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Delayed dynamics in an electronic relaxation oscillator
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We present an experimental investigation of the complex dynamics of a modulated relaxation oscillator
implemented by using a unipolar junction transistor (UJT) showing the transition to chaos through torus
breakdown. In a previous paper a continuous model was introduced for the same system, explaining chaos
based on analogy with a memristor. We propose here a new approach based on a piecewise linear model
with delay considering a measured parasitic delay effect. The inclusion of this delay, accounting for memory
effects, increases the dimensionality of the model, allowing the transition to chaos as observed in the experiment.
The piecewise delayed model shows analogies with a two-dimensional leaky integrate-and-fire model used in
neurodynamics.
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I. INTRODUCTION

Relaxation oscillators constitute a large class of nonlinear
oscillators distinct from linear oscillators. In electronic imple-
mentations a linear oscillator makes use of a transistor or an
operational amplifier; the key tool to obtain oscillation is a
feedback loop, whereby the intrinsic noise is amplified and
returned to the input, yielding a stable sinusoidal output. In
contrast, relaxation oscillators are nonlinear and their output
shape is nonsinusoidal [1,2]. A relaxation oscillator consists
of an energy-storing element such as a capacitor and a non-
linear switching device such a Schmitt trigger comparator or
negative resistance element connected by a feedback loop.
The switching device periodically charges and discharges the
energy stored in the capacitor, yielding abrupt changes in the
output waveform. The concept of “relaxation oscillation” was
introduced by Balthasar van der Pol to distinguish from linear
oscillators [3] and to characterize the solutions of slow-fast
dynamical systems (see also work by Ginoux [4,5]).

Recently the van der Pol experiment on a glow dis-
charge neon tube was revisited [6]. The experiments display
the quasiperiodic route to chaos, with the two competing
frequencies being the relaxation frequency and the plasma
eigenfrequency. Based on the volt-ampere characteristic of
the discharge, a macroscopic model of the current flowing
in the plasma has been proposed. The model, governed by
four autonomous ordinary differential equations, is used to
compute stability diagrams for periodic oscillations of arbi-
trary period in the control parameter space of the discharge.
In order to have a better separation between the roles played
by the relaxation frequency imposed by the RC components
and the intrinsic plasma oscillation, a relaxation oscillator
based on a unipolar junction transistor (UJT) [1,2] has been
implemented. This device possesses a negative resistance and
its current-voltage characteristic can be fitted with that of
a memristor [7–9]. When the UJT oscillator is coupled in

a bidirectional way with a harmonic oscillator, it displays
quasiperiodic behavior and torus breakdown. Evidence of
chaos has been reproduced by a continuous four-dimensional
model based on the memristor analogy [10]. The derivation
of the model, following the same strategy adopted for a low
pressure discharge tube, includes the effects of a parasitic
inductance, which is justified for a discharge but artificially
used for the UJT oscillator. Furthermore, the transition to
chaos in the model is not the same as the observed one. Indeed,
the model foresees the following transition to chaos as the
control parameter is increased: limit cycle (m = 0), abrupt
transition to chaos (0 < m < 0.5), followed by a torus region
(0.5 < m < 1).

The aim of this work is to adopt a different approach
to the dynamics of the UJT oscillator. More precisely, the
experimental observations of the spiking signals indicate that
a piecewise model distinguishing the slow charge from the fast
processes seems more appropriate. With proper threshold con-
ditions on the voltage signal on the capacitor C and resetting
conditions for the successive cycle, several of the experimen-
tal results can be explained by including quasiperiodic (torus
attractors) and periodic behavior (phase locking regimes);
however, torus breakdown leading to chaos remains to be
explained. The experimental evidence of a small parasitic
delay in the UJT signals justifies the introduction of delay
terms in the piecewise model, becoming the key feature to
give rise to chaos. The adopted model shows analogies with
the integrate-and-fire dynamics used as a simple approach to
neuron spiking activity. Single-cell spiking oscillators are of
the relaxation type, characterized by a slow charging phase,
threshold condition, and generation of a fast action potential
[11]. Most biological oscillators are of the relaxation type,
sometimes also named pulsatile oscillators. These oscillators
are largely used to describe many phenomena in biology [12],
chemistry [13,14], and electronics [1,2]. Recently, evidence of
chaotic dynamics was reported in relaxation oscillators using
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FIG. 1. Representation of the UJT circuit employed in the
experiment.

NbO2 Mott memristors [15]. In such nanoscale devices, chaos
emerges due to the nonlinear current transport coupled with
thermal fluctuations.

