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This paper introduces a model-agnostic approach to study statistical synergy, a form of emergence in which
patterns at large scales are not traceable from lower scales. Our framework leverages various multivariate
extensions of Shannon’s mutual information, and introduces the O-information as a metric that is capable
of characterizing synergy- and redundancy-dominated systems. The O-information is a symmetric quantity,
and can assess intrinsic properties of a system without dividing its parts into “predictors” and “targets.” We
develop key analytical properties of the O-information, and study how it relates to other metrics of high-order
interactions from the statistical mechanics and neuroscience literature. Finally, as a proof of concept, we present
an exploration on the relevance of statistical synergy in Baroque music scores.
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I. INTRODUCTION

A unique opportunity in the era of “big data” is to make use
of the abundant available data to deepen our understanding
of the high-order interdependencies that are at the core of
complex systems. Plentiful data are nowadays available about,
e.g., the orchestrated activity of multiple brain areas, the
relationship between various econometric indices, and the in-
teractions between different genes. What allows these systems
to be more than the sum of their parts is not in the nature of
the parts, but in the structure of their interdependencies [1].
However, quantifying the “synergy” of different complex sys-
tems is challenging, especially in scenarios where the number
of parts is large but far below the thermodynamic limit.

The relevance of synergistic relationships and other high-
order interactions has been thoughtfully demonstrated in the
literature of theoretical neuroscience. For example, studies
on neural coding have shown that neurons can carry redun-
dant, complementary, or synergistic information—the latter
corresponding to neurons that are uninformative individu-
ally but informative when considered together [2,3]. Also,
studies on retina cells suggest that high-order Hamiltonians
are necessary for representing neurons firing in response to
natural images, while pairwise interactions suffice for neu-
rons responding to less structured stimuli [4]. Lastly, neu-
roimaging analyses have pointed out the compatibility of local
differentiation and global integration of different brain areas,
and suggested this to be a key capability for enabling high
cognitive functions [5,6]. Various metrics have been proposed
to capture these high-order features in data, including the
redundancy-synergy index [7,8] (and corresponding exten-
sions [9–11]), connected information [12], neural complex-
ity [13], and integrated information [14,15]. While being
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capable of capturing features of biological relevance, most of
these metrics have ad hoc definitions motivated by specific
research agendas, and have few theoretical guarantees [16].

A promising approach for addressing high-order interde-
pendencies is partial information decomposition (PID), which
distinguishes different “types” of information that multiple
predictors convey about a target variable [17–19]. In this
framework, statistical synergies are structures (or relation-
ships) that exist in the whole but cannot be seen in the
parts, this being rooted in the elementary fact that variables
can be pairwise independent while being globally correlated.
Unfortunately, the adoption of PID has been hindered by the
lack of agreement on how to compute the components of the
decomposition, despite numerous recent efforts [20–23]. Fur-
thermore, although practical applications of PID have been re-
ported [24–26], the applicability of the framework is restricted
by the rapid growth of the number of terms for large systems.

The crux of multivariate interdependencies is that
information-theoretic descriptions of such phenomena are not
straightforward, as extensions of Shannon’s classical results
to general multivariate settings have proven elusive [27]. The
most well-established multivariate extensions of Shannon’s
mutual information are the total correlation [28] and the dual
total correlation [29], which provide suitable metrics of over-
all correlation strength. Their values, however, differ in ways
that are hard to understand [30], even gaining the adjective of
“enigmatic” among scholars [31,32]. Other popular extension
of the mutual information is the interaction information [33],
which is a signed measure obtained by applying the inclusion-
exclusion principle to the Shannon entropy [34,35]. Although
this metric provides insightful results when applied to three
variables, it is not easily interpretable when applied to larger
groups [17].

This paper proposes to study multivariate interdependency
via two dual perspectives: as shared randomness and as col-
lective constraints [36]. This setup leads to the O-information
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(shorthand for “information about organizational structure”),
which—following Occam’s razor—points out which of these
perspectives provides a more parsimonious description of the
system. The O-information is found to coincide with the inter-
action information for the case of three variables, while pro-
viding a more meaningful extension for larger system sizes.

We show how the O-information captures the dominant
characteristic of multivariate interdependency, distinguishing
redundancy-dominated scenarios where three or more vari-
ables have copies of the same information and synergy-
dominated systems characterized by high-order patterns that
cannot be traced from low-order marginals. In contrast with
existing quantities that require a division between predictors
and target variables, the O-information is—to the best of
our knowledge—the first symmetric quantity that can give
account of intrinsic statistical synergy in systems of more
than three parts. Moreover, as the computational complexity
of the O-information scales gracefully with system size, our
framework provides a scalable approach for applying PID
principles to large systems, suitable for practical data analysis.

In the following, Sec. II introduces the notions of shared
randomness and collective constraints, and Secs. III and IV
present the O-information and its fundamental properties.
Section V compares the O-information with other metrics of
high-order effects, and Sec. VI presents a case study on music
scores. Finally, Sec. VII summarizes our main conclusions.

II. FUNDAMENTALS

This section introduces two fundamental perspectives from
which one can develop an information-theoretic description of
a system, and explains how they enable novel perspectives to
study interdependency.

A. Entropy and negentropy

For every outside there is an inside and for every inside there
is an outside. And although they are different, they always go
together.

Alan Watts, Myth of Myself

Following the Bayesian interpretation of information the-
ory, we define the information contained in a system as the
average amount of data that an observer would gain after
determining its configuration—i.e., after measuring it [37].
If each possible configuration is to be represented by a dis-
tinct sequence of bits, source coding theory (see Chap. 5 of
Ref. [38]) shows that an optimal (i.e., shortest) labeling de-
pends on prior information available before the measurement.
Information, hence, refers to how the state of knowledge of the
observer changes after the system is measured, quantifying the
amount of bits that are revealed through this process [39].

For concreteness, let us consider an observer measuring a
system composed by n discrete variables, X n = (X1, . . . , Xn).
If the observer only knows that each variable Xj can take
values over a finite alphabet X j of cardinality |X j |, the amount
of information needed to specify the state of Xj is log |X j |
(logarithms are calculated using base 2 unless specified other-
wise). In contrast, if the observer knows that the system’s be-
havior follows a probability distribution pX n , then the average

amount of information in the system reduces to the entropy
H (X n) := −∑

xn pX n (xn) log pX n (xn) [37]. The difference

N (X n) :=
n∑

j=1

log |X j | − H (X n) (1)

is known as negentropy [40], and corresponds to the informa-
tion about the system that is disclosed by the knowledge of
the statistics, before any measurement takes place.

Probability distributions are, from this perspective, a com-
pendium of soft and hard constraints that reduce the effective
phase space that the system can explore (hard constraints com-
pletely forbid some configurations; soft constraints make them
improbable). Consequently, a given distribution divides the
phase space in an admissible region quantified by the entropy,
and an inadmissible region quantified by the negentropy [41].
Each part describes the system’s structure from a different
point of view: the entropy refers to what the system can do,
while the negentropy refers to what it cannot do.

