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In this work we study the opinion evolution in a community-based population with intergroup interactions. We
address two issues. First, we consider that such intergroup interactions can be negative with some probability
p. We develop a coupled mean-field approximation that still preserves the community structure and it is able
to capture the richness of the results arising from our Monte Carlo simulations: continuous and discontinuous

order-disorder transitions as well as nonmonotonic ordering for an intermediate community strength. In the
second part, we consider only positive interactions but with the presence of inflexible agents holding a minority
opinion. We also consider an indecision noise: a probability ¢ that allows the spontaneous change of opinions
to the neutral state. Our results show that the modular structure leads to a nonmonotonic global ordering as ¢

increases. This inclination toward neutrality plays a dual role: A moderated propensity to neutrality helps the
initial minority to become a majority, but this noise-driven opinion switching becomes less pronounced if the

agents are too susceptible to become neutral.
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I. INTRODUCTION

What the requirements are for the upraise of consen-
sus or polarization is one of the main questions of socio-
physics [1-3]. This field consists of the application of statisti-
cal physics methods to the study of social systems. In order to
answer this question several models of opinion were already
proposed.

Although the use of continuous models [4—13] enables the
modeling of broader social contexts, there are many social
scenarios in which the possible choices are limited and thus
can be modeled by discrete variables [14-20] as was done in
this work. Apart from this, discrete models have the advantage
of allowing a better understanding of the underlying mecha-
nism behind the macroscopic outcomes through an analytical
treatment.

A simple rule for the evolution of both discrete and contin-
uous models, that has been considered previously [21], is

0it +1) = 0;(t) + pijo; (), (D

with 1 <7, j < N, where N is the population size, i # j, and
wi; are the coupling coefficients. These coefficients dictate if
the opinion of the jth agent influences the ith agent’s opinion
at the time ¢ + 1. Hence, the coefficients p;; can be viewed as
an adjacency matrix, where p;; = 0 if the individuals i and j
are not connected, and ;; = 1 if they are connected.

Since the right-hand side of Eq. (1) can exceed the extreme
values (£1), it is also necessary to forbid changes in opinions
that exceed the limiting values. Or, equivalently, to reinsert the
opinion back to its corresponding limiting value. This addi-
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tional rule introduces nonlinearity into the system’s evolution.

This model has been extensively studied in several differ-
ent networks but not yet in networks that exhibit modular
structures. Modular structures have been found in many real-
world social and biological networks [22,23]. These networks
present much more dense links within modules than those
among modules. Many previous studies have shown that this
structure has a significant impact on the dynamics taking place
on networks such as synchronization [24,25], epidemic [26]
or information spreading [27,28], opinion formation [29-33],
and Ising-like phase transitions [34-37].

In this work we consider the kinetic opinion dynamics in
modular networks. Such an approach seems even more impor-
tant given the context of political discussions in social media.
It was shown that in the discussion on Twitter leading the 2010
U.S. congressional midterm election, the retweet network
formed two distinct communities [38]. A similar community
structure was observed in a political communication network
constructed based on users that interchanged opinions related
to the impeachment of former Brazilian President Dilma
Rousseff [39]. It was also shown that in an abortion discus-
sion replies between different-minded individuals reinforce
in-group and out-group affiliation [40].

More specifically, we address two issues. In the first prob-
lem, the main difference among our model and the models
presented so far is that we consider intergroup bias. This is
relevant because people have shown in-group favoritism and
out-group derogation [41]. This behavior has been shown to
arise when individuals differ in some critical but unobserv-
able way and this difference is associated to some symbolic
marker [42]. In the second part, we treat the question of
how the multifold interplay among modular structure, noise
toward neutrality, and peer-pressure impacts on the minority
spreading of a localized opinion of inflexible agents. This is
an important issue for social dynamics [43—-45].
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FIG. 1. Examples of the layout of the modular networks, where
the blue squares represent community 1 and the red circles the
community 2, for N = 100, (k) = 10 and n; = 0.3, 2 = 0.1 in (a);
n =03,h=02in(b);n; =0.3,Ah=031in(c); n; =0.5,h=0.1
in (d); ny =0.5,h =0.21in (e); and n; = 0.5, h = 0.3 in (f).