The paper is organized as follows. After this introduction,
a short description of the experiment is presented, focusing
on the Poincaré section as the key indicator. Sec. III contains
a detailed derivation of the piecewise model and the intro-
duction of a delayed term. In Sec. IV, the simulations are
presented and compared with the experimental results. Two
subsections, one on phase dynamics and the other on torus
breakdown, are included. In the latter one the role of delay
emerges as the crucial one to yield the transition to chaos. In
the concluding section, the analogies with a neural model are
discussed.

II. EXPERIMENT DESCRIPTION

Here we provide a short description of the experimental
setup. A schematic representation of a driven UJT relaxation
oscillator is reported in Fig. 1. The UJT is a Motorola 2N2646
and it is connected from the emitter side E through the resistor
R (12.7 k�) to the supply voltage Vs fixed at 7.0 V. On the
B2 base, it is connected to a modulated bias voltage where the
constant value is fixed at Vb = 4.8 V. The resistor RL (56 �) is
a load resistor on which the discharge current through the UJT
is detected as a voltage signal. The capacitor C has a value of
49.7 nF.

The typical temporal behavior of this oscillator at a fre-
quency of 4470 Hz is shown in Fig. 2. The top panel shows
the two main stages of the UJT dynamics. The first one is

FIG. 2. In the top (bottom) panel we plotted the time evolution of
the potential across the capacitor (the resistor RL) during the charging
(discharging) phase in the absence of periodic modulation.

characterized by a slow charging process of the capacitor C
with a relaxation time constant RC; the second one is a fast
discharging process through the UJT. The fast process starts
immediately after a given voltage threshold is reached. A
reduction of Vs implies an increase of the oscillation frequency
up to the point where the UJT oscillator stops working (about
9000 Hz when Vs is close to 2.5 V).

In a previous work [10] it was stated that the character-
istic of oscillations of the UJT can be modeled by a non-
linear mathematical function having a falling branch. Thus,
even in the absence of the external modulation this system
is capable of generating stable self-sustained oscillations
[4,5].

The dynamics of the UJT relaxation oscillator was tracked
in real time by Poincaré sections implemented on the current
signal on the load resistor RL. The apparatus for recording the
Poincaré’s sections (not shown in Fig. 2) included sample-
and-hold circuits to memorize the peaks of the current signal
In as well as the same sequence delayed by one peak, In−1. The
two sequences were plotted in x-y configuration on a digital
oscilloscope (Tektronix TDS7104).

III. MODEL DESCRIPTION

The dynamical behavior reported in Fig. 2 shows a slow
accrual charge phase and a fast discharge phase. Based on
it, we build a mathematical model for the UJT relaxation
oscillator. Following this analogy, the schematic circuit re-
ported in Fig. 3(a) will be used to describe the two work-
ing phases of the UJT circuit: charging and discharging of
the capacitor C. During the charging process the position
of the switch is that reported in Fig. 3(a), and the resistor
Rb1 assumes its higher value (Rb1 high). When the potential
across the capacitor reaches the threshold value the switch is
instantaneously moved to the right position, allowing a fast
discharge. During this phase, the value of the resistance Rb1

assumes its lower value (Rb1 low). Figure 3(b) shows the static
electric characteristic VE -IE of the used UJT together with its
negative resistance Rb1 (in the model Rb1 will be assumed
to switch between Rb1 high = 2400 � and Rb1 low = 180 �).
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FIG. 3. (a) Schematic representation of the circuit. The UJT has been replaced by a switch (double-pole two-way switch) allowing
separation between the charging of the capacitor C and its discharge through the series resistors Rb1 low + RL . (b) Static electric characteristic
VE -IE (filled circles) and Rb1 versus IE (empty circles).

Assignment of the threshold value and resetting condition
completes the UJT model. With reference to Fig. 3(a), let
I1 = dq

dt be the current flowing through the resistance R, I2

the current flowing in the resistances R2 and Rb2, I3 the
emitter current, and I4 = I2 + I3. Then, by Kirchhoff’s laws,
the equations describing the subthreshold dynamics of the
UJT model (tUJT) are, for the charging phase,

Vs = R
dq

dt
+ q

C
(1)

and, for the discharging phase,

Vb(t ) = (R2 + Rb2)I2 + Rb1 lowI4, (2)

I4 = I2 + I3, (3)

q1

C
= (Rb1 low + RL )I4. (4)