B. The two faces of interdependency

1. Collective constraints

In the same way as N (X n) quantifies the strength of
the overall constraints that rule the system, the constraints
that affect individual variables are captured by the marginal
negentropiesN (Xj ) := log |X j | − H (Xj ). Intuitively, the con-
straints that affect the whole system are richer than individual
constraints, as the latter do not take into account collective
effects. Their difference,

TC(X n) : = N (X n) −
n∑

j=1

N (Xj )

=
n∑

j=1

H (Xj ) − H (X n), (2)

quantifies the strength of the “collective constraints.” This
quantity is known as total correlation [28] (or multi-
information [42]). By rewriting this relationship as N (X n) =∑

j N (Xj ) + TC(X n) one finds that the constraints prescribed
by the distribution are of two types: constraints confined to
individual variables, and collective constraints that restrict
groups of two or more variables.

Example 1. Consider X1 and X2 to be binary random vari-
ables with pX1,X2 (0, 1) = pX1,X2 (1, 0) = 1/2. This distribution
divides the total information (two bits) into H (X1, X2) = 1
and N (X1, X2) = 1 . Moreover, N (X1) = N (X2) = 0 and
therefore TC(X1, X2) = N (X1, X2) = 1, confirming that the
constraints act on both X1 and X2.

As a contrast, consider Y1 and Y2 binary random variables
with distribution pY1,Y2 (0, 0) = pY1,Y2 (1, 0) = 1/2. In this case
N (Y1) = 0 while N (Y2) = N (Y1,Y2) = 1, showing that the
only constraint in this system acts solely over Y2. Accordingly,
for this case TC(Y1,Y2) = 0.

2. Shared randomness

As we did for N (X n), let us decompose H (X n) in
individual and collective components. To do this, we in-
troduce the quantity Rj = H (Xj |X n

− j ) as a metric of how
independent Xj is from the rest of the system X n

− j =
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FIG. 1. The total information that can be stored in the system X n (
∑n

j=1 log |X j |) is decomposed by a given state of knowledge (i.e., a
probability distribution) into two parts: what is determined by the constraints [the negentropy, N (X n)] and what is not instantiated until an
actual measurement takes place [the entropy, H (X n)]. Both terms can be further decomposed into their individual and collective components,
yielding different perspectives on interdependency seen as either collective constraints [measured by the total correlation TC(X n)] or shared
randomness [corresponding to the dual total correlation DTC(X n)].

(X1, . . . , Xj−1, Xj+1, . . . , Xn). According to distributed source
coding theory (see Chap. 10.5 of Ref. [27]), Rj corresponds
to the data contained in Xj that cannot be extracted from
measurements of other variables [43]. The quantity

∑n
j=1 Rj

is known as the residual entropy [44] (originally introduced
under the name of erasure entropy [45,46]), and quantifies the
total information that can only be accessed by measuring a
specific variable, i.e., the amount of “nonshared randomness.”
Accordingly, the difference

DTC(X n) := H (X n) −
n∑

j=1

Rj (3)

is known as dual total correlation [29] (being also known
as binding information [32,44] and excess entropy [47]),
and refers to the part of the joint entropy that is shared by
two or more variables—equivalently, information that can be
obtained by measuring more than one specific variable. As the
entropy corresponds to the randomness within the system, the
dual total correlation quantifies the “shared randomness” that
exists among the variables.

Example 2. Let us consider X1, X2 and Y1,Y2 from Example
1. For the former system one finds that R1 = R2 = 0 and
hence DTC(X1, X2) = H (X1, X2) = 1, which means that the
randomness within the system can be retrieved from mea-
suring either X1 or X2. In contrast, when considering Y1,Y2

one finds that R2 = 0 and R1 = H (Y1,Y2) = 1, and hence
DTC(Y1,Y2) = 0. This implies that the randomness of the
system can be retrieved by measuring only Y1.

Wrapping up, one can rewrite Eq. (1) using Eqs. (2) and (3)
and express the total information encoded in the system
described by X n in terms of constraints and randomness:

n∑
j=1

log |X j | = N (X n) + H (X n)

=
⎡
⎣TC(X n) +

n∑
j=1

N (Xj )

⎤
⎦

︸ ︷︷ ︸
Collective and individual

constraints

+
⎡
⎣DTC(X n) +

n∑
j=1

Rj

⎤
⎦

︸ ︷︷ ︸
Shared and private

randomness

.

This decomposition is illustrated in Fig. 1.

III. INTRODUCING THE O-INFORMATION

A. Definition and basic properties

The TC and DTC provide complementary metrics of in-
terdependence strength. Following Occam’s razor, one might
ask which of these perspectives allows for a shorter (i.e., more
parsimonious) description. This is answered by the following
definition:

Definition 1. The O-information of the system described by
the random vector X n is defined as

�(X n) := TC(X n) − DTC(X n)

= (n − 2)H (X n) +
n∑

j=1

[H (Xj ) − H (X n
− j )]. (4)

Intuitively, �(X n) > 0 states that the interdependencies
can be more efficiently explained as shared randomness, while
�(X n) < 0 implies that viewing them as collective constraints
can be more convenient. Note that �(X n) was first introduced
as “enigmatic information” in Ref. [31], although now that
its properties have been revealed we choose to give it a more
appropriate name.

To develop some insight about the O-information, let us
compare it with the interaction information [48], which is
a signed metric defined according to the inclusion-exclusion
principle by

I (X1; X2; . . . ; Xn) :=
∑

γ⊆{1,...,n}
(−1)|γ|+1H (X γ ), (5)

where the sum is over all the subsets of indices γ ⊆
{1, . . . , n}, with |γ| being the cardinality of γ and X γ the
vector of all variables with indices in γ . For n = 2, Eq. (5)
reduces to the well-known mutual information

I (X1; X2) = H (X1) + H (X2) − H (X1, X2).

For n = 3, Eq. (5) gives

I (X1; X2; X3) = I (Xi; Xj ) − I (Xi; Xj |Xk )

= I (Xi; Xj ) + I (Xi; Xk ) − I (Xi; Xj, Xk ) (6)

for {i, j, k} = {1, 2, 3}, which is known to measure the differ-
ence between synergy and redundancy [17], and has found
applications in a range of scenarios including genetic net-
works [49], neural signals [7], and engineered communica-
tion systems [50]. Specifically, redundancy dominates when
I (X1; X2; X3) � 0; e.g., if X1 is a Bernoulli random variable
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with p = 1/2 and X1 = X2 = X3, then I (X1; X2; X3) = 1. In
contrast, synergy dominates when I (X1; X2; X3) � 0, corre-
sponding to statistical structures that are present in the full
distribution but not in the pairwise marginals. For example,
if Y1 and Y2 are independent Bernoulli variables with p =
1/2 and Y3 = Y1 + Y2 (mod 2) (i.e., an xor logic gate) then
I (Y1;Y2;Y3) = −1, since these variables are pairwise indepen-
dent while globally correlated [51]. Unfortunately, for n �
4 the coinformation no longer reflects the balance between
redundancy and synergy (see Sec. V of Ref. [17].

To contrast with the interaction information, the next
lemma presents some basic properties of � (the proofs are
left for the reader).

