenarios it occurs at Nt/N � 0.9, following
the deletion of only about 10% of the nodes. Note that
in the preferential deletion and the propagating deletion �t

decays very quickly and practically vanishes when more than
a half of the nodes still remain.

Putting together the results of the last two sections, the
convergence of the degree distribution towards a Poisson
distribution (as demonstrated by the decay of St ) and the decay
of the degree-degree correlations (measured by �t ) imply that
networks that contract via one of the three node deletion
scenarios discussed in this paper converge towards the ER
structure.

VIII. DISCUSSION

The timescales involved in network contraction processes
span many orders of magnitude, from fractions of a second
in computer networks to months and years in social networks
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FIG. 5. The correlation function �t vs Nt/N , obtained from com-
puter simulations (circles) for random deletion (a), preferential dele-
tion (b), and propagating deletion (c), starting from a BA network
with m = 5 and size N = 10 000. In the case of random deletion the
simulation results are very well fitted by �t ∼ (Nt/N )2, while the
simulation results of the preferential deletion and the propagating
deletion processes are very well fitted by an exponential fit (dashed
lines). The + symbols mark the points at which �t decays to 1/e of
its initial values. In the case of random deletion this occurs around
Nt/N � 0.6, while in the other two scenarios it occurs at Nt/N � 0.9,
following the deletion of only about 10% of the nodes. Note that in
the preferential deletion and the propagating deletion �t decays very
quickly and practically vanishes when more than a half of the nodes
still remain.

to millennia in ecological networks. In some cases the con-
traction may proceed all the way down to the percolation
threshold and into the subpercolating regime. In other cases
only limited contraction is possible, either because the faulty
nodes are quickly fixed or because the failure of a few nodes

is sufficient to cause an unrecoverable damage to the entire
system.

It is worth mentioning that there are other network dis-
mantling processes that involve optimized attacks, which
maximize the damage to the network for a minimal set of
deleted nodes [26]. Such optimization is achieved by first
decycling the network, namely by selectively deleting nodes
that reside on cycles, thus driving the giant component into a
tree structure. The branches of the tree are then trimmed such
that the giant component is quickly disintegrates. Clearly,
networks that are exposed to these optimized dismantling
processes do not converge towards an ER structure.

The convergence of a contracting network towards the ER
structure takes place over a limited range of network sizes
and densities, bounded from above by the initial size N and
mean degree 〈K〉0 and from below by the size at which
the remaining network becomes fragmented and consists of
small isolated components and isolated nodes. However, this
range can be extended indefinitely by starting the contraction
process from a larger and denser network.

Network contraction processes belong to a broad class
of dynamical processes that exhibit intermediate asymptotics
[45,46]. The ubiquity of such processes is expressed in the
following quotation from the opening paragraph of Ref. [45]:
“In constructing the idealizations the phenomena under study
should be considered at ‘intermediate’ times and distances
[...]. These distances and times should be sufficiently large for
details and features which are of secondary importance to the
phenomenon to disappear. At the same time they should be
sufficiently small to reveal features of the phenomena which
are of basic value.”

IX. SUMMARY

In summary, we analyzed the evolution of network struc-
ture during generic contraction processes, using the master
equation, the relative entropy, and degree-degree correlations.
We showed that in generic contraction scenarios, namely
random, preferential, and propagating deletion processes, the
network structure converges towards the ER structure, which
exhibits a Poisson degree distribution and no degree-degree
correlations. These results have important implications in
real world situations. For example, in cascading failures they
imply that the part of the network that continues to function
is likely to converge towards an ER structure. In the context
of ecological networks, they imply that mass extinctions not
only reduce the number of species but may also alter the
structure of the networks describing the interactions between
them from scale-free-like networks to ER-like networks. To
conclude, while scale-free network structures with power-law
degree distributions are predominant in a world of growing
or expanding networks, the uncorrelated Poisson-distributed
ER structures are expected to be widespread in a world of
contracting networks.
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APPENDIX A: DETAILED DERIVATION OF
THE MASTER EQUATION

Below we derive the master equation describing the tempo-
ral evolution of the degree distribution Pt (k) during network
contraction via random node deletion, preferential node dele-
tion, and propagating node deletion.