In the above equations Vb(t ) = Vb0 + m sin(ωt ) is a mod-
ulated bias potential. In addition, I3 = − dq1

dt . where q1 is the
charge on the capacitor during the discharge phase. From Eqs.
(3) and (4) it follows that I4 = q1/C(Rb1 low + RL ) and I2 =
I4 − I3. Then Eqs. (1)–(4) reduce to the following system:

dq

dt
= Vs

R
− q

RC
, (5)

dq1

dt
= Vb(t )

R2 + Rb2
− RAq1

C(Rb1 low + RL )(R2 + Rb2)
, (6)

where RA = R2 + Rb2 + Rb1 low + RL. It is convenient to in-
troduce an adimensional time t ′ = t/RC. Then, by set-
ting q̄(t ′) = q(RCt ′), q̄1(t ′) = q1(RCt ′), V̄b(t ′) = Vb(RCt ′),

the previous system of differential equations reads
dq̄

dt ′ = VsC − q̄, (7)

dq̄1

dt ′ = RC

R2 + Rb2
V̄b(t ′) − q̄1

RRA

(Rb1 low + RL )(R2 + Rb2)
. (8)

This linear system describes the subthreshold dynamics
of the tUJT and possesses a stable stationary state. Thus,
starting from any initial condition, all trajectories, after a
suitable transient, decay to the stable state. In order to generate
the spiking dynamics, we need to modify the tUJT model
by introducing some ad hoc mechanisms. In particular, in
analogy with some models in neurophysiology, the tUJT
model is modified by introducing a threshold value, q̄T . When
q̄(t ′) reaches q̄T the values of q̄ and q̄1 are reset to q̄R and
q̄1R respectively. After that, the solutions of Eqs. (7) and (8)
restart from the initial conditions q̄(tn) = q̄R, q̄1(tn) = q̄1R,
where tn is the threshold crossing time. In this way, the
tUJT model is capable of generating periodic (and also more
complex) oscillatory dynamics. With these assumptions the
dynamical system describing the tUJT becomes lumpy (no
longer smooth) and nonlinear (both properties arise from the
resetting). The experimental data reported in Fig. 2 suggest
the resetting condition, by evaluation of the potential at the
end of the discharge phase of the capacitor as a fraction
of that reached at threshold. Thus, in the model we assume
that q̄R = αq̄(t ′

n), where 0 < α < 1. Instead, the resetting
condition for q1(t ′) is assumed to be q̄1R = q̄(t ′

n) + q̄1(t ′
n),

where q̄(tn) and q̄1(tn) are the values of these charges at
threshold.
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FIG. 4. Top panel shows the voltage across the capacitor C
during the charging phase in absence of periodic modulation. Bottom
panel shows the voltage peak read through resistor RL occurring with
a delay τ = 1 μs.

According to the literature on UJTs [16], the threshold
voltage is given by VT = V0 + ηV̄BB, where V0 = 0.7V and
η = Rb1 high/(Rb2 + Rb1 high). Using realistic values for these
two resistors (Rb2 = 2100 � and Rb1 high = 2400 �) leads to a
value of η which is in the UJT expected range. Using Eq. (8)
and the tUJT circuit representation of Fig. 3, one can write
the potential V̄BB as follows: V̄BB(t ′) = p1q̄1(t ′) + p2V̄b(t ′),
where p1 = (R2Rb1 low − Rb2RL )/[C(Rb1 low + R2)(R2 + Rb2)]
and p2 = Rb2/(r2 + Rb2). Then, using this last equation, the
threshold for q̄(t ′) is well defined as q̄T = C[V0 + ηV̄BB(t ′)].
It is worthwhile to point out that V̄BB(t ′) also includes the
contribution of the discharge phase through q̄1, thus an indi-
rect coupling with the charging phase is present. Finally, by
setting x(t ′) = q̄(t ′)/(VSC) and y(t ′) = q̄1(t ′), Eqs. (7) and (8)
become

dx

dt ′ = 1 − x(t ′) (9)

dy

dt ′ = RC

R2 + Rb2
V̄b(t ′) − y(t ′)

RRA

(Rb1 low + RL )(R2 + Rb2)
, (10)

where the threshold value for x(t ′) is given by xT =
q̄T /(VSC) = (V0 + ηV̄BB)/VS . When the variable x(t ′) crosses
the threshold (at time tn), the following resetting conditions
are employed: xR = αx(tn) and yR = y(tn) + VSCx(tn), where
x(tn) and y(tn) are the values of x(t ′) and y(t ′) at threshold,
and this implies the coupling between the two variables. In
this way the tUJT model, described by the previous system
of equations, is similar to a two-dimensional integrate-and-
fire neuronal model [17–19]. According to Ref. [19] we can

