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Relaxation modes are the collective modes in which all probability deviations from equilibrium states decay
with the same relaxation rates. In contrast, a first passage time is the required time for arriving for the first
time from one state to another. In this paper, we discuss how and why the slowest relaxation rates of relaxation
modes are reconstructed from the first passage times. As an illustrative model, we use a continuous-time Markov
state model of vacancy diffusion in KCl nanoclusters. Using this model, we reveal that all characteristics of the
relaxations in KCl nanoclusters come from the fact that they are hybrids of two kinetically different regions
of the fast surface and slow bulk diffusions. The origin of the different diffusivities turns out to come from
the heterogeneity of the activation energies on the potential energy landscapes. We also develop a stationary
population method to compute the mean first passage times as mean times required for pair annihilations of
particle-hole pairs, which enables us to obtain the symmetric results of relaxation rates under the exchange of
the sinks and the sources. With this symmetric method, we finally show why the slowest relaxation times can be
reconstructed from the mean first passage times.

DOI: 10.1103/PhysRevE.100.032311

I. INTRODUCTION

Recently, the dynamics of complex systems, such as the
relaxation of glass-forming materials [1–12], the kinetics of
biomolecules [13–23], and diffusion in nanoclusters [24–30],
were studied in a unified way for Markov state models
[31–35]. The slowest relaxation modes of these systems de-
scribe the bottleneck processes, and hence they are the most
crucial, e.g., for understanding glass transitions and rapid
formations of mixed crystals [36–43].

The relaxation rates and modes are the eigenvalues and
eigenvectors, respectively, of the transition rate matrix of
a Markov state model. In general, physical quantities are
expressed in terms of the eigenvalues and eigenvectors. The
resulting expressions, called spectral representations, give
useful formulas that enable us to evaluate the physical quan-
tities with use of the eigenvalues and eigenvectors [44–52].
We can compute the relaxation rates and modes of realistic,
complicated Markov state models using numerical diagonal-
ization algorithms [53]. However, it is hard to understand why
the eigenvectors are formed in the shapes of the numerical
diagonalization results because the eigenvectors are quite
high-dimensional and complicated. To extract the essence of
the relaxation properties of Markov state models, there have
been many studies, such as lumping or renormalizing Markov
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state models [35–39,42,43], and applications of network al-
gorithms, such as Dijkstra’s shortest path algorithm [40].
Although there are many pioneering works concerning this
problem [44–52], to the best of our knowledge this problem
has not yet been completely clarified.

As a more specific indicator of diffusive transport than
the slowest relaxation rates, the first passage time is widely
studied mainly for analyzing the kinetics in complex networks
[15,16,54–58]. The first passage times from one state to
another target state in a kinetic network are the required times
of stochastic realizations for traveling from the former to the
latter state for the first time. The corresponding mean first
passage time is given by the mean value of the first passage
times of the stochastic realizations.

Intuitively, we may interpret the slowest relaxation of a
system as the process that transports the excess probability to
the maximum probability states of the equilibrium distribution
along the unavoidable and slowest transport routes in order
to achieve the equilibrium distribution. Therefore, it may be
possible to understand the formation of the slowest relaxation
mode by searching for the states where the first passage times
to the maximum probability states are the largest, and then by
finding out the main routes connecting the former to the
latter states. To the best of our knowledge, however, there
have been no such studies that search for the slowest
relaxations with this idea. Instead, all pioneering works, e.g.,
Refs. [44–51], concern mainly how the mean first passage
times are expressed with the relaxation modes via renewal
theorems. It should be noted that in this paper we study the
inverse problem, i.e., how and why the slowest relaxation
modes are reconstructed by the mean first passage times.
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As a realistic problem, we analyze a KCl nanocluster
model having one vacancy [29,30,59]. The vacancy diffuses in
the cluster and introduces the mixing of atoms in the cluster.
As for the pioneering works on vacancy diffusion, the equi-
librium vacancy concentration [60] and the relaxation process
using a stochastic process simplified by a uniform diffusion
equation [61] have been studied. Nevertheless, there are no
studies in which the surface effects of nanoclusters on the re-
laxations of the vacancy diffusion are taken into consideration.
The most substantial reason that makes such approaches dif-
ficult is that it is hard to estimate the transition rates between
all adjacent states on the high-dimensional potential energy
surface from interatomic interactions. Fortunately, in Ref. [30]
we have successfully enumerated all states and all transition
rates between adjacent states in nanoclusters of various sizes,
and we elucidated the specific properties, such as migration
energies of vacancies, arising from the surfaces of nanoclus-
ters. In this paper, we use these transition data to construct
the Markov state model of KCl nanoclusters and investigate
the relationship between the slowest relaxation modes and the
first passage times in the Markov state model equipped with
the cluster surfaces of characteristic transition regions.

The purpose of this paper is twofold. One is to understand
the formations of the slowest relaxation modes in terms of the
first passage times of the vacancy diffusion in KCl nanoclus-
ters. The other is to elucidate the theoretical basis for why
such a mean first passage time analysis applies to the slowest
relaxations.

In Sec. II, we introduce a Markov state model, its relaxation
modes, and its mean first passage times in a general setting.
For the mean first passage times, we develop a stationary
population method that enables us to compute the first pas-
sage times from the stationary populations of the Markov
state models that connect sinks with sources. In Sec. III, we
introduce the interatomic interaction of the KCl nanoclusters
and then construct the Markov state models of the vacancy dif-
fusion model. In Sec. IV, we compute the slowest relaxation
mode and the mean first passage times of a KCl nanocluster.
We find there that the shape of the energy landscape [32,33]
tells us why its relaxation makes effective use of the shortest
routes of the vacancy from the center to the surface. In Sec. V,
we study the second slowest relaxation mode and the cor-
responding mean first passage times of the KCl nanocluster.
In Sec. VI, we first confirm that, under exchanging sinks
and sources, the mean first passage time approximation for
the relaxation times in Sec. IV is asymmetric, while that in
Sec. V is suitably symmetric. We then develop a symmetric
stationary population method for the mean first passage times,
where they are interpreted as the mean first encounter times
of particle-hole pairs. The iterative use of the symmetric
method turns out to be equivalent to an inverse power method
for diagonalization of matrices. We show that the mean first
passage time approximations of the relaxation times are good
approximations that converge to the exact relaxation times
with the iterative use of the symmetric method.

II. MARKOV STATE MODEL, RELAXATION RATES,
AND MEAN FIRST PASSAGE TIMES

In this section we introduce a Markov state model, and
we describe a popular method of calculating first passage

times for this model according to Refs. [50,52]. We also show
that the mean first passage times obey stationary population
equations, which will be used to develop a symmetrized
version of the population method later in Sec. VI.