1. Random node deletion

In the random node deletion scenario at each time step a
random node is deleted from the network together with its
links. To derive an equation for the time dependence of Nt (k)
one needs to account for the primary effect of the deletion
of a node of degree k and for the secondary effect in which
nodes of degrees k and k + 1 lose a link due to the deletion
of an adjacent node. The probability that the deleted node
is of degree k is given by Nt (k)/Nt . Therefore, the contribution
of the primary effect of node deletion to the time derivative of
Nt (k) is given by Rt (k → ∅) [Eqs. (5) and (9)]. Regarding
the secondary effect, if the node deleted at time t is of degree
k′, it affects k′ other nodes, which lose one link each. Among
these k′ nodes, the probability of each one of them to be of
degree k is given by kNt (k)/[Nt 〈K〉t ]. Summing up over all
the possible values of the degree k′ of the deleted node and
evaluating the expectation value of the number of nodes of
degree k that are connected to the deleted node, we obtain the
secondary effect of random node deletion on nodes of degree
k. The rate at which nodes of degree k lose one link and are
reduced to degree k − 1 is given by

Wt (k → k − 1) =
∞∑

k′=1

Nt (k′)
Nt

k′kNt (k)

Nt 〈K〉t
= kNt (k)

Nt
. (A1)

Similarly, the rate at which nodes of degree k + 1 lose one
link and are reduced to degree k is given by

Wt (k + 1 → k) = (k + 1)Nt (k + 1)

Nt
. (A2)

Combining the results for the primary and the secondary
effects, it is found that the time dependence of Nt (k) is
given by

d

dt
Nt (k) = (k + 1)

Nt
[Nt (k + 1) − Nt (k)]. (A3)

Inserting this result into Eq. (14), we obtain the master
equation

d

dt
Pt (k) = 1

Nt
[(k + 1)Pt (k + 1) − kPt (k)]. (A4)

In Appendix B we present an exact solution of Eq. (A4),
which provides the time dependent degree distribution Pt (k)
for any initial degree distribution P0(k).

2. Preferential node deletion

In the scenario of preferential node deletion, at each time
step a node is selected for deletion with probability propor-
tional to its degree. The probability that the node selected for
deletion at time t is of degree k is given by kNt (k)/[Nt 〈K〉t ]. If
the node selected for deletion at time t is of degree k′, there are
k′ other nodes that will be affected, losing one link each. The

probability of each one of these k′ nodes to be of degree k is
given by kNt (k)/[Nt 〈K〉t ]. Summing up over all the possible
values of the degree k′ and evaluating the expectation value
of the number of nodes of degree k that are connected to the
deleted node, we obtain that the secondary effect on nodes of
degree k is given by

Wt (k → k − 1) =
∞∑

k′=1

[
k′Nt (k′)
Nt 〈K〉t

][
k′kNt (k)

Nt 〈K〉t

]

= 〈K2〉t

〈K〉2
t Nt

kNt (k). (A5)

Similarly, the secondary effect on nodes of degree k + 1 is
given by

Wt (k + 1 → k) = 〈K2〉t

〈K〉2
t Nt

(k + 1)Nt (k + 1). (A6)

Summing up the contributions of the primary and the sec-
ondary effects, we obtain the time derivative of Nt (k), which
is thus given by

d

dt
Nt (k) = 〈K2〉t

〈K〉2
t Nt

[(k + 1)Nt (k + 1) − kNt (k)]

− k

〈K〉t Nt
Nt (k). (A7)

Inserting this result into Eq. (14), we obtain the master
equation

d

dt
Pt (k) = 〈K2〉t

〈K〉2
t Nt

[(k + 1)Pt (k + 1) − kPt (k)]

