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Effect of voluntary participation on an alternating and a simultaneous prisoner’s dilemma
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We studied the evolution of cooperation in the framework of evolutionary game theory, implementing
voluntary participation in the prisoner’s dilemma. Although previous studies have tried to overcome the dilemma
by introducing voluntary participation called a “loner,” the question of which strategies among various strategies
including voluntary participation are adaptive under competitive circumstances is still an unsolved puzzle. Here
we have developed a model that consists of all possible strategies using a one-period memory of past actions.
This model enables us to analyze a “melting pot” of strategies, wherein several strategies interact and compete
with each other. Our results revealed that one strategy, in which one escapes if a partner defects or cooperates
if a partner becomes a loner, dominates and maintains cooperation in an alternating prisoner’s dilemma game.
However, the so-called “win-stay, lose-shift” strategy dominates in a simultaneous prisoner’s dilemma game. Our
simulations clearly show that voluntary participation in the prisoner’s dilemma game works in the alternating
situation rather than the simultaneous one.
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I. INTRODUCTION

Cooperation in mutual competition is a basic mechanism
for the prosperity of human society. However, the simplest
model of cooperation in game theory predicts that cooperation
will not emerge among rational people because cooperative
behaviors incur costs to cooperators, and free riding is a better
option. A previous study [1] showed that some mechanisms
can promote cooperation; above all, direct reciprocity, e.g., “I
will help you because you helped me in the past,” is one of the
simplest mechanisms to promote cooperation. Many studies
have employed an iterated prisoner’s dilemma game (PDG) to
analyze direct reciprocity [2–9]. Among them, some papers
have considered two forms of PDG, a simultaneous game and
an alternating one. This is because, on the one hand, reciprocal
cooperation in a real situation has a behavioral time lag [10],
while, on the other hand, mutual help exists when the actions
of two players are simultaneous [11]. A theoretical study [12]
has shown the differences in the dominant strategies between
alternating games and simultaneous ones.

In the simple setting of a PDG, players perform one of
two actions: cooperation or defection. Hauert et al. [13,14]
have proposed a third option in which a player does not
participate in the game and instead falls back on a small
income that does not depend on others. Those unwilling to
join the game are termed “loners.” Loners can foil defectors
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and overcome a social dilemma. The effects of loners have
been widely analyzed using public goods games [13–19] and
PDGs [20–23].

Although these previous studies focusing on loners consid-
ered three strategic types (a pure cooperator, a pure defector,
and a pure loner), these papers assume that players use a
one-period memory of past actions to decide their actions, as
represented by the tit-for-tat strategy [7,12,24,25]. However,
no study has tried to analyze a strategy space that contains the
loner and the memory of past actions to capture these actions’
effects on the evolution of cooperation in detail yet.

Many studies on reciprocal cooperation have analyzed
strategies that are robust against an invasion of perfect de-
fectors or perfect cooperators [26]. Perfect defectors can be
defined as first-order free riders that do not contribute to
public goods. Perfect cooperators are second-order free riders
that avoid distinguishing between cooperation and defection.
In our real society, however, various strategies interact with
each other. Therefore, an imperative next step in studies on
reciprocal cooperation with voluntary participation would be
to develop an analytical tool that can handle a melting pot of
multiple strategies that coexist, interact, and compete.

A pioneering work performed by Zagorosky et al. [27]
exhaustively analyzed an alternating prisoner’s dilemma by
employing a Markov process that is described by the past
actions of the two players. Their results showed that a strategy
called “forgiver” triumphed. Forgivers cooperate whenever
their opponents have cooperated. They defect once their
opponents have defected, but subsequently, they attempt to
reestablish cooperation after mutual defection.
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In a study on indirect reciprocity, Yamamoto et al. [28] and
Uchida et al. [29] developed a “norm ecosystem” approach
that describes the coevolution of strategies and cooperation
among various strategies.

In this paper, we exhaustively analyze the coevolution of
strategies and cooperation in a PDG with voluntary partici-
pation. In this approach, we must consider a combinatorial
explosion problem because the total number of strategies
becomes 39 = 19 683 if the strategy space that deals with
the past actions of the two players is extended to voluntary
participation. Analyzing the dynamics of all strategies math-
ematically is difficult. To consider this point, we adopted an
agent-based model with a genetic algorithm (GA) [30] to
analyze adaptive strategies. Although some approaches have
been developed to analyze adaptive strategies in evolutionary
computation [31], most approaches do not have a process
to produce a new candidate of solutions beyond the initial
candidates, except for a mutation. Our model must explore an
adaptive strategy among about 20 000 strategies. A GA can
be harmonistically compatible with both the diversity of the
strategies and the evolution of adaptive strategies.

II. MODEL

We model a PDG with voluntary participation that consists
of finite individuals with no spatial structure. A set of the
players’ actions is defined as A = {C, D, L}, and the payoff
matrix of the game is represented as M, where C means
cooperation, D means defection, and L means loner. Players
have their own strategies to decide their actions. The strategy
of each player adopts a deterministic finite automaton [32]
determined by the player’s and that player’s partner’s actions;
thus, the strategy space of the model consists of the player’s
previous action (C, D, L) and the partner’s previous action (C,
D, L). The focal player chooses from three options of actions
in each combination of actions in the previous interaction.
Therefore, 39 = 19 683 types of strategies are in the voluntary
PDG.