FIG. 5. Results from the tUJT model in the absence of periodic
stimulation. (a) The time evolution of the potential across the capac-
itor during the charging phase; (b) corresponding time evolution of
the potential q1/C during the discharging phase of the capacitor in
the case τ = 0 μs. (a) and (d) Results for τ = 0.5 μs.

compare our x variable with a membrane voltage v and our
y variable with a dynamic threshold s. As explained later,
the tUJT model is not capable of reproducing the occurrence
of torus breakdown, although it is nonlinear. In order to
reproduce this feature we need to increase the dimensionality
of our model. Since the experimental data on the UJT circuit
reveal that there is a parasitic delay between the peak of
the discharge current and the potential across the capacitor
(see Fig. 4), the introduction of a delay dynamics is jus-
tified. This effect is in agreement with the investigations
on semiconductor-ferromagnet junctions in the spin-blockade
regime by Pershin and Di Ventra [20] and in a neuron based
electronic switch by James et al. [21]. The role of a short
delay in providing additional degrees of freedom necessary
to observe the transition to chaos has been addressed in laser
dynamics by Arecchi et al. [22]. Since it has been established
in a previous work that the UJT behaves like a memristor
[10], such a delay corresponds to the memory of the previous
state, i.e., the “persistence of memory.” Parasitic effects in
memristor devices have been studied by Jeong et al. [23] using
a piecewise linear function. The tUJT model is modified by
introducing a delay τ in Eq. (10), and the delayed model is
rewritten as follows:

dx

dt ′ = 1 − x(t ′), (11)

dy

dt ′ = RC

R2 + Rb2
V̄b(t ′) − y(t ′ − τ )

RRA

(Rb1 low + RL )(R2 + Rb2)

(12)
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FIG. 6. First return maps of experimental and theoretical results
where the modulation frequency is equal to the golden mean. Inside
the left panels we plotted both the first return map (bottom right
of each panel) and the attractor (top left of each panel) of the
experimental data for increasing values (for m = 0 V, m = 0.232 V,
m = 0.336 V from top to bottom) of the amplitude of the modulation.
In the right ones we show the corresponding return maps for the tUJT
(for m = 0 V, m = 0.541 V, m = 0.940 V from top to bottom). The
theoretical data were obtained for τ = 0.5 μs.

with delayed resetting conditions xR = αx(tn − τ ) and yR =
y(tn − τ ) + VSCx(tn − τ ). On the basis of the experimental
data the value of such delay is τ = 0.5 μs. In the next sections
we will show that, with such a choice, the tUJT model is able
to reproduce the experimental features.

IV. NUMERICAL RESULTS

A. Dynamical behavior of the model in the absence
of periodic modulation

Let us start by considering Eqs. (11) and (12), where
the bias potential is a constant (Vb(t ) = Vb0 = 4.9V ). In the
experiment the free oscillation frequency of the UJT circuit is
approximatively 5000 Hz while the oscillation period in the
tUJT model depends on the value of the parameter α used in
the resetting of x(t ′). Therefore, to fit the experimental data,

FIG. 7. First return maps of experimental and theoretical results
where the modulation frequency is equal to the half of the golden
mean. Inside the left panels we plotted both the first return map
(bottom right of each panel) and the attractor (top left of each
panel) of the experimental data for increasing values (for m = 0 V,
m = 0.490 V, m = 0.510 V from top to bottom) of the amplitude of
the modulation. In the right ones we show the corresponding return
maps for the tUJT (for m = 0 V, m = 0.600 V, m = 0.700 V from
top to bottom). The theoretical data were obtained for τ = 0.5 μs.

the value of α is set to 0.4. With this choice, and τ = 0.5 μs,
the free oscillation frequency of the tUJT is νfree � 5003 Hz.

In Fig. 5(a) we plotted the time evolution of the potential
q(t )/C across the capacitor in the absence of delay. The
time evolution of the potential q1(t )/C, characterizing the
discharge phase through the resistor RL, is plotted in Fig. 5(b).
For the sake of completeness Figs. 5(c) and 5(d) show the
delayed case for τ = 0.5 μs.