II. FRAMEWORK

A. Generating the network

First, it is important to define the community structure
because the interactions depend on it. To systematically in-
vestigate the impact of community structure, we prepare an
ensemble of networks with two communities with a varying
degree of strength, using the block-model approach [28,46—
48]. Another approach for building a network with community
structure can be found in Ref. [49].

We start by randomly selecting N; of the N nodes and
assigning them to community 1 and assigning the other
N, = N — Nj nodes to community 2. Then (1 — h)M links
are randomly distributed among pairs of nodes in the same
community and hM are randomly distributed among pairs
of nodes that belong to different communities, where M =
N (k)/2 is the total number of links in the whole network
(see Fig. 1). The parameter & controls the strength of the
community structure: A large value of & yields more links
between the two communities and thus a weaker community
structure.

B. Fractions of in- and out-group connections

Since in the kinetic exchange opinion model the agents
interact with one of their neighbors at random, it will be
useful to find the fractions of in- and out-group connections
to perform our approximations latter. These fractions will
determine the probabilities of in- and out-group interactions.

The whole network has M = N(k)/2 links and z; links
within community i, such that (k)N; = 2z; + hM. Therefore,
the fraction of connections of an agent in community { with a
node of the same community is given by

2z _Ni(k)—hN(k)/Z_1 hN_1 h
Nitk) N;(k) 2N 2y
)
where n; = N;/N is the fraction of nodes in community i. The
fraction of connections with nodes of the other community is
given by

PG, i) =

S hM RN/ BN b
PED=N0 = N —om o

C. Different connectivities in each community

One may think that assuming that both communities have
the same average connectivity is an unreasonable assumption.
Our results can be extended considering an effective commu-
nity size. Here we will see how in this formulation of the net-
work a community with higher connectivity is mathematically
equivalent to a larger community where both communities
have the same connectivity.

Let each community have N;k; connections, where k; is the
average connectivity on community i. We have m of those
connections are between communities, so in each commu-
nity we have m = Mh = h(k;N, 4+ k,N,)/2 connections to
the other community. Therefore, the probability of an agent
interacting with another agent in the same community is given
by

pii, iy = KNizm _ g h RN
k,'Ni 2 2k,N,
LY U 7./ S @
2 kN )~ 2n

and the probability of interacting with an agent from the other
community is given by

m h  hkiN; h kiN; h
P, j)= — = - 72 J~J =—. (5
Now we have an “effective relative size” n; defined as
kiN; kiN;
i = (©6)

TN N, 2M

From this we can see that having one community more
connected than another just changes its “effective relative
size” and does not change the form of results previously
presented.

D. The interactions

For both the models we consider a discrete opinion model
in which each agent i can have opinion 0; = +1, 0, or —1.
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Opinions o; = %1 are decided agents and o; = O represents an
undecided or neutral agent. We have considered populations
of size N = 10* distributed in a network described in the
previous section. As a measure of time we define a Monte
Carlo step (mcs) as an update of the opinion of each one of
the N agents.

To characterize the coherence of the collective state of each
community we consider

s = ]% S0, ™

ljeG

where C; is the set of individuals in community i and N; the
number of agents in community i. In this way the global order
parameter is given by

N

Nim; + Nomy 1
j=l1

where the sum is taken over both communities. Note that the

time dependency is implicit.

III. MODEL A: INTERGROUP BIAS

In the first formulation of our model we consider the
presence of both negative and positive pairwise interactions.
The negative interactions only occur between members of
distinct communities, thus introducing a bias in the dynamics.