Lemma 1. The O-information satisfies the following prop-
erties:

(i) � does not depend on the order of X1, . . . , Xn.
(ii) �(X1, X2) = 0 for any pX1X2 .
(iii) �(X1, X2, X3) = I (X1; X2; X3) for any pX 3 .
Property (i) shows that � reflects an intrinsic prop-

erty of the system, without the need of dividing the
variables in groups with differentiated roles (e.g., targets
vs predictors, or input vs output). Property (ii) confirms
that � captures only interactions that go beyond pairwise
relationships. Finally, property (iii) shows that when n = 3
the O-information is equal to I (X1; X2; X3). Interestingly, a
direct calculation shows that if n > 3 then in general �(X n) �=
I (X1; X2; . . . ; Xn).

At this stage, one might wonder if the O-information could
provide a metric for quantifying the balance of redundancy
and synergy, as the interaction information does for n = 3.
Intuitively, one could expect redundant systems to have small
DTC(X n) due to the multiple copies of the same information
that exist in the system, while having large values of TC(X n)
because of the constraints that are needed to ensure that the
variables remain correlated. On the other hand, synergistic
systems are expected to have small values of TC(X n) due
to the few high-order constraints that rule the system, while
having larger values of DTC(X n) due to the weak low-order
structure. These insights are captured in the following defini-
tion, which is supported by multiple findings presented in the
following sections.

Definition 2. If �(X n) > 0 we say that the system is re-
dundancy dominated, while if �(X n) < 0 we say it is synergy
dominated.

In previous work we used another metric to assess synergy-
and redundancy-dominated systems [52]. Appendix A pro-
vides an analytical and numerical account of the consistency
between these two metrics.

B. Information decompositions

This section presents information decompositions that
deepen our understanding of the O-information. In the follow-
ing, we first introduce the partition lattice, which is then used
to build decompositions of the TC, DTC, and �. Information
lattices have also been explored in Ref. [53].

1. The lattice of partitions

Let us characterize the possible ways in which one can
sequentially decompose the system described by X n. For

this, let us consider partitions π = (α1|α2| . . . |αm) of the
set of indices {1, . . . , n}, which are collections of cells
α j = {α1

j , . . . , α
l ( j)
j } ⊂ {1, . . . , n} that are disjoint and satisfy⋃m

j=1 α j = {1, . . . , n}. The collection of all possible partitions
of {1, . . . , n}, denoted by Pn, has a lattice structure [54]
enabled by the partial ordering introduced by the refinement
relationship, in which π2 � π1 if π2 is finer [55] than π1 (or,
equivalently, if π1 is coarser than π2). A partition π2 is said
to cover π1 if π2 � π1 and it is not possible to find another
partition π3 such that π2 � π3 � π1 [56]. For this partial order
relationship, πsource = (12 . . . n) is the unique infimum of Pn,
and πsink = (1|2| . . . |n) is the unique supremum of Pn.

A directed acyclic graph (DAG) Gn can be built, where the
nodes are the partitions in Pn, and a directed edge exists from
π1 to π2 if and only if π2 covers π1 [57]. A path p in Gn

joining two partitions πa and πb is a sequence of nodes p =
(π1, . . . , πL ), where π1 = πa, πL = πb, and πi+1 covers πi for
all i ∈ {1, . . . , L − 1}. The collection of all paths from πa to
πb is denoted by P(πa, πb) [58]. If the edge joining π1 and
π2 has a weight v(π1, π2) associated, then the corresponding
path weight of p = (π1, . . . , πL ) is merely the summation of
all edge weights along p:

W (p; v) :=
L−1∑
k=1

v(πk, πk+1). (7)

2. Lattice decompositions of TC(X n) and DTC(X n)

Let us build some useful weight functions over Gn. We first
assign to each node π = (α1| . . . |αL ) ∈ Pn the value

H (π ) := H

⎛
⎝ L∏

j=1

pXα j

⎞
⎠ =

L∑
j=1

H (Xα j )

with Xα j = (Xα1
j
, . . . , X

α
l ( j)
j

), which corresponds to the en-

tropy of the probability distribution
∏L

j=1 pXα j that includes
interdependencies within cells, but not across cells. To each
edge of Gn we assign a weight

vh(π1, π2) := H (π2) − H (π1). (8)

Since H (πa) � H (πb) if πa � πb, one can represent Gn under
vh by placing nodes with more cells in higher layers (see the
upper half of Fig. 2).

Alternatively, let us now consider the residual entropy of
π = (α1| . . . |αm) ∈ Pn, which is given by R(π ) := ∑m

k=1 Rαk ,
with

Rαk := H (Xαk |Xα1 , . . . , Xαk−1 , Xαk+1 , . . . , Xαm ).

The above generalizes the notion of residual entropy per
individual variable given in Sec. II B 2 [59]. With this, we
introduce weights to each edge of Gn based on residuals, given
by

vr(π1, π2) := R(π1) − R(π2). (9)

As residual entropy decreases when the partition is refined
(see Appendix B), in this case one can illustrate the corre-
sponding DAG by placing nodes with more cells in lower
positions (see lower half of Fig. 2).

032305-4



QUANTIFYING HIGH-ORDER INTERDEPENDENCIES VIA … PHYSICAL REVIEW E 100, 032305 (2019)

FIG. 2. Double diamond diagram with the possible sequences of binary partitions of three variables. Every path from the source node
(H (X 3) to the two sink nodes [H (X1) + H (X2) + H (X3) and H (X1|X2X3) + H (X2|X1X3) + H (X3|X1X2)] corresponds to a decomposition of
either TC(X 3) or DTC(X 3).

Conveniently, for every edge vh and vr correspond to a
mutual information or a conditional mutual information term,
respectively. This is illustrated in the edges of Fig. 2 and
formalized in Appendices C and D.

The next result shows that the weights vh and vr provide
decompositions for TC(X n) and DTC(X n), respectively.

Lemma 2. Every path p ∈ P(πsource, πsink) provides the
following decompositions:

TC(X n) = W (p; vh), DTC(X n) = W (p; vr ).

Proof. See Appendix C. �
Example 3. For the case of n = 3, there are three paths

joining source and sink:

p1 = {(123), (1|23), (1|2|3)},
p2 = {(123), (2|13), (1|2|3)},
p3 = {(123), (3|12), (1|2|3)}.

Lemma 2 shows that TC(X 3) = W (pi; vh) and DTC(X 3) =
W (pi; vr ) for i ∈ {1, 2, 3}, which provides the following de-
compositions:

TC(X 3) = I (Xi; Xj, Xk ) + I (Xj ; Xk ),

DTC(X 3) = I (Xi; Xj, Xk ) + I (Xj ; Xk|Xi ).

3. Lattice decomposition of �(X n)

Let us now leverage the results presented in the previous
subsection to develop decompositions for the O-information.
For this, let us first introduce a new assignment of weights for
the edges of Gn, given by

vs(π1, π2) := vh(π1, π2) − vr(π1, π2). (10)

In contrast with Eqs. (8) and (9), these weights can attain
negative values. The following key result shows that the
weights vs provide a decomposition of �(X n).

Proposition 1. Every path p ∈ P(πsource, πsink) provides the
following decomposition:

�(X n) = W (p; vs). (11)

Moreover, Eq. (11) is a sum of interaction information terms
of the form in Eq. (6).