The payoff of the simultaneous game is described in the
following scenario. In each round, two players choose C, D,
or L. Both players get a payoff, b − c, when cooperation
occurs, where b > c > 0. If a player defects and the partner
cooperates, the former gets b and the latter gets −c. Nothing
happens in mutual defection. If either player chooses a loner
option, both of the players get a payoff, δ where b− c > δ > 0.

In the alternating PDG, the two players have different roles
from each other. One of the players is the “leader” and the
other is the “follower.” First, the leader chooses an action in
accordance with the actions of the previous round. Then the
follower chooses an action in accordance with the action of the
leader in the present round and the follower’s own action in the
previous round. The calculation of their payoffs is the same as
that of the simultaneous game. Thus, the payoff matrices M in
simultaneous and alternating PDGs are given by

M =
⎛
⎝

b − c −c δ

b 0 δ

δ δ δ

⎞
⎠. (1)

The first row of the matrix M represents the cooperator’s
payoffs, the second row represents the defector’s payoffs, and

the third row represents the loner’s payoff. The first column of
M is the player’s payoff in the case that the player’s partner is
a cooperator, the second column is said payoff in the case that
said partner is a defector, and the third column is said payoff
in the case that said partner is a loner.

Our simulation runs through G generations. Each player
plays a number of P games in each generation. In each game,
a player makes a pair with another player randomly chosen
from the whole population, and the selected pair remains fixed
along R rounds. Note that the number of players, N , must be
an even number. In each round, each pair plays a game where
the payoff is described as M. Therefore, player i receives an
accumulative payoff Ui calculating RP times of M in each
generation.

We set players of a pair as i and j to define the actions
of the players. Player i decides its action using the following
procedure. Let Ii(t ) ∈ A be the intention of i’s action at round
t and Bi(t ) ∈ A be i’s executed action at round t . The player’s
strategy, Si, is a mapping that satisfies Si: A × A → A. Ii(t ) is
defined as Ii(t ) = Si[Bi(t − 1), Bj (t − 1)] in the simultaneous
PDG. In the alternating PDG, Ileader (t ) is defined as Ileader (t ) =
Sleader[Bleader (t − 1), Bfollower (t − 1)], and Ifollower (t ) is defined
as Ifollower (t ) = Si[Bfollower (t − 1), Bleader (t )]. If an implemen-
tation error occurs in an action at round t , Bi(t ) should be
chosen at random from two other actions except for the
original Ii(t ). Otherwise, Bi(t ) = Ii(t ). The probability of the
implementation error is set to a static constant e.

Players each develop their own strategy Si using GA at the
end of each generation. In our model, the strategy of an agent
consists of nine loci corresponding to the combinations of
previous actions, and each locus has three possible “alleles”
(C, D, L). For example, a locus of the gene representing an
action for both i and j chooses cooperation in their previous
actions. In the process of GA, each agent randomly selects two
agents from N agents (including itself) to become its parents.
To choose parents, we adopt a roulette selection method. This
roulette selection sets a probability distribution of all agents
as �i = (Ui − Umin)s/

∑
j (Uj − Umin)s, where Ui denotes the

agent i’s accumulated payoff in a generation given by Ui =
bW − cV + δZ , with W being the amount of cooperation i
received in the generation, V being the amount of cooperation
i gave, and Z being the number of loners i or j chose. Umin

means a minimum value of the accumulated payoffs among
all Ui. s represents selection pressure. In this paper, s is set to
1.0. Finally, each player updates its strategy using a uniform
crossover technique. With a constant mutation rate m, each
locus is inverted to two other alleles at random to maintain the
diversity of the strategy space.

III. RESULTS

The initial strategies of players and their actions in the
first round were given randomly. The static parameters of our
agent-based simulation were set as N = 200, P = 200, R =
200, e = 0.01, m = 0.01, and G = 200. By setting b = 1, the
conditions c + δ < 1, 0 < c < 1, and 0 < δ < 1 expressed
the full space of M, satisfying the PDG with voluntary par-
ticipation.

In observing the results, we developed a visualizing
method that maps the ratio of all the players’ actions to an
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FIG. 1. Phase diagrams of action ratios in population at 200th
generation. x axis represents c, y axis represents δ.

RGB color chart [see Fig. 1(a)]. Each vertex of the trian-
gle shows perfect domination of cooperation (blue), loners
(green), and defection (red). The center of the triangle shows
that all strategies exist equally. For example, if an action
ratio is (C, D, L) = (0.6, 0.2, 0.2), the color on the graph
is expressed as (R, G, B) = (51, 51, 153) in the RGB color
chart. If the cooperation ratio equals one, (R, G, B) becomes
(0, 0, 255) and is mapped in blue. Figures 2 and 3 also adopt
the graph legend described by Fig. 1(a).