A. Continuous-time Markov state model

We start with a continuous-time Markov state model de-
scribed by a transition rate matrix K with finite dimension, n,
of the state space. The kinetic equation is given by

dP
dt

= KP, (1)

where P is the probability distribution P = (p1, . . . , pn)T ,
with pi denoting the probability of the ith state and the su-
perscript T denoting the transpose. We assume that K is time-
independent and satisfies Ki j � 0 (i �= j) and the probability
conservation condition of

∑n
i=1(K )i j = 0 ( j = 1, 2, . . . , n).

Further, we assume that the equilibrium, limt→∞ P(t ), is a
unique vector Peq satisfying the detailed balance conditions
(K )i, j (Peq) j = (K ) j,i(Peq)i [50,62]. Then, the eigenvalues of
K satisfy

0 = λ0 > λ1 � · · · � λn−1. (2)

The equilibrium Peq coincides with the zeroth eigenvector of
K , and the first, second, etc., eigenvectors Pi of K represent
the slowest relaxation modes with the relaxation times of
|λ1|−1 � |λ2|−1 � · · · , respectively.

B. Mean first passage times

The mean first passage times, ti, j , from a state j to i
are evaluated by connecting perfect absorbers to all the final
destinations of i. The resulting equation is given by

dP
dt

= KP − S−, (3)

where S− represents the perfect absorbers that always keep
(P)i = 0 for the sink states of i. Without a loss of generality,
the sink states are assumed to be states of i = 1, . . . , m, and
the other states, which are free from the absorbers, are the
remainders of i = m + 1, . . . , n. The perfect absorber condi-
tions are represented as follows:

S− = (s1, . . . , sm, 0, . . . , 0)T ≡
(

s−
0

)
, (4)

P = (0, . . . , 0, pm+1, . . . , pn)T ≡
(

0
p

)
. (5)

By substituting Eqs. (4) and (5) for Eq. (3), we have the
following solution with the initial condition of P0 = ( 0

p0
):

p(t ) = etKFF p0, (6)

s−(t ) = KSF etKFF p0, (7)

where p0 satisfies

‖p0‖ ≡
n−m∑
i=1

|(p0)i| =
n−m∑
i=1

(p0)i = 1. (8)
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KFF is the submatrix with dimension (n − m) × (n − m)
formed by selecting the rows of K from m + 1 to n and the
columns from m + 1 to n, and KSF is the submatrix with
dimension m × (n − m) formed by selecting the rows from
1 to m and the columns from m + 1 to n. The probability con-
servation property of the rate matrix of K can be represented
by

m∑
i=1

(KSF )i j +
n−m∑
i=1

(KFF )i j = 0 (9)

for j = 1, 2, . . . , n − m. Multiplying both sides of Eq. (9)
by (K−1

FF ) jk and adding the resultant equations from j = 1 to
n − m, we have the following equations:

m∑
i=1

( − KSF K−1
FF

)
ik = 1 (k = 1, 2, . . . , n − m). (10)

The ith element of s−(t ) describes the first passage time
distribution of being absorbed in the ith sink at time t . There-
fore, by integrating Eq. (7) from t = 0 to ∞, the probability
of being absorbed in the ith sink for 0 � t < ∞ is given by
the ith element of

s̄− =
∫ ∞

0
s−(t )dt = −KSF K−1

FF p0, (11)

where we use Eq. (7) and limt→∞ etKFF = 0, which holds
because all eigenvalues of KFF are negative values. From
Eq. (11) and [s−(t )]i � 0, we see that (s̄−)i � 0. Moreover,
with the use of Eqs. (8) and (10), we have

‖s̄−‖ ≡
m∑

i=1

|(s̄−)i| =
∑

i

(s̄−)i =
∑

i

(−KSF K−1
FF p0

)
i

=
∑
i,k

(−KSF K−1
FF

)
ik (p0)k =

∑
k

(p0)k = ‖p0‖ = 1,

from which

‖s̄−‖ = ‖p0‖ = 1. (12)

The conditional probability distribution ρi(t ) of being ab-
sorbed at time t when the system is known to be absorbed in
the state of i is given by

ρi(t ) = [s−(t )]i

(s̄−)i
=

(
KSF etKFF p0

)
i(−KSF K−1

FF p0

)
i

. (13)

Therefore, the mean first passage time, ti, j , from the state j to
the sink state i is given by

ti, j =
∫ ∞

0
tρi(t )dt =

(
KSF K−2

FF p0

)
i(−KSF K−1

FF p0

)
i

(14)

with (p0)k = δk, j−m (k = 1, 2, . . . , n − m). Moreover, the
mean first passage time, t j , from the state j to any absorbing
states is given by

t j =
∑

i

(s̄−)iti, j =
∑

i

(
KSF K−2

FF p0

)
i

=
∑
i,k

(−KSF K−1
FF

)
ik

( − K−1
FF p0

)
k

=
∑

k

(−K−1
FF p0

)
k
,

that is,

t j = ∥∥−K−1
FF p0

∥∥, (15)

where Eqs. (10), (11), and (14) are used.
Equations (14) and (15) are the basic formulas for calcu-

lating the mean first passage times.
Next, we show that the mean first passage times can be

evaluated from a stationary population distribution. Let us
consider the following mean residence time distribution:

p̄ =
∫ ∞

0
p(t )dt = −K−1

FF p0, (16)

where ( p̄)i is the mean residence time in the (i + m)th state
for i = 1, . . . , n − m. Hence, the mean residence time in the
whole system is given by the sum, ‖p̄‖, of ( p̄)i from i = 1
to n − m, which is, of course, equivalent to the mean first
passage time t j of Eq. (15).

Equation (16) enables us to confirm that p̄ satisfies the
following nonequilibrium stationary state equation:

d p̄
dt

= KFF p̄ + s̄+ = 0 (17)

with s̄+ = p0. Hence, we can interpret s̄+ as the source term
that adds one particle with distribution p0 per unit time, p̄
as the stationary population of Eq. (17), ‖p̄‖ as the total
population contained in p̄, and ‖p̄‖−1 as the probabilistic
flow carried by one particle. Namely, we can also compute
the mean first passage times as the total numbers, ‖P̄‖, of
particles in the stationary population P̄ obeying the following
stationary equation:

d

dt
P̄ = KP̄ + S+ − S− = 0, (18)

where

P̄ =
(

0
p̄

)
, S+ =

(
0
p0

)
, S− =

(
s̄−
0

)
. (19)

Note that the stationary population equation (18) will be used
in Sec. VI.

III. KCl NANOCLUSTER VACANCY DIFFUSION MODEL

In this section, according to Ref. [30], we first present the
vacancy diffusion model of KCl nanoclusters as an example of
a practical problem, and then we introduce the corresponding
Markov state model of the vacancy diffusion.