Proof. See Appendix D. �
This finding extends property (iii) of Lemma 1 by showing

that the O-information can always be expressed as a sum
of interaction information terms of three sets of variables
(see Corollary 1 below for an explicit example of this). As
a consequence, the O-information inherits the capabilities of
the triple interaction information for reflecting the balance
between synergies and redundancies, and is applicable to
systems of any size. This decomposition of the O-information
is analogous to the one introduced in Ref. [10] for the
redundancy-synergy index.

An inconvenient feature of partition lattices is that they
grow superexponentially with system size [60], and hence
heuristic methods for exploring them are necessary. A partic-
ularly interesting subfamily of P(πsource, πsink) is composed of
the “assembly paths,” which have the form (up to relabeling)
pa = {(12 . . . n), (12 . . . (n − 1)|n), . . . , (1|2| . . . |n)}. (12)

These paths can be thought of as the process of first sepa-
rating Xn from the rest of the system, then Xn−1, and so on.
Conversely, by considering them backwards, one can think of
these paths as first connecting X1 and X2, then connecting X3 to
X 2, and so on—i.e., as assembling the system by sequentially
placing its pieces together. The following corollary of Propo-
sition 1 presents useful decompositions of TC(X n), DTC(X n),
and �(X n) in terms of assembly paths.

Corollary 1. For an assembly path as given in Eq. (12),
the corresponding decompositions of the TC, DTC, and O-
information are

TC(X n) =
n∑

i=2

I (Xi; X i−1), (13)
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DTC(X n) = I (Xn; X n−1) +
n−1∑
j=2

I
(
Xj ; X j−1|X n

j+1

)
, (14)

�(X n) =
n−1∑
k=2

I
(
Xk ; X k−1; X n

k+1

)
, (15)

with X n
k = (Xk, Xk+1, . . . , Xn) and X k = (X1, . . . , Xk ).

As a concluding remark, let us note that the decomposi-
tions presented by Corollary 1 are valid for any relabeling of
the indices (i.e., any ordering of the system’s variables). This
property is a direct consequence of the lattice construction
developed in this subsection, which plays an important role
in the following sections.

IV. UNDERSTANDING THE O-INFORMATION

By definition, � > 0 implies that the interdependencies are
better described as shared randomness, while � < 0 implies
that they are better explained as collective constraints. In this
section we explore this further, examining what the magnitude
of � tells us about the system.

Through this section we use the shorthand notation
|X | := max j=1,...,n |X j | for the cardinality of the largest
alphabet in X n.

A. Characterizing extreme values of �

Let us explore the range of values that the O-information
can attain. As a first step, Lemma 3 provides bounds for
TC(X n), DTC(X n), and �(X n).

Lemma 3. The following bounds hold.
(1) (n − 1) log |X | � TC(X n) � 0.
(2) (n − 1) log |X | � DTC(X n) � 0.
(3) n log |X | � TC(X n) + DTC(X n) � 0.
(4) (n − 2) log |X | � �(X n) � (2 − n) log |X |.
Moreover, these bounds are tight.
Proof. See Appendix G. �
Let us introduce some nomenclature. A random binary

vector X n is said to be a “n-bit copy” if X1 is a Bernoulli
random variable with parameter p = 1/2 (i.e., a fair coin)
and X1 = X2 = · · · = Xn. Also, a random binary vector X n

is said to be an “n-bit xor” if X n−1 are i.i.d. fair coins
and Xn = ∑n−1

j=1 Xj (mod 2). Our next result shows that these
two distributions attain the upper and lower bounds of the
O-information.

Proposition 2. Let X n be a binary vector with n � 3. Then,
the following holds:

(1) �(X n) = n − 2, if and only if X n is a n-bit copy.
(2) �(X n) = 2 − n, if and only if X n is a n-bit xor.
Proof. See Appendix F. �
Corollary 2. The same proof can be used to confirm

that for variables with |X1| = · · · = |Xn| = m the maximum
�(X n) = (n − 2) log m is attained by variables which are
a copy of each other, while the minimum �(X n) = (2 −
n) log m corresponds to when X n−1 are independent and uni-
formly distributed and Xn = ∑n−1

j=1 Xj (mod m).
Proposition 2 points out an important difference between

the O-information and the interaction information: if X n is
an n-bit xor then �(X n) = 2 − n is consistently negative
and decreasing with n, while I (X1; . . . ; Xn) = (−1)n+1 oddly
oscillates between −1 and +1. This result also points out the

convenience of merging TC(X n) and DTC(X n) into �(X n), as
only the latter has the n-bit copy and the n-bit xor as unique
extremes.

Finally, note that � is continuous over small changes
in pX n , as it can be expressed as a linear combination of
Shannon entropies (see Definition 1). Therefore, Proposition
2 guarantees that distributions that are similar to an n-bit copy
have a positive O-information, while distributions close to an
n-bit xor have negative O-information.

B. Statistical structures across scales

In this section we study how the O-information is related
to statistical structures of subsets of X n—i.e., structures at
different scales of the system. For simplicity, we assume in
this subsection that |X | is finite.

In the next proposition we present some fundamental re-
strictions between the total correlation of subsystems and the
value of �(X n).

Proposition 3. If �(X n) � 0, then for all m ∈ [n − 1]

min
|γ|=m

TC(Xγ ) � �(X n) − (n − m − 1) log |X |. (16)

If �(X n) � 0, then for all m ∈ [n − 1]

max
|γ|=m

TC(Xγ ) � �(X n) + (n − 2) log |X |. (17)

Both bounds are tight if |�| � (n − m + 1) log |X |.
Proof. See Appendix G. �
Corollary 3. The following bounds hold for all γ ⊆

{1, . . . , n} with |γ| = m:

min

{
m − 1,

�(X n)

log |X | + (n − 2)

}
� TC(X γ )

log |X |

� max

{
0,

�(X n)

log |X | − (n − m − 1)

}
.

Corollary 3 shows that positive values of � constrain sub-
groups to be correlated: if �(X n) � (n − m − 1) log |X | then
all groups of m or more variables must have some statistical
dependency. Negative values of �, on the other hand, impose
limits on the allowed correlation strength: if �(X n) � −(n −
m − 1) log |X | then the correlation of all groups of m or more
variables is upper bounded. As an example, for |X | = 2 and
m = 2 the bounds given in Corollary 3 are

max{1,�(X n) + n − 2} � I (Xi; Xj )

� min {0,�(X n) − (n − 3)},
for all i, j ∈ {1, . . . , n}, which shows that the bounds related
to � are only active when n − 3 � |�| � n − 2.

In conclusion, the sign of � determines whether the con-
straint is a lower or upper bound, and |�| determines which
scales of the system are affected, with smaller groups being
harder to constrain—i.e., requiring higher absolute values of
�. The relationship between the system’s scales and the values
of � is illustrated in Fig. 3.

The next result corresponds to the converse of Corollary
3, and shows how interactions at different scales limit the
achievable values of �.
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FIG. 3. Diagram of how values of the O-information impose
limits on the strength of interactions—as measured by TC(X γ )—at
different scales. Positive (negative) values of � put lower (upper)
bounds on subsets of X n, and higher absolute values of � put bounds
on subsystems of smaller sizes.

Corollary 4. For a given γ ⊂ {1, . . . , n} with |γ| = m, the
following bounds on � hold:

n − m − 1 + TC(Xγ )

log |X | � �(X n)

log |X | � −(n − 2) + TC(X γ )

log |X | .