A. Description

At time step ¢t each agent (that will be referred to as i)
updates its opinion interacting with one of its neighbors (that
will be referred to as j), chosen at random in each time
step, in one of two ways. If both agents belong to the same
community, then they always interact positively according to

0i(t +1) = 0i(t) + 0;(t). 9

In this case, u;; of Eq. (1) is simply the adjacency matrix
of the network which does not change during the simulation.
If agents i and j belong to different communities, then they
can interact negatively with a probability p according to

0i(t + 1) = 0i(t) — 0,(1), (10)

and with complementary probability (1 — p) they interact pos-
itively as in Eq. (9). This differentiation in the way the agents
interact with agents of the opposite communities introduces
the in-group bias in our model.

B. Results and discussion

In Appendix A we develop an analytic approach to better
understand the behavior of our system. In this approach we
consider that each community is fully connected like a mean-
field approximation, but the individuals of a community can
interact with a random individual of the other community with
probability P(i, j), as shown in Eq. (3). Although this approxi-
mation ignores details of the network structure, it still mimics

the community behavior of the system. The results obtained
from our master equations and Monte Carlo simulations show
good agreement, as can be seen in Fig. 3, except near the
criticality when the order parameter of both communities start
with same sign, as can be seen in Fig. 4.

To facilitate the analysis we considered mainly communi-
ties of the same size (n; = np = 1/2). This scenario already
encapsulates the significant results because these results come
from the interactions between communities as cohesive units.
In this case, we were also able to find the analytical curve that
describes the ordered state of the system.

In the stationary state with communities of same size (n; =
ny = 1/2) the ordered state solution of the master equations
for this model is given by (see Appendix A)

JT—4h
o=Y_"""P (11)
1 —hp

This equation matches perfectly the numerical integration
of Eqgs. (A1) to (A3) when both communities start with m; =
my = 1, which can be seen in Fig. 2(c). This result also
describes very well the order parameter in the ordered state.

In Fig. 2 we exhibit the order parameter in the plane &
versus p for distinct initial conditions. The results were ob-
tained by numerical integration of the Egs. (A1) to (A3). The
initial conditions of the graphics are m; = 1 and my = —1 (a);
m; = 0.02, u; =0, mp, = 0.0, and up = 0.01 (b); my = my =
1 (¢); and m; = 0.04, u; = 0.33, mp, = 0.02, and u, = 0.33
(d). One can see that the phase transition can be discontinuous
for some values of the parameters. For example, in Fig. 2(a)
the order parameter O drops from O =1 to O = 0 when we
increase p for small values of 7 when the network presents
a clear community structure (see Fig. 1). However, in many
cases we see that the order parameter goes continuously from
1 to 0, as was predicted analytically in Eq. (11). Figure 2(d)
shows an unusual behavior that can only be found for a very
specific set of initial conditions; this indicates the presence of
metastability in the system.

As we can see in Fig. 3 the results for the approximated
model are very similar to the results for the Monte Carlo
simulations on the modular network. This is specially true
when the communities start in disagreement, i.e., the order
parameters of the communities start with different signs. The
numerical integration only fails to reproduce the discontinu-
ous phase transition when the communities start in agreement,
i.e., the order parameters in both communities start with the
same sign, as can be seen in Fig. 4.

This disagreement seems to steam from the finite-size
fluctuations of the system. The model has two metastable so-
lutions, one in which the communities are aligned symmetri-
cally and another in which they are aligned antisymmetrically,
and these are described in more detail in Appendix A. In the
mean-field approach there are no system fluctuations, so we
do not see the sudden transition from one metastable solution
to another.

One can observe discontinuous phase transitions for some
values of the parameters in the graphics of Fig. 3. These
discontinuous phase transitions rise from the alignment of
the communities. In the stationary state, communities can
only align either symmetrically or antisymmetrically. The
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FIG. 2. Global order O varying both parameters p and & for the numerical integration of the Eqs. (A1) to (A3) with n; = 1/2. The difference
among the graphics is the initial condition. m; = 1 and m, = —1 for (a); m; = 0.02, u; = 0, m, = 0.0, and u, = 0.01 for (b); my =my =1

for (c); and m; = 0.04, u; = 0.33, my = 0.02, and u, = 0.33 for (d).

discontinuous phase transition occurs when the system goes
from the symmetrical to the antisymmetrical arrangement.