A. Local minima and saddle points on the potential energy
surface of a KCl nanocluster

Let us assume that one chlorine ion is extracted from a cube
of ionic crystal with equal NL-atom edges and further that
NL is an odd number 2nL + 1, and the resultant cluster with
N ≡ NL

3 − 1 atoms is electrically neutral. We employ the
two-body Coulomb plus Born-Mayer type potential model,

v(ri j ) = QiQj

4πε0ri j
+ Ai j exp

(
Ri + Rj − ri j

ρ

)
, (20)

where Qi, Qj are the charges of the ith and jth atoms, ε0 is the
vacuum permittivity, and ri j is the distance between the ith
and jth atoms. We use the values of the three parameters Ai j ,
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Ri, and ρ that were introduced by Tosi and Fumi in Ref. [63]:
Ai j = 0.2210, 0.2637, and 0.1582 eV, respectively, for K-Cl,
K-K, and Cl-Cl pairs; Ri = 1.463 and 1.585 Å for K and
Cl, respectively; and ρ = 0.337 Å. Then, the total potential
energy of the cluster is given by

V (r1, . . . , rN ) =
N−1∑
i=1

N∑
j=i+1

v(ri j ). (21)

In the course of the time evolution, the vacancy moves
around the cluster, which introduces atomic mixing to the
cluster. Note that the cubic form of the cluster is kept with
the time evolution when the temperature is sufficiently low
[29]. At such low temperatures, the position of the vacancy
is specified by the cubic lattice point n = (nx, ny, nz ) with
−nL � nx, ny, nz � nL. Moreover, we are able to find the
atomic structure corresponding to the vacancy lattice point
n as follows: First, atoms are arranged at d (mx, my, mz ) with
lattice constant d = 3.147 Å for KCl, where (mx, my, mz ) �= n
and −nL � mx, my, mz � nL. Then, the configuration of the
atoms is relaxed to the local minimum (LM) configuration,
r = (r1, . . . , rN ), of the potential energy surface, e.g., by the
conjugate gradient method [53]. In this way, n is assigned
to the LM atomic structure as rn = r. We compute the LM
configurations rn and the energies V (rn) for all n. The LM
datasets of V (rn) and rn are stored in a file in nondecreasing
order of energy V (rn). For the sake of notational simplicity,
the ith lowest energy is denoted as Ei, and the correspond-
ing LM, atomic configuration, and vacancy lattice point are
denoted as i, ri, and ni, respectively. Then, we proceed to
find out all of the saddle points (SPs) connecting the adjacent
LMs, e.g., by the nudged elastic band method [32]. The
corresponding saddle point connecting the ith and jth LMs,
atomic configuration, and potential energy are denoted as i j,
ri j , and Ei j , respectively. For the computational details of
enumerating all of the LMs and SPs, we refer the reader to
Ref. [30].

B. Markov state model of KCl vacancy diffusion

Let f (r) denote the probability density function at a con-
figuration r. We suppose that the intra-LM relaxations are so
fast that f (r) is represented as

f (r) = p1 f1(r) + p2 f2(r) + · · · + pn fn(r), (22)

where n is the number of the LMs, fi(r) is the local equilib-
rium in the ith-LM basin, and pi is the probability that r is in
the ith-LM basin. We identify pi with the probability in the ith
state of the Markov state model. Then, the probability vector P
of the Markov state model is given by P = (p1, p2, . . . , pn)T .

Next, we evaluate the transition rate ki, j from the jth to
the adjacent ith state, when the potential barrier energies are
sufficiently larger than the average kinetic energy of kBT/2
for one degree of freedom at temperature T , where kB denotes
the Boltzmann constant. In this case, the transition rate ki, j

from the jth to the ith state is given by

ki, j = νi, j exp

(
−Ei j − Ej

kBT

)
. (23)

Here, the prefactor νi, j , called a frequency factor, is given by

νi, j =
∏′

k (νi )k∏′
k (νi j )k

, (24)

where νi and νi j are vibrational frequency vectors that are
calculated from the Hessians at ri and ri j , respectively. The
product

∏′
k (ν∗)k denotes the partial product of the positive

frequency modes (ν∗)k > 0, where the imaginary frequency
modes and the zero frequency modes are left out from the
products.

Finally, the transition rate matrix K is given by

(K )i, j = ki, j (i �= j) and (K ) j, j = −
∑
i �= j

ki, j, (25)

where the probability conservation equations
∑

i(K )i, j =
0 for j = 1, 2, . . . , n and the detailed balance conditions
(K )i, j (Peq) j = (K ) j,i(Peq)i for i, j = 1, 2, . . . , n are satisfied
since (Peq)i ∝ exp(−Ei/kBT ).

In the following, we examine the slowest relaxation modes
of the KCl vacancy diffusion model of NL = 13. To this end,
we searched for the LMs and the SPs of the cluster, thereby
finding 1099 [= 1 + (N3

L − 1)/2] LMs and 5472 SPs. Then,
with the use of Eqs. (23), (24), and (25), we formed its rate
matrix of K at kBT = 0.03 eV, whose matrix dimension n
is 1099 and the number of nonzero off-diagonal elements is
10 948 (= 5472 × 2).

By diagonalizing K , we obtained the eigenvalues λi and the
corresponding relaxation modes Pi for i = 0, 1, 2, . . . , n − 1,
where P0 = Peq. In Secs. IV and V, we study the properties of
the slowest relaxation P1 and the second slowest relaxations
P2, P3, and P4 (λ2 = λ3 = λ4), respectively.

IV. THE SLOWEST RELAXATION MODE

In this section, we show that the slowest relaxation mode
of the KCl nanocluster makes effective use of the fast sur-
face diffusion of the cluster in terms of the mean first
passage times, the free energy landscapes, and the atomic
interactions.

A. Dominant pathways

Figure 1(a) shows the slowest relaxation mode of P1, from
which we see that P1 has the probability excesses at around
the origin (0,0,0) and the probability shortages at around the
eight vertices of (±nL,±nL,±nL ). In Fig. 1(b), we also plot
the values of (P1)i along two pathways from the origin to
the vertex (nL, nL, nL ), which clearly shows that they have
the maximum values at the origin and positive values up
to three steps from the origin and negative values at the
vertices.