By comparing it with Lemma 3, this result shows that a
large TC(Xγ ) does not allow � to reach its lower bound. On
the other hand, small values of TC(X γ ) decrease the upper
bound, forbidding high values of �. Additionally, note that
fixing the value of only one subset of m variables reduces the
range of values of � from 2(n − 2) to 2(n − 2) − (m − 1).
The following example illustrates these findings.

Example 4. Let us consider a system X n of binary variables,
two of which are related by the marginal distribution

pX1X2 (x1, x2) = (1 − η)1−|x1−x2|η|x1−x2|

2
.

That is, X1 and X2 are fair coins linked by a binary sym-
metric channel with crossover probability η (see Sec. 7
of Ref. [38]). Hence, TC(X 2) = I (X1; X2) = 1 − H (η), with
H (η) = −η log η − (1 − η) log(1 − η) being the binary en-
tropy function. By considering m = 2, Corollary 4 states that

n − 2 − H (η) � �(X n) � −[n − 3 + H (η)],

which is illustrated in Fig. 4. Moreover, using Eq. (15) one can
verify that the upper bound (solid red line) is attained when
X2 = X3 = · · · = Xn, while the lower bound (solid blue line)
is attained when X3, . . . , Xn−1 are independent fair coins and
Xn = ∑n−1

j=1 Xj (mod 2) [61].

C. � as a superposition of tendencies

This subsection explores sufficient conditions that make a
system have a small O-information. As a preliminary step,

FIG. 4. Bounds of the O-information when two variables are
connected via a binary symmetric channel with crossover probability
η (see Example 4).

the next result shows that � is additive for systems with
independent subsystems.

Lemma 4. If pX n (xn) = ∏m
k=1 pXαk (xαk ) for some partition

π = (α1| . . . |αm), then

�(X n) =
m∑

k=1

�(Xαk ).

Proof. Let us consider the case π = (α1,α2), as the gen-
eral case is then guaranteed by induction. Using Eqs. (13)
and (14) it is direct to check that, due to the inde-
pendence, TC(X n) = TC(Xα1 ) + TC(Xα2 ) and DTC(X n) =
DTC(Xα1 ) + DTC(Xα2 ). Then, the desired result follows
from induction on the number of cells and the definition
of �. �

Corollary 5. �(X n) = 0 for all systems the joint distribu-
tion of which can be factorized as

pX n (xn) =
n/2∏
k=1

pX2k−1X2k (x2k−1, x2k ). (18)

Proof. Using Eq. (18) and Lemma 4 we find that

�(X n) =
n/2∑
k=1

�(X2k−1, X2k ) = 0,

where the last equality is a consequence of the O-
information being zero for sets of two variables, as shown in
Proposition 1. �

Corollary 5 states that having disjoint pairwise interactions
is a sufficient condition for � = 0 to hold. However, this
condition is not necessary: from Lemma 4 we can see that
a system composed by redundant (� > 0) and synergistic
(� < 0) subsystems can attain zero net O-information due to
“destructive interference.”

As a consequence, the O-information can be understood
as the result of a superposition of behaviors of subsystems.
Therefore, � = 0 can take place in two qualitatively different
scenarios: systems in which redundancies and synergies are
balanced, or systems with only disjoint pairwise effects. Some
of these cases can be resolved by considering the information
diagram of TC(X n) and DTC(X n) (see Fig. 2), or by studying
the O-information of parts of the system. However, it is
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important to remark that redundancy and synergy can coexist
either in disjoint subsystems or within the same variables. An
insightful example of the latter case can be found in Sec. 2 of
Ref. [62].

As a final remark, note that systems where pairwise in-
terdependencies are overlapping (e.g., pairwise maximum
entropy models [63]) cannot be factorized as required by
Corollary 5, and hence can have either positive or negative
O-information [64].

V. RELATIONSHIP WITH OTHER NOTIONS
OF HIGH-ORDER EFFECTS

A. High-order interactions in statistical mechanics

A popular approach to address high-order interactions
in the statistical physics literature is via Hamiltonians that
include interaction terms with three or more variables [12].
For example, systems of n spins (i.e., Xi = {−1, 1} for i =
1, . . . , n) that exhibit kth-order interactions are usually repre-
sented by probability distributions of the form

pX n (xn) = e−βHk (xn )

Z
, (19)

where β is the inverse temperature, Z is a normalization
constant, and H(xn) is a Hamiltonian given by

Hk (xn) = −
n∑

i=1

Jixi −
n−1∑
i=1

n∑
j=i+1

Ji, jxix j · · · −
∑
|γ|=k

Jγ

∏
i∈γ

xi,

with the last sum running over all subsets γ ⊆ {1, . . . , n} of
size |γ| = k. According to Eq. (19), configurations with lower
Hk (xn) are more likely to be visited. Note that Ji quantify
external influences acting over individual spins, while Jγ for
|γ| � 2 represent the strength of the interactions; in particular,
if Ji,k > 0 then the pair Xi, Xk tend to be aligned, while if
Ji,k < 0 they tend to be antialigned. As a matter of fact, X n

are independent if and only if Jγ = 0 for all γ with |γ| � 2.
Models with kth-order interactions have been studied via the
maximum entropy principle [12], information geometry [65],
and PID [66].

Considering the results presented in previous sections,
one could expect that systems with high-order interactions
(i.e., large k) should attain lower values of � than systems
with low-order interactions (i.e., small k). To confirm this
hypothesis, we studied ensembles of systems with kth-order
interactions, and analyzed how the value of � is influenced
by k. For this, we considered random Hamiltonians with Jγ

drawn i.i.d. from a standard normal distribution and β = 0.1.
In agreement with intuition, results show that � is usually

very close to zero for k = 2, and becomes negative as k grows
(Fig. 5). These results suggest that the notion of synergy
measured by � is consistent with the traditional ideas of
high-order interactions from statistical physics.

B. Complexity and integration

In their seminal 1994 article, Tononi, Edelman, and Sporns
devised a measure of complexity (henceforth called TSE
complexity) to describe the interplay between local segrega-
tion and global integration [5,13]. The TSE complexity is

O
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m
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n

FIG. 5. Mean value and confidence intervals of ensembles of
systems of n = 5 spins with randomly generated Hamiltonians. By
including high-order interaction terms, net synergy increases and �

decreases.

defined as

CTSE(X n) :=
n∑

k=1

[
k

n
TC(X n) − Cn(k)

]
, (20)

where Cn(k) = (
n
k

)−1 ∑
|γ|=k TC(X γ ) is the average total cor-

relation of the subsets γ ⊆ {1, . . . , n} of size |γ| = k. By
measuring the convexity of Cn(k) as a function of k, the TSE
complexity attempts to distinguish scenarios that exhibit “rel-
ative statistical independence of small subsets of the system
[...] and significant deviations from independence of large
subsets” ([13], Abstract), in the same spirit as our motivation
behind � above.