The communities flipping as a whole instead of the individ-
uals progressively flipping might be introducing inertia to the
opinion changes. This happens because the communities only
interact positively, therefore promoting local consensus. This
result is in line with Ref. [50], where the authors found that
opinion inertia gives rise to a discontinuous phase transition
in the majority-vote model.

The Fig. 3(b) shows an interesting nonmonotonic ordering:
the increase of order for raising 4 and a subsequent decrease
of the order parameter for higher values of 4. In order to better
understand this unusual behavior one needs to keep in mind
that combined with intergroup bias the consequences of inter-
group connectivity are twofold. On one hand, if the intergroup
connectivity is too low, then there is no way for the opinions
of one group to connect to the other group, and thus produce
consensus. On the other hand, higher intergroup connectivity
also increases the probability of a negative interaction which
reduces the global order parameter.

A similar nonmonotonic ordering was found in a contin-
uous model of opinion dynamics [20] and also in a g-voter
model with independence and memory [51]. Our work adds
a novel mechanism for the emergence of nonmonotonic phe-
nomena in social scenarios: the combination of community
structure and negative intergroup interactions in three-state
opinion dynamics.

IV. MODEL B: INFLEXIBLES AND NOISE

In this section, differently from the model presented in the
previous section, all interactions are positive for simplicity. A
fraction of the population does not change opinion (inflexible
agents) and agents can take the neutral opinion due to noise.

A. Description

At the beginning of the simulation we generate the net-
work, as discussed in Sec. II A. Then randomly pick a fraction
f of the total population to be inflexible. For the purposes of
this model we have all inflexibles in community 1. The initial
opinion of the inflexibles is set to +1 and the opinions of all
other agents are set to —1.

At a given time step ¢ each agent i that is not inflexible will
update its opinion. With probability g agent i becomes neutral,
i.e., 0; = 0[52,53]. With complementary probability 1 — g we
choose one of its neighbors j at random. Then update agent’s
i opinion according to Eq. (9).

For the model considered in this section, it is also possible
to obtain master equations by means of a coupled mean-field
approximation, as we discuss in Appendix B.

B. Results and discussion

In Fig. 5 we exhibit the order parameter O as a function of
the noise g for a fraction f = 0.05 of inflexibles, as well as the
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FIG. 3. Global order O versus p for some values of & (a) and
global order versus & for some values of p (b). Both graphs have
n; = 1/2,m; = 1, and my, = —1 as initial conditions. The results act
as a comparison between the approximated model and the model
simulated in modular networks, and here we see that they are in
good agreement. The approximated solution was found via Euler
integration of Egs. (A1) to (A3) and the numerical simulations were
performed with population size N = 10* and averaged over 100
simulations in a network with (k) = 30.

local order parameters m; and m,, as defined in Eq. (7). The
data were obtained by the numerical integration of Egs. (B4)
to (B9). The community 1 has a relative size n; = 0.4, i.e.,
the inflexible agents are located in the smaller community.
We are interested in verifying if the opinion of a minority
fraction of the population (the inflexibles) can become the
majority opinion locally in community 1, as well as the global
majority opinion in both communities. Figure 5 shows three
regions, labeled I, II, and III. In region I, for ¢ é 0.15, the
opinion of the inflexibles does not spread over the network,
and the opinion o = 41 remains the minority opinion even
in community 1. In region II, the opinion of the inflexible
agents will be shared by the majority of agents in community
1. Finally, in region III, the inflexible initial minority opinion
spreads fast and it becomes the majority opinion in all the
network, i.e., in both communities 1 and 2. It is interesting
to observe such minority reversion even for a very small
fraction of inflexibles, around 5%. Such kind of minority
reversion was observed before in simple opinion dynamics
models [43,54-58], but to the best of our knowledge this is
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FIG. 4. Order parameter versus p for some values of % in (a);
order parameter versus A for some values of p in (b). Both graphs
have n; = 1/2 and m; = m, =1 as initial conditions. The results
act as a comparison between the approximated model and the model
simulated in modular networks, and here we see good agreement
for values smaller than the critical point. The approximated solution
(SOL) comes from Eq. (11) and the numerical simulations were
performed with population size N = 10* and averaged over 100
simulations in a network with (k) = 30.

the first time that it is due to the presence of inflexibility in the
population.