P1 decays with the rate of λ1 = −1.92 × 105 s−1 over
the course of time. Hence, the probabilistic flow from the
center to the vertices is expected in the relaxation process
of P1. To confirm this, we compute all of the probabilistic
flows fi, j from j to i, generated by P1, where fi, j is given
by fi, j = ki, j p j − k j,i pi with pi = (P1)i for 1 � i, j � n. In
Fig. 2, fi, j are represented by the arrows from n j to ni when
fi, j > 0. We see that the probabilistic flows from the center to
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FIG. 1. The slowest relaxation mode, P1, at kBT = 0.03 eV:
(a) Red (light gray) and blue (dark gray) balls are depicted at vacancy
lattice points of ni with radii ∝ |(P1)i|1/3 for (P1)i > 0 and (P1)i < 0,
respectively. Note that P1 has cubic symmetry around the x-, y-, and
z-axes. (b) (P1)i along pathways �1 of Eq. (26) and �2 of Eq. (27) are
plotted as a function of the number of steps from the origin (0,0,0)
with blue circles connected by the lower line and orange squares
connected by the upper line, respectively.

the vertices are generated. More precisely, the probabilistic
flows are not uniform but mostly along the two dominant
pathways of �1 and �2 as depicted in Fig. 2.

The dominant pathways of �1 and �2 are defined by the
following algorithm that searches for the maximum flow
pathways flowing into the terminals. First, we start with the
terminal of the vertex (nL, nL, nL ) = (6, 6, 6). The probabilis-
tic flow from (5,6,5) flows into the terminal (6,6,6). The
probabilistic flows from (6,6,5) and (4,6,4) flow into (5,6,5),
respectively. The dominant pathways via (6,6,5) and (4,6,4)
are denoted as �1 and �2, respectively. We then search for
the source flow of �1 as follows. The probabilistic flow from
(5,6,4) is the maximum flow flowing into (6,6,5). That from
(6,6,3) is the maximum flow flowing into (5,6,4), and so on.
This procedure continues until the source (0,0,0) appears and

FIG. 2. Probabilistic flows fi, j of P1 at kBT = 0.03 eV are rep-
resented by arrows from n j to ni with cylinder radii ∝ √| fi, j | for
fi, j > 0. The flows have the same cubic symmetry as in Fig. 1.
Hence, only the flows in a reduced zone ny � nx � nz � 0 are
represented. We see that two pathways �1 and �2 in blue (dark gray)
carry the dominant flows: �1 is composed of the straight move from
the origin (0,0,0) to the edge center (6,6,0) and the succeeding zigzag
move to the vertex (6,6,6); �2 is composed of the zigzag move from
the origin to the face center (0,6,0) and the succeeding straight move
to the vertex. [See Eqs. (26) and (27).]

gives the dominant pathway as

�1 = (0, 0, 0) → (1, 1, 0) → · · · → (6, 6, 0)

→ (5, 6, 1) → (6, 6, 2) → (5, 6, 3)

→ (6, 6, 4) → (5, 6, 5) → (6, 6, 6). (26)

The dominant paths of this kind are composed of six
straight steps from the origin to the 12 centers of the
edges (±6,±6, 0), (±6, 0,±6), (0,±6,±6), followed by
six zigzag steps from there to the vertices along the edges.
Similarly, we search for the source flows flowing into (4,6,4)
and obtain �2 as

�2 = (0, 0, 0) → (1, 1, 0) → (0, 2, 0) → (1, 3, 0)

→ (0, 4, 0) → (1, 5, 0) → (0, 6, 0)

→ (1, 6, 1) → · · · → (5, 6, 5) → (6, 6, 6). (27)

The dominant paths of the second kind are composed of six
zigzag steps from the center to the six centers of the faces,
(±6, 0, 0), (0,±6, 0), (0, 0,±6), followed by six straight
steps from there to the vertices.

In other words, the dominant paths arriving at each vertex
are the three �1-type paths, which climb along the three edges
connected to the vertex, and the three �2-type paths, which
move across the three faces containing the vertex. Note that
these observations are consistent with our previous results
from Ref. [42]. There, all states are divided into groups, called
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metabasins, that are located around the vertices, the edges, the
faces, and the center part, and then the relaxation processes are
described accurately by the renormalized transitions between
these metabasins. That is to say, we have reconfirmed here that
the essential pathways connecting the vertices, the edges, the
faces, and the center part are indispensable for describing the
slowest transport of probabilities.

B. Mean first passage times

Here, we consider why the dominant paths carrying
large probabilistic flows are not almost straight, nine-step
shortest paths from the origin to the vertices, such as
(0, 0, 0) → (0, 1, 1) → (1, 1, 2) → (2, 2, 2) → (2, 3, 3) →
(2, 4, 4) → (3, 4, 5) → (4, 5, 5) → (5, 5, 6) → (6, 6, 6), but
longer 12-step paths of �1 and �2 in Fig. 2. To this end, we
examine the mean first passage times of t j from various initial
states of j to the sink states of the vertices (±nL,±nL,±nL ).

Using Eq. (15), we compute t j for various initial states of j.
The resulting t j are plotted in Fig. 3(a). We see that the states
in the central part have large t j values, while the states on the
surface have quite small values. That is, the KCl nanocluster is
a hybrid system that combines entirely different microscopic
diffusive regions: The central part is the region that is hard
to move stochastically, whereas the surface part is the region
that is quite easy to move. To see this more closely, we plot
t j along the paths of �1 and �2 in Fig. 3(b), where both of t j

have the maximum value at the origin and they are negligibly
small compared to the maximum value in two layers from the
surface.

Now, we see the reason why the detoured pathways are
selected to be the dominant pathways, as depicted in Fig. 2.
Namely, it is because all the dominant pathways prefer to
pass the slow diffusion region of the central part as soon as
possible, with the fewest steps of nL = 6, in order to make the
most effective use of the fast diffusion in the surface region.

Next, we show that λ1 can be evaluated approximately
from t j . The longest mean first passage time to the vertices
is t(0,0,0) = 8.28 × 10−6 s. The probability of being at the
vertices in equilibrium is Peq(vertices) = ∑

i∈vertices(Peq)i =
0.885. We regard the equilibration time as the required time
of constructing Peq(vertices). Then, the equilibration time is
approximately given by

Peq(vertices) × t(0,0,0) = 7.33 × 10−6 s. (28)

The corresponding equilibration rate is given by the inverse
of the equilibration time, 1.36 × 105 s−1. The estimate agrees
qualitatively with the values of |λ1| = 1.92 × 105 s−1, al-
though it is a smaller value than |λ1|.

This discrepancy arises because, although the actual ex-
cess probabilities in P1 are distributed in the central part as
depicted in Fig. 1, the excess probability is approximated to
the distribution concentrated on the origin, for the mean first
passage time approximation of λ1. We will revisit this point in
Sec. VI.