To study the relationship between the TSE complexity
and the O-information, it is useful to consider an alternative
expression of the former:

CTSE(X n) =
�n/2�∑
k=1

(
n

k

)−1 ∑
|γ|=k

I
(
X γ ; X n

−γ

)
,

where X n
−γ represents all the variables that are not in γ , and

�·� is the floor function. Motivated by this expression, let us
introduce the quantity [67]

�(X n) := TC(X n) + DTC(X n) =
∑
i=1

I
(
Xi; X n

−i

)
. (21)

By noting the similarities between Eqs. (21) and (21), together
with the fact that CTSE(X 3) = 1

3 [C(X 3) + DTC(X 3)], we can
hypothesize that, qualitatively,

CTSE(X n) ∝ �(X n). (22)

Monte Carlo simulations show that this approximation is
justified: when evaluated on distributions pX n sampled uni-
formly at random from the probability simplex, the correlation
between � and CTSE is consistently above 0.97 (Fig. 6).
Moreover, � outperforms other proposed approximations of
the TSE complexity [68].

Figure 6 and Eq. (22) suggest that the TSE complexity is
large when either the shared randomness or the collective con-
straints are large. As a more direct example, we evaluate CTSE
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FIG. 6. The sum of the TC and DTC (denoted by �) is an
accurate approximation of the TSE complexity. Each dot corresponds
to probability distribution over n binary variables, which are sampled
uniformly at random from the corresponding probability simplex.

in a distribution given by a linear mixture of the distributions
of a three-bit copy and a three-bit xor, showing that CTSE

has exactly the same value in both extremes, and hence that
it conflates redundancy with synergy (Fig. 7).

Taken together, our results show that the TSE complexity
is a good metric of overall integration between parts of the
system, but it generally fails to discriminate high- from low-
order phenomena. Overall, the fact that

� = TC − DTC, CTSE ∝ TC + DTC (23)

suggests that the TSE complexity and the O-information are
complementary, corresponding to an insightful “change of
basis” from an elementary constraints vs randomness repre-
sentation. Effectively, while both TC and DTC provide two
measures of roughly the same phenomenon (interdependency

FIG. 7. CTSE (upper line) and � (lower line) evaluated on a
distribution resulting from a linear mixture between a copy (left) and
an xor (right), showing that the TSE complexity conflates synergy
and redundancy. The figure shows the case n = 3, but results are
qualitatively similar for larger systems.

strength), � and CTSE refer to different aspects: CTSE gives an
overarching account of the strength of the interdependencies
within X n, and � indicates whether these correlations are
predominantly redundant or synergistic.

VI. CASE STUDY: BAROQUE MUSIC SCORES

To illustrate the proposed framework in a data-driven
application, this section presents a study of the multivariate
statistics of musical scores from the Baroque period. In the
following, Sec. VI A describes the procedure to obtain and
analyze the data, and Sec. VI B discusses numerical results.

A. Method description

1. Data

Our analysis focuses on two sets of repertoire: the well-
known chorales for four voices by Johann Sebastian Bach
(1685–1750), and Opuses 1 and 3–6 by Arcangelo Corelli
(1653–1713). All of these works correspond to the Baroque
period (approx. 1600–1750), which is characterized by elab-
orate counterpoint between melodic lines. Baroque music
usually exhibits a balance in the interest and richness of the
parts of all the involved instruments, contrasting with the
subsequent Classic (1730–1820) and Romantic (1780–1910)
periods where higher voices tend to take the lead.

Our analysis is based on the electronic scores publicly
available at [69]. We focused on scores with four melodic
lines: four voices (soprano, alto, tenor, and bass) in the case
of Bach’s chorales, and four string instruments (first violin,
second violin, viola, and cello) in the case of Corelli’s pieces.
The scores were preprocessed in PYTHON using the MUSIC21
package [70], which allowed us to select only the pieces
written in major mode and to transpose them to C major. The
melodic lines were transformed into a time series of 13 possi-
ble values (one for each note plus one for the silence), using
the smallest rhythmic duration as the time unit. This generated
≈4 × 104 four-note chords for the chorales, and ≈8 × 104

for Corelli’s pieces. With these data, the joint distribution of
the values for the four-note chords was estimated using their
empirical frequency [71].

2. Research questions and tools

We focus on the multivariate statistics of the harmonic
structures of these pieces. In particular, we ask to what extent
the notes played simultaneously by different instruments are
redundant or synergistic. Our analysis focuses exclusively on
harmony and chords, leaving melodic properties to future
studies.

Let us denote by X 4 the random vector of notes, where
|X | = 13. We first compute the marginal entropy of each
voice, H (Xk ), which is an indicator of harmonic richness.
We also compute the O-information of the ensemble �(X 4),
which determines the dominant behavior. Interestingly, for
n = 4 the decomposition in Eq. (15) yields

�(X 4) = I (Xi; Xj ; Xk, Xl ) + I (Xk; Xl ; Xi, Xj )

for {i, j, k, l} = {1, 2, 3, 4}. One can gain a fine-grained view
of � by considering these interaction information terms,
which can be seen as local contributions to �. More formally,
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FIG. 8. Top: Entropy of the frequencies of appearance of each note in the studied pieces of Bach and Corelli, measured in muts (logarithm
to base 13); standard errors were estimated via circular block-bootstrap. While the higher voices in Corelli have higher entropy, Bach’s soprano
has a lower entropy than all other voices. Bottom: Global O-information (left) and networks of local O-information (middle, right) with red
reflecting redundancy (�,wi j > 0) and blue reflecting synergy (�, wi j < 0). Links characterize the triple interaction between each part of the
corresponding dyad and the rest of the system. While Bach’s chorales are synergy dominated, the pieces of Corelli are strongly redundant
(mainly due to the viola and cello).

we define the local O-information between Xi and Xj as

ωi j (X n) := I
(
Xi; Xj ; X n

−i j

)
. (24)

Please note that ωi j (X n) refers to a relationship between
a triplet: two individual variables (Xi and Xj) and the rest
of the system (X n

−i j). Interestingly, these local terms could
be of the opposite sign to the global �(X n), indicating local
synergy (or redundancy) between some components within a
predominantly redundant (or synergistic) system.

Since X1, . . . , X4 take values among alphabets of cardinal-
ity |X | = 13, we perform all computations employing loga-
rithms to base 13, so that H (Xk ) � 1 for all k ∈ {1, . . . , 4}.
We call this unit a mut, for musical bit.

B. Results

By studying the entropies of each voice, our results confirm
that the four voices in these Baroque scores tend to have
similar harmonical richness (Fig. 8, top left). In fact, their
values are similar (although slightly lower) than log13 7 ≈
0.845 muts, which corresponds to a uniform distribution over

the seven notes of a major scale (notes without sharp or flat).
Also, our results show that the entropies in the music of
Corelli are higher for instruments with higher register (i.e.,
the violins). In contrast, in Bach’s music the soprano has
significantly less entropy than the other voices. This could be
related with the fact that these pieces were made to be used in
public religious services [72], with the soprano conveying a
melodic line that was intended to be sung by the attendees—
and hence its structure is simpler to make it easy to sing.

Most strikingly, our analyses of the multivariate structure
of the pieces show that Bach’s chorales have negative O-
information, suggesting that the harmonic structure of these
pieces is dominated by synergistic effects (Fig. 8, bottom left).
This result is further confirmed by the fact that all the local
O-information terms are negative, which means that the pair-
wise dependence between any pair of voices is comparatively
smaller than the global dependencies that exists within the
group (see Table I).