It is important to observe that the minority opinion (opinion
of the inflexibles) only spreads over the network and becomes
the majority if the neutrality noise is present. We verified that
the presence of inflexibles in the model with intergroup bias
does not lead to global takeover by the inflexibles.

In Fig. 6 we exhibit phase diagrams of the model in distinct
planes, namely n; versus g [Figs. 6(a) and 6(b)], & versus ¢
[Figs. 6(c) and 6(d)], and f versus g [Figs. 6(e) and 6(f)].
In the graphics one can see that the regions of local majority
(region II, opinion o = 1 of the inflexibles becomes majority
in community 1) and global majority (region III, opinion o =
1 becomes the majority in both communities) can be obtained
for a wide range of the parameters. Indeed, the region III
results in a competition of the parameters. For example, let
us consider the region of weak noise g. Figs. 6(a) and 6(b)
show that the increase of the community with the presence
of inflexibles (community 1) makes hard the spread of the
opinion o = 1. The increase of out-group interactions (raising
h) decreases considerably region II. The decrease of the
relative size of community 1, n;, from Figs. 6(d) to 6(c), helps
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FIG. 5. Numerical integration showing the layout of the different
phases for n; = 0.4, h = 0.1 and f = 0.05. In the first region (I) the
opinion of the inflexible agents does not become the majority opinion
in neither community. In the second region (II) the inflexibles’
opinion +1 become the majority opinion in their community. And,
finally, in the third region (III) the opinion of inflexibles has become
majority in both communities. Intermediate values of g promote the
spread of minority opinion, but values of ¢ that are too high end up
weakening the spread of the minority opinion.

to spread the inflexible opinion o = 1. Finally, the increase
the fraction f of inflexibles obviously leads to an increase of
regions II and III, as one can see in Figs. 6(e) and 6(f). In
all scenarios, the highest value of the global order parameter
O (brightest region) occurs when the propensity to neutrality
achieves moderated values meaning that the nonmonotonic
global ordering with the noise strength ¢ is robust.

In Fig. 7 we compare the results of the numerical integra-
tions of the equations of the model (from Appendix B) and
Monte Carlo simulations. One can see that, apart from the
region next to the transitions, the master equations can capture
the essence of the dynamics of the model.

V. FINAL REMARKS

In this work we study the opinion evolution in an artificial
community-based population. The social network of contacts
is represented by a modular network that presents a commu-
nity structure. We consider a parameter 4 that controls the
strength of the community structure: a large value of & yields
more links between the two communities and, thus, a weak
community structure. We employ this modular network to
address two questions.

In the first problem there is another parameter p that
introduces disorder in the interactions, that can be positive
or negative with probabilities 1 — p and p, respectively. We
study the model by means of analytical and numerical cal-
culations. We found that the system exhibits order-disorder
transitions, and for some values of the parameters z and p
such transition can be discontinuous. In addition, we also
found a disorder-induced transition for increasing s for a
wide range of values of the disorder parameter p. This is
not a usual result in models of opinion dynamics, but it was
recently observed in a model of continuous opinions [20]
and for a g-voter model [S1]. Our results also show that the
introduction of intergroup bias is capable of promoting the
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FIG. 6. Global order parameter O for various configurations aris-
ing from the combinations of parameters. Specifically n; vs. g with
h=0.05, f=0.051n (a), n; vs. ¢ with h = 0.10, f = 0.05 in (b),
hvs. g, ny =0.30, f=0.051n (c), h vs. g, n; = 0.40, f =0.05
in (d), f vs. ¢ with n; = 0.30, 7 = 0.05 in (e), and f vs. ¢ with
ny =0.30, h =0.10in (f).

polarization of opinions. The polarization can be observed by
the antisymmetrical alignment of the order parameters of the
two communities. This is in accordance with previous findings
that political discussions over Twitter are both polarized and
partisan [38]. Moreover, our results suggest that the intergroup
bias is driving polarization, as was suggested in Ref. [40].