− k − 〈K〉t

〈K〉t Nt
Pt (k). (A8)

3. Propagating node deletion

The propagating node deletion scenario describes network
contraction processes such as cascading failures, in which the
damage propagates from a deleted node to its neighbors. In
this scenario, at each time step we delete a random neighbor
of the node deleted in the previous step. If the last deleted
node does not have any yet-undeleted neighbor, we pick a
random node, select a random neighbor of this node for
deletion and continue the process from there. The probability
that the node deleted at time t will be of degree k′ is given
by k′Nt (k′)/[Nt 〈K〉t ]. One of these k′ edges connects it to
the node deleted in the previous time step and another edge
connects it to the node to be deleted in the next time step.
Apart from these two neighbors, there are k′ − 2 neighbors
that lose one link each upon deletion of a node of degree
k′. The probability of each one of these k′ nodes to be of
degree k is given by kNt (k)/[Nt 〈K〉t ]. Summing up over all
the possible degrees k′ of the node deleted at time t , we obtain
the secondary effect on nodes of degree k, which is given by

Wt (k → k − 1) = 〈K2〉t − 2〈K〉t

〈K〉2
t Nt

kNt (k). (A9)

Similarly, the secondary effect on nodes of degree k + 1 is

Wt (k + 1 → k) = 〈K2〉t − 2〈K〉t

〈K〉2
t Nt

(k + 1)Nt (k + 1). (A10)
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The complete equation describing the time dependence of
Nt (k) is thus given by

d

dt
Nt (k) = 〈K2〉t − 2〈K〉t

〈K〉2
t Nt

[(k + 1)Nt (k + 1) − kNt (k)]

− k

Nt 〈K〉t
Nt (k). (A11)

Inserting this result into Eq. (14), we obtain the master
equation

d

dt
Pt (k) = 〈K2〉t − 2〈K〉t

〈K〉2
t Nt

[(k + 1)Pt (k + 1) − kPt (k)]

− k − 〈K〉t

〈K〉t Nt
Pt (k). (A12)

APPENDIX B: EXACT SOLUTION OF THE MASTER
EQUATION FOR RANDOM NODE DELETION

Below we solve Eq. (A4) for a general initial degree distri-
bution, given by P0(k). To this end, we define the generating
function

G(x, t ) =
∞∑

k=0

xkPt (k). (B1)

The initial condition of the generating function is denoted by

G(x, 0) = G0(x) =
∞∑

k=0

xkP0(k), (B2)

while G(1, t ) = 1 at all times due to the normalization of
Pt (k). Multiplying Eq. (A4) by xk and taking a sum over all
values of k, we obtain the following differential equation for
G(x, t ):

∂

∂t
G(x, t ) =

(
1 − x

N − t

)
∂

∂x
G(x, t ). (B3)

In general, the solution of Eq. (B3) must take the form

G(x, t ) = f [t + (N − t )x]. (B4)

Inserting t = 0 in Eq. (B4), we find that f (y) = G0(y/N ).
Therefore,

G(x, t ) = G0

[
t

N
+

(
1 − t

N

)
x

]
. (B5)

Using the expression of G0(x) in terms of P0(k), we obtain

G(x, t ) =
∞∑

k=0

[
t

N
+

(
1 − t

N

)
x

]k

P0(k). (B6)

Using the binomial expansion of [t/N + (1 − t/N )x]k , we
obtain

G(x, t ) =
∞∑

	=0

x	

(
N − t

t

)	 ∞∑
k=	

(
k

	

)(
t

N

)k

P0(k). (B7)

Therefore,

Pt (k) =
(

1 − t

N

)k ∞∑
k′=k

(
k′

k

)(
t

N

)k′−k

P0(k′). (B8)

No such solution exists for the master equations describing the
preferential deletion and for the propagation deletion scenar-
ios, which are presented above, in Appendix A. Therefore, one
needs to rely on numerical integration of the master equations.
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