In contrast, Corelli’s pieces have positive O-information,
suggesting that they are dominated by a redundant component.
Interestingly, the local O-information has a positive value
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TABLE I. Multivariate statistics of Baroque repertoire. For each
pair of voices or instruments, we report the mutual information (MI),
conditional mutual information (CMI), and local O-information
(ωi j). Quantities are measured in musical bits, or muts (logarithm
to base 13). Standard errors were estimated via circular block-
bootstrap, and in all cases are below the least significant figure shown
in the table.

Bach’s chorales
MI CMI ωi j

Soprano Alto 0.14 0.19 −0.05
Soprano Tenor 0.12 0.16 −0.04
Soprano Bass 0.15 0.16 −0.02
Alto Tenor 0.17 0.22 −0.05
Alto Bass 0.15 0.17 −0.02
Tenor Bass 0.15 0.17 −0.02

Corelli’s Opuses 1 and 3–6
MI CMI ωi j

Violin 1 Violin 2 0.071 0.115 −0.04
Violin 1 Viola 0.086 0.028 0.06
Violin 1 Cello 0.095 0.034 0.06
Violin 2 Viola 0.118 0.054 0.07
Violin 2 Cello 0.107 0.039 0.07
Viola Cello 0.630 0.460 0.17

for all pairs except for violins 1 and 2. The strongest O-
information is the one between viola and cello, indicating that
the parts of these two instruments are highly redundant.

The redundancy in the pieces of Corelli might be related to
compositional practices for instrumental music in the Baroque
period. In fact, the original score of many of the studied pieces
was written for only three parts: two soloists and a bass line
called “basso continuo.” This bass line was supposed to be
interpreted in different ways by the bass instruments, which
in this case correspond to viola and cello. Therefore, it is fair
to say that these instruments are redundant, as both of them
are carrying the same bass line. Despite this redundancy, the
relationship between the violins is still synergistic, which is
appropriately captured by the negative value of their local
O-information.

The dominance of synergy in the case of Bach could
be the consequence of an artistic purpose. In effect, in the
Baroque period the aim was that each voice should introduce
unique elements into the piece. This goal could be easily
achieved by superposing unrelated melodies; however, the
overall result is arguably of limited interest due to the lack of
global coordination. In contrast, a synergistic structure serves
the Baroque ideal better, as it provides global constraints that
ensure collective coherence while imposing weak pairwise
constraints.

VII. CONCLUSION

We introduced �(X n) as the difference between the
strength of the collective constraints and the shared
randomness in a multivariate system X n. We argued that �

captures the net balance between statistical synergy and re-
dundancy, since (i) it is a sum of triple interaction information,
(ii) it is maximized (minimized) by an n-bit copy (xor),

and (iii) it imposes bounds over the interdependency allowed
at different scales. According to this framework, synergistic
systems are characterized by a large amount of shared ran-
domness regulated by weak collective constraints, this being
consistent with recent approaches to study emergence based
on constructive logic [73]. Moreover, in deriving �, we also
provided a joint source of explanation for three long-standing
extensions of Shannon’s mutual information (TC, DTC, and
interaction information) in terms of shared randomness and
collective constraints. The proposed framework is straightfor-
ward to generalize to continuous variables and apply to neural
data, which will be done in a separate publication.

From the PID perspective, the O-information can be un-
derstood as a difference between redundancies and synergies.
While the presented framework does not refine our current
understanding of PID, it allows us to apply PID principles to
large systems and circumvent some of the prohibitive scaling
properties of PID. Additionally, the local O-information can
be employed to identify subsystems with interesting high-
order properties, which can guide the application of PID
analyses while avoiding the need of computing the PID of the
whole system.

The O-information was compared to other notions of high-
order effects, most notably the TSE complexity [13]. We
found that TSE does not measure statistical synergy as such,
but total correlation strength. Moreover, our analysis suggests
that � and TSE are complementary metrics: TSE gives an
overarching account of the strength of the interdependen-
cies within X n, and the O-information reveals whether these
correlations are predominantly redundant or synergistic. We
take this as a step towards a multidimensional framework
that allows for a finer and more subtle taxonomy of complex
systems.

The proposed framework was applied to Baroque music
scores and found that Bach’s chorales, unlike pieces by some
of his contemporaries, are strongly synergistic as measured by
�. Informally, we can speculate about the artistic role of syn-
ergy: synergistic music (like Bach’s) allows each voice to con-
tribute unique material while ensuring an overall harmonious
integration of the ensemble. This delicate balance has an in-
triguing similarity with the coexistence of integration and dif-
ferentiation in brain activity [5,6], suggesting unexplored re-
lationships between music structure and neural organization.
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APPENDIX A: COMPATIBILITY BETWEEN
� AND PRIOR WORK

In prior work [52], we introduced ψ (k) as

ψ (k) := max
j∈{1,...,n}

max
γ⊆{1,...,n}
|γ|=k, j /∈γ

I (Xj ; X γ ).
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FIG. 9. The O-information and �—introduced in our previous
work [52]—have good agreement.

The growth profile of this nondecreasing function was taken
as an indicator of the leading quality of the interdependency
structure of X n, convexity being associated with statistical
synergy, and concavity being associated with redundancy (see
Definition 2 of Ref. [52]).

The relationship between these ideas and the ones devel-
oped in this paper can be established by noting that convexity
in ψ (k) implies that small scales of the system are relatively
independent while large scales show correlation, which—
due to the results of Sec. IV B—is the key characteristic of
synergy-dominated systems. Conversely, concavity in ψ (k)
implies that some small groups of variables are highly cor-
related, which implies a relatively high value of TC(X n) and
�(X n).

To enable a quantitative comparison between ψ (k) and �,
one can quantify the convexity or concavity of the former by
measuring the distance from ψ (k) to a straight line joining
ψ (1) and ψ (n) as

�(X n) :=
n∑

k=1

[
ψ (k) −

(
k

n
[ψ (n) − ψ (1)] + ψ (1)

)]
.

We computed � and � of binary systems of different sizes
generated randomly from a uniform distribution over the
corresponding probability simplex. Our results show a good
agreement between these two metrics (see Fig. 9), which
confirms the analytic reasoning presented above.

In summary, � can be regarded as a formalization of
the intuitive notions introduced in Ref. [52]. Moreover, �

possesses more theoretical properties than � and requires the
calculation of a smaller number of terms.

APPENDIX B: R(π) DECREASES
FOR FINER PARTITIONS

Lemma 5. Let us consider two partitions πa = (α1| . . . |αK )
and πb = (β1| . . . |βJ ) such that πb � πa. Then, R(πb) �
R(πa).

Proof. Let us assume that πa = (α1| . . . |αK}, πb =
(β1| . . . |βJ ) such that πb � πa, and consider a path p =
(π1, . . . , πL ) in P(πa, πb) so that π1 = πa and πL = πb. To
prove the lemma suffices to show that R(π j+1) � R(π j ) for

j = 1, . . . , L − 1. As π1, . . . , πn are related by covering re-
lationships, one just needs to prove the inequality for two
partitions such that one covers the other.