First, Fig. 1 shows the phase diagrams of the average action
ratios at the 200th generation of 50 runs with different random
seeds. In accordance with the values of c and δ, there are
two phases that cooperation dominates (shown in blue) and a
mixture of three actions. In the case of the alternating PDG
[Fig. 1(b)], the boundary of the areas is clearer than that
in the simultaneous PDG [Fig. 1(c)]. Although an area is
dominated by loners for δ > 0.5 in the simultaneous PDG, the
correspondence is narrow and unclear in the alternating PDG.

Next, we analyze distributions of strategies in the popula-
tion. Observing the ratios of each strategy is difficult because

FIG. 2. Phase diagrams of strategy distributions at 200th genera-
tion in alternating PDG. x axis represents c, y axis represents δ. For
example, panel (a) shows the distribution of actions in a case wherein
both players chose cooperation in their previous actions.

FIG. 3. Results for simultaneous PDG corresponding to those of
Fig. 2.

we must consider 39 = 19 683 strategies; thus, we observe the
ratios of alleles of each locus to understand the properties of
adaptive strategies.

Figure 2 shows the distributions of strategies in the alter-
nating PDG. Notably, cooperative behaviors after a partner
became a loner in the previous round [Figs. 2(c), 2(f), and
2(i)] dominated; in other words, when a partner refuses to
participate in the game, the other player behaves concilia-
torily and gives the incentive of cooperation to the partner.
Further, players who were exploited (when they cooperated
while their partners defected) became loners. This allele is
expressed in defection in both the win-stay, lose-shift strategy
and the forgiver strategy that triumphs in alternating PDG with
compulsory participation [27]. However, introducing volun-
tary participation enables the allele to be a loner. Generally,
from Fig. 2, we find that the alternating PDG with volun-
tary participation favors nonbelligerent strategies that avoid
interactions with defectors rather than belligerent strategies
that respond by defecting when faced with defection. Finally,
a dissimilar result is observed when both c and δ are close
to zero. This area means that both the cost of cooperation
and the benefit of being a loner are quite low. When both
players of a pair participate in the game [see Figs. 2(a), 2(b),
2(d), and 2(e)], a strategy represented as CDCC dominates.
The strategy corresponds to generous tit-for-tat [12]. This
strategy has been shown to be a robust winning strategy in
the alternating PDG with compulsory participation [12,27] or
spatial interaction in PDGs [33]. Thus, the effect of voluntary
participation disappears in the area.

Figure 3 shows the distributions of strategies in the si-
multaneous PDG. When compared with the alternating PDG,
the alleles of defection increase in the area that cooperative
behavior dominates. For example, when a partner became a
loner in the previous round [3(c), 3(f), and 3(i)], cooperation
became the majority in the alternating PDG. In contrast,
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defection (shown in red) increases in the simultaneous PDG
and vice versa. Additionally, Figs. 3(a) and 3(e) show cooper-
ation (blue) and Figs. 3(b) and 3(d) show defection (red). This
corresponds to the win-stay, lose-shift strategy. Hence, the
dominant strategy in this situation is a suspicious strategy that
responds by defecting to seek an opportunity for exploitation.

IV. CONCLUSION

We described various strategy spaces in PDGs with vol-
untary participation. In a compulsory PDG that never allows
loners, previous studies revealed that a forgiver or generous
tit-for-tat strategy triumphs in an alternating PDG, and the
win-stay, lose-shift strategy triumphs in a simultaneous PDG.
By including loners, who do not participate in the game, we
determined that different strategies triumph in both alternating
and simultaneous games.

In the alternating PDG, a strategy that can be described as
“escape from interaction if a partner defected, or cooperate if
a partner escaped from interaction” dominates the population.
This strategy can be regarded as pacifism because players
rarely defect in the game. In this PDG, introducing voluntary
participation can bring tolerant and conciliatory situations.
However, in the simultaneous PDG, the win-stay, lose-shift
strategy is superior in the wide parameter space. Further, when
a player’s partner became a loner, the player rarely chose
to cooperate but rather to defect. In this PDG, the effect of
introducing voluntary participation is not as clear compared
with the alternating PDG.

Earlier literature has argued that online social network
services (SNSs) resemble a feature of public goods [34,35].
While some works have tried to model free riders on SNSs
as defectors [36,37], our model makes it possible to describe
nonparticipation explicitly in SNSs by introducing the concept
of loners.

The present version of this model has some limitations that
should be the subject of future work. Although the two phases
of the actions are observed in the alternating PDG, the bound-
ary condition of the phases remains a theoretical calculation.
Further, the boundary is not clear in the simultaneous PDG.
We need to explore the reason for this difference. While we
have focused on a voluntary PDG with no spatial structure
to understand the effects of loners in this paper, studies on
structured populations have been a major factor in the study of
the evolution of cooperation [38–41]. The effect of structures
on voluntary participation should be the subject of future
investigations. Another factor that is out of the scope of this
research is a comparison with an adaptive architecture, i.e., a
way for individuals to adapt to their environments. Besides
GA, some architectures have been argued for evolutionary
computation [29,31,42]. This point also provides an interest-
ing direction for potential future research.
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