C. Free energy sequences

Here, we consider the physical reason why the bottleneck
of diffusion in the Markov state model of the KCl nanocluster

0 2 4 6 8 10 12
0

2

4

6

8

(a)

(b)

FIG. 3. Mean first passage times of t j at kBT = 0.03 eV, with
perfect sinks connected to the vertices (±6,±6, ±6): (a) t j are
represented by balls of radii ∝ |t j |1/3 located at n j . The mean first
passage times have cubic symmetry around the x-, y-, and z-axes.
(b) t j along �1 and �2 are plotted as a function of the number of steps
from the origin with blue circles connected by the lower line and
orange squares connected by the upper line, respectively. Both of t j

have the maximum value of 8.28 × 10−6 s at the origin of (0,0,0).
The values of t j in the center part, where the number of steps is from
0 to 4, have the same order of magnitude, while those in the two
layers from the surface, where the number of steps is from 5 to 12,
are quite small values.

is located at the central part. To this end, we examine the
following free energies for the LMs of j and the SPs of i j,
respectively:

Fj = Ej − kBT ln
∏

k

′
(ν j )k, (29)

Fi j = Ei j − kBT ln
∏

k

′
(νi j )k, (30)
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FIG. 4. Free energy sequences in units of eV are plotted at
kBT = 0.03 eV as functions of steps counted from the origin (0,0,0)
to a vertex along the geometric shortest path (�, green), along
the dominant path, �1, of Eq. (26) via an edge center (•, blue)
and the dominant path, �2, of Eq. (27) via a face center (�, orange).
The integer steps indicate the free energies of the local minima,
and the half-integer steps indicate the free energies of the saddle
points that connect the basins of adjacent local minima.

where ki, j = exp[−β(Fi j − Fj )] holds. Then, the free energy
sequence of local minima and saddle points along a pathway
i0 → i1 → · · · → is is given by Fi0 , Fi0i1 , Fi1 , Fi1i2 , Fi2 , . . . Fis .

In Fig. 4, we plot the free energy sequences of the dominant
pathways of �1 [Eq. (26)] and �2 [Eq. (27)]. Along these
dominant pathways, the activation energies for the inner tran-
sitions ik → ik+1 are about 
Fik+1,ik = Fikik+1 − Fik ≈ 0.5 eV,
and hence the transition rates become quite low rates of
kik+1,ik ≈ 6 × 105 s−1 at kBT = 0.03 eV. In contrast, those for
the surface transitions are 
Fik+1,ik ≈ 0.2 eV, and the transi-
tion rates are about kik+1,ik ≈ 1 × 1010 s−1, which are about
104 times higher than the inner rates, at the same temperature.

For comparison, we also plot the free energy sequence
along the nine-step geometric shortest path in Fig. 4. We see
that the first seven steps are in the slow diffusion region and
the last two steps are in the faster surface diffusion region.
Therefore, the geometric shortest path cannot be dominant,
because the extra steps in the slower diffusion region reduce
its diffusive flow drastically.

Note that the activation free energies of 
Fik ,ik+1 � 0.2 eV
are sufficiently larger than kBT = 0.03 eV and hence the
harmonic approximation (23) used in this study is accurate.

D. Activation energies on potential energy landscapes

Next, we show that it can be understood in terms of the
interatomic interaction energies why the surface activation
free energies are so small compared to the inner ones.

First, from Eqs. (24), (29), and (30), 
Fi, j = Ei j − Ej +
kBT ln νi, j holds. At the low temperature of kBT = 0.03 eV,
kBT ln νi, j ≈ 0.03 eV is negligible compared to 
Fi, j ≈
0.5 eV, and 
Fi, j ≈ Ei j − Ej holds. Hence, in the following
we consider the activation energies, 
Ei, j = Ei j − Ej , of
various transitions.

We examine the activation energy of 
Ei, j when the va-
cancy lattice points ni and n j are present in the inner part of
the cluster. In this case, Ei and Ej are almost the same, as

TABLE I. Activation energies 
Ei, j and local activation energies

E loc

i, j of vacancy transitions in the KCl cluster of nL = 6 are enu-
merated in units of eV. 
E1,2 = E1,2 − E2 and 
E loc

1,2 = E loc
1,2 − E loc

2 ,
where E loc

1,2 and E loc
2 are sums of individual atomic energies around

the defect points. (See the text.)

Activation type n1 ← n2 
E1,2 
E loc
1,2

Inner ← Inner (1, 1, 0) ← (0, 0, 0) 0.58 0.53
Face ← Face (6, 1, 1) ← (6, 0, 0) 0.32 0.33
Edge ← Face (6, 6, 0) ← (6, 5, 1) 0.15 0.18
Vertex ← Face (6, 6, 6) ← (6, 5, 5) 0.027 0.036

shown in Fig. 4, and hence 
Ei, j is determined by the energy
increase from Ei 
 Ej , due to the deformation of the crystal
structure near the lattice defect. To quantify the deformation
energies, we introduce the individual potential energy of the
kth atom as

Vk = 1

2

∑
l �=k

v(rkl ). (31)

Then, the total potential energy of Eq. (21) is represented as

V (r) =
∑

k

Vk. (32)

Note that Vk is half of the required energy to remove
the kth atom from the cluster, since V (r1, . . . , rk, . . . rN ) −
V (r1, . . . , rk−1, rk+1 . . . , rN ) = 2Vk holds. Figures 5(a) and
5(c), respectively, show the values of Vk for the LMs of the
vacancy lattice points of n1 = (0, 0, 0) and n2 = (1, 1, 0). We
see that the changes of Vk are concentrated in the vicinities
of the vacancies at around r1 = dn1 and r2 = dn2 with lattice
constant d , and that Vk of Cl and K atoms decrease and in-
crease, respectively, when approaching the vacancy positions.
Figure 5(b) shows the values of Vk for the SP connecting the
LMs of n1 and n2. The SP has the high-energy Cl atom as the
lattice defect at around the midpoint, r1,2 = d (1/2, 1/2, 0),
of the vacancy positions. In this case, too, Vk of Cl and K
atoms decrease and increase, respectively, when approaching
the defect of the high-energy Cl atom.

Next, we show that 
Ei, j can be estimated with use of the
local Vk values around the defects. To this end, we obtain the
local energies E loc

1 = −134.34 eV, E loc
1,2 = −133.804 eV, and

E loc
2 = −134.334 eV, which are the sums of Vk inside the local

regions surrounded by the green (gray) rectangle frames in
Figs. 5(a), 5(b) and 5(c), respectively. Hence, the activation
energies evaluated from these local energies are given by

E loc

2,1 = E loc
1,2 − E loc

1 = 0.530 eV and 
E loc
1,2 = E loc

1,2 − E loc
2 =

0.536 eV, which agree qualitatively with the exact activation
energies of 
E2,1 = 0.58 eV and 
E1,2 = 0.58 eV.

Similarly, we also evaluate the local activation energies
of other types of activation processes as listed in Table I.
We see that the other types of activation energies are also
described suitably by the local activation energies. Therefore,
we have confirmed that all of the activation energies can
be interpreted as the energy rises due to the local lattice
deformations generated around the lattice defects.