In the second part, we considered another formulation of
the opinion model, taking into account noise toward neutrality
and an inflexible minority localized in one community. Our re-
sults show an interesting nonmonotonic global ordering when
the strength of the noise is increased. That is, the propensity
to neutrality acts a double-edged sword: An intermediate
intensity of the bias to neutrality is beneficial to the initial
minority opinion spreads over the network, but this noise-
assisted minority spreading is weakened if the neutrality is
excessively favored in the population. This global reversal of
opinion occurs abruptly.

In a recent work [59] it was discussed how abrupt changes
in the global opinion of a population can affect the spread-
ing of diseases when a vaccination campaign is taken into
account. In the mentioned model, the opinions against and
in favor of the vaccination influences directly the vaccination
probability of the agents. As the modular structures we con-
sider here lead to discontinuous transitions and nonmonotonic
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FIG. 7. Comparison between Monte Carlo simulations and nu-
merical integration for the order parameter vs. ¢ with N = 10* and
for h = 0.05, n; = 0.4 in (a) and & = 0.10, n; = 0.4 in (b). Here
we can see that the approximated model has good predictable power
except near the criticalities. It is curious that for the first phase
transition it overpredicts the critical point and for the second it
underpredicts it.

phenomena in both formulations of our model, it can be inter-
esting to consider those structures to simulate the spreading
of diseases taking into account the coupling of opinions and
vaccination probability. This study will be considered in a
future work.
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APPENDIX A: MASTER EQUATIONS FOR MODEL
WITH INTERGROUP BIAS

We consider that each community is fully connected like a
mean-field approximation, but the individuals of a community
can interact with a random individual of the other community
with probability 4. In this approximation one can obtain the
master equations of the system,

(o)
a;=1u 1-—
2n
h
{(1 ) +E[Paj+(1_17)bj]}’ (AD)
()
(1) 3
+,{ .
{(1——>(a,+b)+ n-[aj+bj]}’ (AZ)

GUIGED

h h
—bi{ <1 - 2_ni>ai + 2_n,-[pbj + (1 - P)aj]}' (A3)

[(l —pla;+ pb; ]}

Paj + (- )bj]}

[pb +A —p)a,]}

[(1 — pb; +pa,]}

In above equations i, j = 1,2 with i # j, a; is the density
of negative opinions (0 = —1), u; is the density of neutral
opinions (0 = 0), and b; is the density of positive opinions
(0o = +1) in the community i.

These equations were numerically integrated using the Eu-
ler method, considering a step size dt = 0.1 and a maximum
time tnax = 10000. In Fig. 3 we see good agreement between
the numerical integration of the above master equations and
our Monte Carlo simulations.

Considering communities of the same size (n; =np =
1/2) we can obtain a steady-state solution by means of an
ansatz. A preliminary inspection of the time series insightfully
reveals two main types of steady-state solutions:

@D a7 = b7, b° = af", ui® = uf’

AD a® = a7°, b = b7, ui® = u°

In a nutshell, this means that in the steady state the com-
munities can be either antisymmetrically (I) or symmetrically
(IT) aligned. A more mathematically inclined reader can also
see that Egs. (A1) to (A2) possess these symmetries when the

communities have the same size.
The ansatz for the case I leads to the disordered phase

0* =0 I disordered solution. (A4)

On the other hand, the insertion of the ansatz for the case 11

into Egs. (A1) and (A3) gives

— (1= hp)af*b® — hp(ai®)* =0,
(A5)

(1 — hp)uai®+ hpui®

(1 = hp)uPh°+ hpuiPai®— (1 — hp)a*hy® — hp(boo)2 =0.