Consider π1, π2 ∈ Pn such that π2 covers π1. As both
partitions differ only in one elementary refinement, let us
without loss of generality assume that the refinement is
done on the last cell of π1; i.e., π1 = (α1| . . . |αm) and π2 =
(α1| . . . |αm−1|α̃m|α̃m+1) so that α̃m ∪ α̃m+1 = αm and α̃m ∩
α̃m+1 = ∅. Then

R(π1) − R(π2) = Rαm − (
Rα̃m + Rα̃m+1

)
= I (X α̃m ; X α̃m+1 |Xα1 . . . Xαm−1 )

� 0,

proving the desired result.

APPENDIX C: PROOF OF LEMMA III B 2

Proof. Consider a path p ∈ P(πsource, πsink), so that p =
(π1, . . . , πL ) with π1 = πsource and πL = πsink. Then, by using
Eqs. (7) and (8), a direct calculation shows that

W (p; vh) =
L−1∑
j=1

[H (π j+1) − H (π j )]

= H (πsink) − H (πsource)

=
n∑

i=1

H (Xi ) − H (X n).

Similarly, using Eqs. (7) and (9) gives

W (p; vr ) =
L−1∑
j=1

[R(π j ) − R(π j+1)]

= R(πsource) − R(πsink)

= H (X n) −
n∑

i=1

H (Xi|X n
−i ).

Both results make use of the fact that W (p; vh) and W (p; vr )
are telescopic sums and all but the first and last terms cancel
out. �

APPENDIX D: PROOF OF PROPOSITION 1

Proof. Let us consider a path p ∈ P(πsource, πsink). Then,

W (p; vs) =
L∑

j=1

vs(π j, π j+1)

=
L∑

j=1

vh(π j, π j+1) −
L∑

k=1

vr(πk, πk+1)

= TC(X n) − DTC(X n) = �(X n), (D1)

which proves the first part of the theorem.
Thanks to Eq. (D1), one can prove the second part

of the theorem by showing that if πa, πb ∈ Pn such that
πb � πa then vs(π1, π2) is equal to an interaction infor-
mation. To show this, first note that if πb � πa then both
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partitions differ only in one elementary refinement. With-
out loss of generality, we assume that the refinement is
done on the last cell, such that πa = (α1| . . . |αm) and πb =
(α1| . . . |αm−1|α̃m|α̃m+1) such that α̃m ∩ α̃m+1 = ∅ and α̃m ∪
α̃m+1 = αm. Then,

vs(πa, πb) = vh(πa, πb) − vr(πa, πb)

= [H (πb) − H (πa)] − [R(πa) − R(πb)]

= I (X α̃m ; X α̃m+1 ) − I (X α̃m ; X α̃m+1 |Xα1 . . . Xαm−1 )

= I (X α̃m ; X α̃m+1 ; Xα1 . . . Xαm−1 ),

which proves the desired result. �

APPENDIX E: PROOF OF LEMMA IV A

Proof. Let us first note that

log |X | � I (Xi; Xj |Xk ) � 0, (E1)

log |X | � I (Xi; Xj ; Xk ) � − log |X |, (E2)

for all i, j, k ∈ {1, . . . , n}. Above, Eq. (E2) follows from not-
ing that I (Xi; Xj ; Xk ) = I (Xi; Xj ) − I (Xi; Xj |Xk ), and applying
the bounds in Eq. (E1). The proposition is proved by applying
these inequalities on Eqs. (13), (14), (15), and (21). Finally,
the tightness of the bounds is a direct consequence of the
tightness of Eqs. (E1) and (E2). �

APPENDIX F: PROOF OF PROPOSITION 2

Proof. Let us first prove the first statement. By considering
X n to be an n-bit copy, a direct calculation using Eqs. (13)
and (14) shows that TC(X n) = n − 1 and DTC(X n) = 1, and
therefore the upper bound is attained. To prove the converse,
let us start by assuming that �(X n) = n − 2. By applying (E2)
to each term in (15), it is clear that I (Xj ; X j−1; X n

j+1) = 1
holds for all j ∈ {1, . . . , n}. In particular I (X2; X1; X n

3) = 1
holds, which due to Eq. (15) implies that I (X2; X1|X n

3) = 0
and hence I (X2; X1) = 1, which in turns implies that X1 and
X2 are Bernoulli distributed with parameter p = 1/2, and also
that X1 = X2. By relabeling the variables and following the
same rationale one can prove that all pairs of variables are
equal to each other, which proves that X n is an n-bit copy.

Let us prove the second statement. By considering now
X n to be a n-bit xor, using Eqs. (13) and (14) it is direct
to check that TC(X n) = 1 and DTC(X n) = n − 1, and hence
the lower bound is attained. To prove the converse, let us
assume that X n is such that �(X n) = 2 − n. By consider-
ing the bounds given by Eq. (E2) in Eq. (15), this implies
that I (Xj ; X j−1; X n

j+1) = −1 for all j ∈ {2, . . . , n − 1}, and
in particular I (X n−2; Xn−1; Xn) = −1. Due to Eq. (E2), this
implies in turn that I (X n−2; Xn−1) = 0, and via relabeling
one can prove that X n−1 are jointly independent. Moreover,

I (X n−2; Xn−1; Xn) = −1 also implies that I (Xn−1; Xn|X n−2) =
1, which implies that

I (X n−1; Xn) = I (Xn−1; Xn|X n−2) + I (X n−2; Xn) = 1.

This equality implies that Xn is Bernoulli distributed with
p = 1/2, and that Xn is a deterministic function of X n−1.
Moreover, the fact that I (X1; Xn|X n−1

2 ) = 1 implies that, for
given X n−1

2 , Xn is a function of X1, while via relabelling one
finds that I (X1; Xn) = 0. Since the only functions with these
properties are functions isomorphic to an n-variate xor, this
proves the desired result. �

APPENDIX G: PROOF OF PROPOSITION 3

The following proof uses Lemma 6, which is stated and
proved afterwards in this Appendix.

Proof. To prove Eq. (16), first note that

�(X n) = TC(X n−1) − DTC(X n−1|Xn) � TC(X n−1).

Then, the inequality follows from a direct application of
Lemma 6. As TC(Xm) � 0, the equality becomes nontrivial
when

�(X n) − (n − m − 1) log |X | � 0.

To prove Eq. (17), note that by using Eqs. (13), (14),
and (15) one can find that

�(X n) = TC(Xm) − DTC
(
Xm|X n

m+1

)

+
n−1∑

j=m+1

I
(
Xj ; X j−1; X n

j+1

)

� TC(Xm) − (n − 2) log |X |.
Above, the inequality is due to I (Xj ; X j−1; X n

j+1) � log |X |
and DTC(X m|X n

m+1) � (m − 1) log |X |. As the above rela-
tionship does not depend on the labeling of the X ’s, this
proves Eq. (17). As TC(Xm) � (m − 1) log |X |, the equality
becomes nontrivial when

�(X n) + (n − 2) log |X | � (m − 1) log |X |.
�

Lemma 6. If |X | = mini=1,...,n |Xi|, then

min
|γ|=m

TC(X γ ) � TC(X n) − (n − m) log |X |.

Proof. A direct calculation using Eq. (13) shows that

TC(X n) = TC(Xm) +
n∑

j=m+1

I (Xj ; X j−1)

� TC(Xm) + (n − m) log |X |.
As the labeling of the indices can be modified without chang-
ing this result, this suffices to prove the desired result. �
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