Also, the local deformation assumption leads to the
approximate relations of 
Eface←face ≈ 
Einner←inner/2 and
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FIG. 5. Individual energies Vk of kth atoms contained in the
z = 0 planes are shown for (a) the LM of the vacancy lattice point of
n1 = (0, 0, 0), (b) the SP connecting LMs of n1 and n2 = (1, 1, 0),
and (c) the LM of the vacancy lattice point of n2. The Cl and K atoms
of individual energies Vk are represented by blue (dark gray) and
yellow (light gray) balls with radii ∝ 3

√
Vk − mink{Vk}. The defect

neighbors are defined by the regions inside the green (gray) frames of
|x − y| < 1.2d , −1.2d < x + y < 3.2d , and |z| < 2.2. (See the text.)


Eedge←face ≈ 
Einner←inner/4, which are implied in Table I.
To understand these relations, we assume for simplicity that
the deformation energy is uniformly distributed inside the ball
of radius a ≈ d located at the defect point. Assuming further
that the deformation energy per unit volume is given by ε,
then the activation energies for inner vacancies are estimated
as 
Einner←inner = 4πa3ε/3 (= 0.58 eV).

Next, we consider the activation energies for vacancies in
a face. In this case, the energies of adjacent local minima

are also supposed to be the same for simplicity. Since the
deformed regions are half of the inner case, the deformation
energies of the vacancies in the faces are estimated to be

Eface←face = 4πa3ε/3/2 = 
Einner←inner/2 (= 0.29 eV).

Moreover, when a vacancy inside a face moves to an
adjacent edge, the deformation energy reduces to half of

Eface←face, since the deformed region is halved from that
of the transition in a face. Hence, we have 
Eedge←face ≈

Einner←inner/4 (= 0.15 eV). We see that the estimated val-
ues agree quantitatively with the exact values. Lastly, when
the vacancy in a face moves to an adjacent vertex, the de-
formation energy is evaluated to be halved to 
Eedge←face.
Thus, we have the following approximation: 
Evertex←face ≈

Einner←inner/8(= 0.07 eV), which agrees qualitatively with
the exact value of 0.027 eV.

Here, we have revealed that the activation energies for the
system of nL = 6 are determined by the local deformation
energies of 
E loc

i, j around the defects. Accordingly, the
activation energies are supposed to be almost independent
of the system size of nL. In fact, we have 
Einner←inner =

E(0,1,1)←(0,0,0) = 0.58 eV, 
Eface←face = 
E(4,1,1)←(4,0,0) =
0.33 eV, 
Eedge←face = 
E(4,4,0)←(4,3,1) = 0.16 eV, and

Evertex←face = 
E(4,4,4)←(4,3,3) = 0.03 eV for nL = 4. These
results show that all types of activation energies are indeed
almost independent of the system size when nL � 4.

On the other hand, for nL = 2, we have 
Einner←inner =

E(0,1,1)←(0,0,0) = 0.47 eV, 
Eface←face = 
E(2,1,1)←(2,0,0) =
0.39 eV, 
Eedge←face = 
E(2,2,0)←(2,1,1) = 0.3 eV, and

Evertex←face = 
E(2,2,2)←(2,1,1) = 0.05 eV, which shows that
the uniform local deformation assumption for the activation
energies employed above does not hold for nL = 2. In other
words, the cluster of nL = 2 is too small to separate the
deformations of the surface from those of the central portion,
and thus some non-negligible couplings are generated
between the inner and surface deformations. As a result of
the couplings, the relatively high activation energies between
inner transitions are decreased, while the other relatively low
activation energies between surface transitions are increased
for nL = 2.

In addition, the saddle connectivity graphs of nL = 4,
6, and 8 depicted in Ref. [30] also show visually that the
activation energies of 
Einner←inner, 
Eface←face, 
Eedge←face,
and 
Evertex←face are almost independent of the sizes nL of the
clusters.

V. THE SECOND SLOWEST RELAXATIONS

In this section, we examine the second slowest relaxations
of λ2, λ3, λ4 = −3.89 × 105 s−1. In Fig. 6, we plot P2 in the
same way as in Fig. 1. The probability deviations of P2 are
polarized in the x-direction. Here, the probability excess is
in the region of x > 0, the probability shortage is in x < 0,
and the probabilities are zero in x = 0. From this observation,
the relaxation process is expected as follows: the probability
excess moves in the opposite x-direction, the probability
shortage moves in the x-direction, and these pairs meet with
each other in the region of x = 0 to be annihilated.

To confirm this expectation, we evaluated the mean first
passage times with sinks connected to (0, ny, nz ) for −nL �
ny, nz � nL. The longest passage time is t(2,0,0) = 4.05 ×
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FIG. 6. We plot the second slowest relaxation mode of P2 in
the same manner as in Fig. 1. P2 has fourfold rotational sym-
metry around the x-axis. The relaxation mode is polarized in the
x-direction, where the excess and shortage of probability are dis-
tributed, respectively, in x > 0 and x < 0, symmetrically with respect
to the plane of x = 0. Similarly to P2, P3, and P4 are the relaxation
modes, which are polarized in the y- and z-directions, respectively.

10−6 s. The resulting rate of this process is 2.47 × 105 s−1.
Also here, the estimated values of the rate agree qualitatively
with |λ2|, but they are somewhat smaller than the exact rate
of |λ2| = 3.89 × 105 s−1, because this approximate rate is
evaluated only from the longest mean first passage time, as
discussed in Sec. IV B.

Finally, we show that the approximate relation of λ2 ≈ 2λ1

holds. Here, the value of λ2 evaluated from the mean first
passage time from (2,0,0) to x = 0 is approximated by that
from (2,0,0) to (0,0,0). From Fig. 1(b), we see that λ1 is ap-
proximately evaluated from the mean first passage time from
(0,0,0) to (4,0,0), which is approximately twice as long as that
from (0,0,0) to (2,0,0) since each of the transitions requires
almost the same transition time as shown in Fig. 4. Hence, the
proportional relation 1/|λ1| : 1/|λ2| = 4 : 2 holds, and thus
λ2 = 2λ1 holds. Similarly, we can derive the approximate
relations of λ3 = 2λ1 and λ4 = 2λ1.

In this section, we have confirmed that the second slowest
relaxations of P2, P3, and P4, respectively, smooth out the
nonequilibrium distribution deviations in the x-, y-, and z-
directions over the course of time, and the bottleneck pro-
cesses for the second slowest relaxations are also the slow
diffusions inside the cluster. This fact allows us to derive the
approximate relation of λ2, λ3, λ4 ≈ 2λ1.