(A6)
Subtracting Eq. (AS5) from Eq. (A6) gives the trivial
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solution af® = b°(0O* = 0) and the steady-state fraction of
undecided agents

h
L (A7)
1—hp
where we have used a{® + b + u® = 1.
From Eq. (A7) and Eq. (A5) we obtain
1—2h hp \*
@) = (—L)ar+(—2—) =0. (A9
1—hp 1—hp
Then
1
a® = — (1 —2hp+ /1 — 4hp). (A9)
2(1 — hp)
From O%® = I—(u?c+a§o);(bm+b§°)| las® — bS°| = |af® —
(1 — uf® — a$®)| and Egs. (A7) and (A9) we finally get
1 —4h
o> = l—hp 1I: ordered solution. (A10)
—np

Equations (A4) and (A10) show the presence of an order-
disorder phase transition in our dynamics, but these equations
do not show explicitly the discontinuous-continuous boundary
that we have observed in the main part of the manuscript. This
seems to happen because the discontinuous phase transition
rises from the change of ansatz. Despite this, there is a
reasonable agreement between the Eq. (A10) and the Monte
Carlo simulations for a large set of parameters, as shown in
Fig. 4.

APPENDIX B: MASTER EQUATIONS FOR MODEL
WITH INFLEXIBLES AND NOISE

Let us first turn our attention to the model with the noise
that makes agent’s opinions neutral, without considering the
inflexibles. This makes the problem easier to solve due to the
still present symmetry. Without the inflexibles the normaliza-
tion rule is a; + b; + u; = 1. In the infinite population limit

we have:
- ofuf(1- Yt Lo
a=((1—gq {u,|: _2n,- a,—i—znia‘,]
[b <1 i)4—117]} i (B1)
o 2n; — 9%
. h h
u; = qa; + b)) + (1 — Q){ai[(l - 2—ni>b[ + Z_nibjj|
h h
“”[( 2n,> ’+2_ni“’}
h h
—u,-[(a,-+b,~)<1—2—m)+2—m(a,~+b,->]}, (B2)
b = (1 1= Yo+ b,
l—( _Q){ul[< _2_”,) z+2_nl Ji|
h h
—bil:a[(l - 2_1’11) + Z_niaj:H — qb, (B3)

Now if we introduce a fraction f of inflexibles all in the
community 1, then the normalization rules become a; + b; +
uy + f/n; = 1and ap + by + u, = 1. Notice that the fraction
of inflexibles is limited by the relative size of community 1
(n1). In the infinite population limit we get

h h
dy = (1 —61){“1[(1 2n1>a1 + 2—1a2:|
¥ h h
_al[<b1 + n_1><1 — Z_m) + 2—mb2:|} —qai,

(B4)
uy = g(a; + by)

o[- )2
b ] h h
+ 1[( _2_nl>al +2—n1612:|
1 1 h
—Ml[( —M1)< —2—>
b = (1 —q){u1[<1 - i) <b1 + = ) + 2—b2}
nj ny
h
—b1|:a1<1 2n]) + gaz]} —gby, (B6)
. h h
dr = (1— Q){u2[<1 2n2>dz + 2—201:|
h h f
“aln(= ) o ()] o

(B7)

—(ar + b2)1| } (BS)

iy = q(a + by)

ca-ofel (=g g (0]

(1= o L]

—uz[(a2+b2)<l 2—>+2—nz(1—u1)]}, (B8)
Bg:(l—q){ug[l %)bﬁ%(}aﬁ%)}

h h
—b2|:a2<1 ) + —611:|} — gbs. (B9)
2712 21’12

In this case it was not possible to obtain an explicit solution
for the steady state. But in Fig. 7 we see a good agreement be-
tween our Monte Carlo simulations and numerical integration
of the above master equations.
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