VI. SYMMETRIC EVALUATION OF RELAXATION RATES

A. Symmetric population method

In the previous sections, we have successfully evaluated the
values of the slowest and second slowest relaxation rates with
the use of the mean first passage times. Recall that the usages
of the mean first passage times for the slowest and second
slowest relaxations were different. That is, for the slowest

relaxation, the mean first passage times concerning particles
were used, whereas for the second slowest relaxations, the
mean annihilation times of particle-hole pairs were evaluated
with the uses of the mean first passage times.

The difference manifests itself in the symmetry of relax-
ation times under exchanging the sinks and sources. Namely,
the approaches to evaluating the slowest and second slowest
relaxation rates, respectively, give the relaxation times that
are asymmetric and symmetric for exchanging sinks and
sources. In fact, as shown in Eq. (28), the slowest relax-
ation time is 7.33 × 10−6 s with the source and the sinks
being connected to the origin and the vertices, respectively,
whereas with the sources and the sink being connected to
the vertices and the origin, the mean first passage time is
given by τ ′ = 3.82 × 10−3 s and thus the relaxation time is
(Peq)(0,0,0) × τ ′ = 8.24 × 10−3 s. The symmetry corresponds
to the property that Pi and −Pi have the same value of λi, and
hence it is required for a consistent treatment.

Here, we develop an alternative population method for
estimating mean first passage times that is symmetric under
the exchange of the sinks and sources.

To this end, we consider the following stationary popula-
tion equation:

KQ + S = 0, (33)
with

‖Q+‖ = ‖Q−‖, ‖S+‖ = ‖S−‖ = 1. (34)

Here, Q = Q+ − Q− and S = S+ − S−, where the positive
population Q+ and the negative population −Q− are given by

Q+ = Q + |Q|
2

, Q− = −Q − |Q|
2

, (35)

with |Q| ≡ (|q1|, |q2|, . . . , |qn|). The source part S+ and the
sink part −S− are, respectively, given by

S+ = S + |S|
2

, S− = −S − |S|
2

, (36)

with |S| ≡ (|s1|, |s2|, . . . , |sn|). With use of the stationary so-
lution P̄, satisfying Eqs. (18) and (19), the stationary solution
Q of Eqs. (33) and (34) is given by

Q = P̄ − ‖P̄‖Peq, (37)

In fact, Q given in Eq. (37) satisfies the constraint ‖Q+‖ =
‖Q−‖, because ‖Q+‖ − ‖Q−‖ = ‖Q‖ = ‖(P̄ − ‖P̄‖Peq )‖ =
‖P̄‖ − ‖P̄‖ = 0 holds.

As illustrated in Fig. 7(b), the negative population −Q−
can be interpreted as the hole population of Q−. Hence, the
mean annihilation times of particles and holes are, respec-
tively, given by the first passage times of ‖Q+‖ and ‖Q−‖
as discussed in Sec. V. Similarly, S− is interpreted as a
hole source part that adds one hole per unit time. Hence,
the constraint of ‖S+‖ = ‖S−‖ = 1 means that S+ adds one
particle per unit time, and S− adds one hole per unit time.
Note that, since Peq satisfies the detailed balance condition,
the particle flows of P̄ and Q are the same, and so are their
dominant pathways, as illustrated in Figs. 7(a) and 7(b).

The constraint ‖Q+‖ = ‖Q−‖ means that the mean first
passage times are symmetric under exchanging the sinks and
sources. In fact, by exchanging the sinks and sources, S and Q
are, respectively, converted to −S and −Q, and hence Q+ and
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source hole source hole source source
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FIG. 7. Schematic illustration of the population methods. (a) The stationary particle population of (P̄)i satisfying Eqs. (18) and (19) is
shown as a function of states i. The red (light gray) arrow indicates how the particles injected at the source move diffusively to the sink. We
also show ‖P̄‖Peq with a dashed line to illustrate the latter term in Eq. (37). (b) The symmetric stationary population Q with a source and a
sink connected to the left and right end states, respectively, is given by Eq. (37). The negative population −Q− is interpreted as the stationary
population Q− of holes. The blue (gray) arrow indicates how the holes injected at the hole source move diffusively. Particles from the source
and the holes meet at the center and are annihilated by pair annihilation. (c) The stationary population under the exchange of the sink and source
is shown. In this case, particles of population Q− move to the left and holes of population Q+ move to the right. The particles and the holes
meet at the center to be annihilated. Both of the mean annihilation times in (b) and (c) agree with the mean first passage time, ‖Q+‖ = ‖Q−‖,
of particles and holes. (See the text.)

Q− are, respectively, converted to Q− and Q+, as illustrated in
Fig. 7(c). Hence, the mean first passage times of Eqs. (33) and
(34) satisfy ‖Q−‖ = ‖Q+‖ with sinks and sources exchanged,
which is the same value as the value before the exchange.

Here, with this symmetric population method, we evaluate
the slowest relaxation rate of λ1 for the vacancy diffusion
model of the KCl nanocluster. Setting

(S+)(0,0,0) = 1, (S−)(±nL,±nL,±nL ) = 1/8, (38)

and otherwise (S±)i, j,k = 0, we evaluated the symmetric sta-
tionary solution of Eq. (41), thereby obtaining the slowest
relaxation time of ‖Q+‖ = ‖Q−‖ = 7.92 × 10−6 s. Namely,
with this symmetric method, we obtained an approximation
of the exact slowest relaxation time of −1/λ1 = 5.2 × 10−6 s,
which is symmetric under exchanging the sinks and sources
and as accurate as the asymmetric result of 7.33 × 10−6 s
given in Sec. IV.

For the second slowest relaxation, we set

(S+)(2,0,0) = 1, (S−)(−2,0,0) = −1, (39)

and otherwise (S±)i, j,k = 0, thereby obtaining the symmetric
result of ‖Q+‖ = ‖Q−‖ = 4.05 × 10−6 s, which of course
agrees with the result given in Sec. V.

In this subsection, we have developed the symmetric pop-
ulation method for mean first passage times, which enables
us to approximately evaluate the slowest relaxation times
symmetrically by exchanging the sinks and sources.

B. Symmetric population method as an inverse power method

Here, we show that the iterative use of the symmetric pop-
ulation method enables us to compute the slowest relaxation
times accurately.

First, the n × n matrix P = (Peq, P1, P2, . . . , Pn−1) is in-
vertible, where Pi is the eigenvector corresponding to the ith
relaxation mode. We expand S and Q as

S = s′
0Peq + s′

1P1 + s′
2P2 + · · · , (40)

Q = q′
0Peq + q′

1P1 + q′
2P2 + · · · , (41)

where the coefficients s′
i and q′

i are defined as follows:

s′
i = (P−1S)i, q′

i = (P−1P)i. (42)

With the use of s′
i and q′

i, Eq. (33) is represented as

q′
0 = s′

0 = 0, (43)

q′
i = s′

i

−λi
(i = 1, 2, . . . ). (44)

Substituting Eqs. (43) and (44) into Eq. (41), we have

Q = s′
1

−λ1
P1 + s′

2

−λ2
P2 + · · · . (45)

Equations (42) and (45) define the procedure to obtain Q from
S, which is denoted as Q = Q(S).

Then, the mean first passage time approximation τ of the
relaxation time is written as follows:

τ = ‖Q+‖
‖S+‖ = ‖Q−‖

‖S−‖ = ‖Q‖
‖S‖ = ‖Q(S)‖

‖S‖ , (46)

as discussed in the previous subsection.
Now, we consider the effect of the iterative use of this

procedure. We apply the m-times function composition of Q
to S, and the resultant vector Q(m)(S) is given by

Q(m)(S) = s′
1

(−λ1)m
P1 + s′

2

(−λ2)m
P2 + · · · , (47)

which shows that, as m → ∞, if s′
1 �= 0, then Q ∝ P1, oth-

erwise if s′
1 = · · · = s′

i−1 = 0 and s′
i �= 0, then Q ∝ Pi. From

this, we understand that the symmetric population method can
be interpreted as an inverse power method for the eigenvalue
problem [53].

In Fig. 8(a), we plot the mean first passage times

τ = ‖Q(m)(S)‖
‖Q(m−1)(S)‖ = ‖Q(Q(m−1)(S))‖

‖Q(m−1)(S)‖
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for the slowest and second slowest relaxation modes with
the settings of Eqs. (38) and (39), respectively. At m = 1,
both are larger than the corresponding exact relaxation times,
because S of Eqs. (38) and (39) are selected so as to maximize
the mean first passage times of ‖Q(S)‖/‖S‖. At m = 2 and
3, the mean first passage time approximations almost con-
verge to the corresponding relaxation times. These findings
show that the mean first passage time approximations of
the slowest and the second slowest relaxation times satisfy
s′

1 �= 0 and s′
1 = 0, s′

2 �= 0, respectively. Moreover, both of
S are sufficiently accurate so as to converge to the slowest
and second slowest relaxation modes, respectively, with a
few iterations. Namely, S of Eqs. (38) and (39) closely ap-
proximate the exact eigenvectors of Pi (i = 1, 2), although S
are the drastic simplifications of Pi with very few sinks and
sources.

To see the convergence of Q(m)(S) to the eigenvectors
with the symmetric population method, we plot Q(S) for the
slowest and second slowest relaxation modes in Figs. 8(b)
and 8(c), respectively. Comparing these graphs with Figs. 1(a)
and 6, respectively, we see that Q(S) with Eqs. (38) and (39)
are almost the same with P1 and P2. That is, we can obtain
accurate approximate eigenvectors by applying this procedure
just once to the quite simplified sinks and sources of S.

We remark finally that when it is difficult to set S to
be in the convergence region of P2, we can obtain the first
and second slowest relaxation modes simultaneously by itera-
tively applying Q to two vectors that span a two-dimensional
subspace and orthogonalizing the vectors, as in the general
diagonalization algorithms [53].

VII. SUMMARY

We studied the slowest and second slowest relaxations of
vacancy diffusion in a KCl nanocluster.

In Sec. IV, we found that the slowest relaxation mode of
P1 has cubic symmetry around the origin (0,0,0), where the
excess probability at around the origin flows into the vertices
of (±nL,±nL,±nL ) over the course of time evolution. We also
found that the dominant pathways that carry large diffusive
flows are classified into two types of pathways from the origin
to the vertices. One is through the face centers, and the other
is through the edge centers.

To understand why these pathways are selected as dom-
inant pathways, we estimated the mean first passage times
from various states to the vertex sinks. As a result, the surface
diffusion turned out to be about 104 times faster than the sur-
face diffusion at room temperature of kBT = 0.03 eV. Hence,
the dominant pathways turned out to be the shortest pathways
to the surfaces. There, we also gave an approximation of
the slowest relaxation rate λ1 with the use of the mean first
passage times.

Next, the reasons for the slow inner and fast surface diffu-
sions were studied in terms of the free energy landscape. The
sequences of free energies at minima and saddle points along
the two types of pathways were examined. We found that the
activation free energies in the inner region are about twice as
large as those in the surface region, which explains the drastic
slow inner diffusion. We also gave an intuitive explanation for

2 4 6 8 10
0

2

4

6

8
(a)

(b)

(c)

FIG. 8. The mean first passage times of the symmetric popu-
lation method converge to the slowest relaxation times. (a) The
mean first passage times, τ = ‖Q(m)(S)‖/‖Q(m−1)(S)‖, are plotted
as a function of iteration number m (m = 1, 2, . . . , 10) with circles
for the slowest relaxation and with squares for the second slowest
relaxation. The dashed and dotted lines show the values of the exact
relaxation times of 1/|λ1| and 1/|λ2|, respectively. Q(S) are plotted
in the same manner as in Fig. 1(a) for the slowest relaxation [panel
(b)] and for the second slowest relaxation [panel (c)].

the ratio of the activation energies that are leading terms of the
activation free energies, with the use of the individual atomic
energies of Vk .

032311-11



OKUSHIMA, NIIYAMA, IKEDA, AND SHIMIZU PHYSICAL REVIEW E 100, 032311 (2019)

In Sec. V, we considered the second slowest relaxation
modes. With use of the three-dimensional plot of Fig. 6,
the second relaxation modes of P2, P3, and P4 turned
out to correspond to relaxation of the excesses and the
deficiencies of probability in the x- y-, and z-directions,
respectively.

The second slowest relaxation rate of λ2 is also success-
fully estimated by use of the mean first passage times with
sinks connected to the region of x = 0. There, the intuitive
explanation for the approximate relation λ2, λ3, λ4 ≈ 2λ1 was
given in terms of the free energy landscapes along the domi-
nant pathways.

In Sec. VI, we have developed a symmetric population
method, which computes the approximate relaxation rate as
the mean first passage times of particles and holes. The
symmetric population method has a reasonable property in
that both Pi and −Pi are the eigenvectors of the same eigen-
value. We have also shown that iterative use of the symmetric
population method enables us to obtain the accurate slowest

relaxation times, similarly to the inverse power method of
matrix diagonalization.

In summary, we have shown that the properties of the slow-
est relaxation modes are reconstructed by mean first passage
times in Markov state models suitably connected with sinks
and sources. The mean first passage times are useful to extract
the bottleneck processes buried in Markov state models. We
have also shown that the formation of the bottlenecks can
be understood from the physical basis of potential energy
landscapes that support the networks of the Markov state
models.
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