B. Periodic stimulation of the UJT oscillator

Let us now introduce a time modulation of the bias poten-
tial: Vb(t ) = Vb0 + m sin(ωt ), where ω = 4πνfree/(1 + √

5)
(golden mean frequency). A powerful approach to analyze
the experimental and theoretical results is to use a discrete
two-dimensional representation of the dynamics. In our case
this is achieved by plotting the following set of points:
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FIG. 8. Dependence of the rotation number on the modulation
frequency ( f ). The data in the top panel refer to the parameter
values corresponding to the torus for the golden mean frequency case
(m = 0.541 V), while those in the bottom panel correspond to half
the golden mean case (m = 0.600 V). For both panels τ = 0.5 μs.

Q = {(q(tn)/C, q(tn−1)/C, n = 1, 2, . . . }, where q(tn) repre-
sents the value of the capacitor charge when the threshold
is crossed (at time tn). Thus, the set Q is the first return
map or Poincaré section of the system. In the left panels of
Fig. 6 we report the experimental data for different values
of the modulation amplitude (m). At m = 0 V the circuit
exhibits periodic oscillation which is q(tn)/C = q(tn−1)/C]
and, as expected, the corresponding set Q reduces to a point
(left top panel). When m is increased, a transition towards
a quasiperiodic dynamical regime (torus) is observed (left
middle panel). Further increasing the modulation amplitude
(left bottom panel) leads to the appearance of periodic os-
cillations (phase locking motion). The right panels report the
corresponding results for the tUJT model and for τ = 0.5 μs.
The data in the top right panel are obtained for m = 0 V
and show a period-1 oscillation; the data in the right middle
panel show the occurrence of a quasiperiodic orbit (torus) for
m = 0.541 V that becomes a periodic one when m = 0.94 V
(bottom right panel).

In Fig. 7 we report the corresponding results when the ratio
between the frequencies is reduced to half the golden mean.
The comparison between experimental and theoretical results
shows that the tUJT model mimics very well the experimental
data in this case as well.

FIG. 9. Dependence of the rotation number on the amplitude of
the modulation (m). The data in the top panel refer to the parameter
values corresponding to the torus for the golden mean frequency case
[ω = ωGM = 4πνfree/(1 + √

5)], while those in the bottom panel
correspond to half the golden mean case (ω = ωGM/2). For both
panels τ = 0.5 μs.

C. Phase properties of the UJT model

A different approach to the dynamics of a complex system
subject to an external periodic forcing is that of introducing a
suitable definition of its phase and tracking its time evolution
[24]. We introduce this concept in a general setting and then
apply this tool to investigate the tUJT dynamics. Let us con-
sider, for instance, a continuous time dynamical system per-
turbed by an external periodic forcing of period T . Let z(t ) ∈
Rm be the corresponding state and S = {ti | F (z(ti), ti ) = 0} a
sequence of times, where F is an assigned function. In other
words, if ti is such that F (z(ti ), ti ) = 0, then ti ∈ S. Let us as-
sume that the set S is not empty and contains infinite elements
with ti < ti+1, i.e., the sequence of ti increases monotonically.
Using the above definition we are now able to define the phase
of the dynamical system for each ti ∈ S, and such information
can be employed to investigate the dynamical behavior of the
system in a simpler way. More precisely, the phase of the
dynamical system at ti is defined as φi = ti

T (mod T ), with
φi ∈ [0, 1]. In addition let us assume that ∀i ∈ N it is φi+1 =
G(φi), where G is a circle map expressing the functional
relationship between two consecutive phases. The lift of the
map G is defined by φ∗

i+1 = Ḡ(φ∗
i ), with φ∗

i = ti
T ∈ R+ and

Ḡ : R −→ R. Then, the rotation number of the circle map G
is defined as ρ = limi→∞ ( φ∗

i
i ), when such a limit exists. Using

the definition of the phase, the above expression can also be
expressed as ρ = limi→∞ ( ti

iT ).
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FIG. 10. Experimental data showing torus breakdown for a mod-
ulation frequency equal to the golden mean (top panel, m = 0.394 V)
and for a modulation frequency equal to the half of the golden mean
(bottom panel, m = 0.530 V). Inside each panel the first return map
is shown in the bottom right and the attractor is shown in the top left
side.

Now we study the dynamics of the tUJT by applying
the above theory to our problem. In this case the set S =
{ti | F (z(ti ), ti ) = 0} contains the sequence of times (ti, i =
1, 2, . . . ) defined by the condition F (x(ti), y(ti ), ti ) = x(ti ) −
xT (ti ) = 0, where xT is the threshold of the tUJT model
defined previously. The estimation of ρ is performed by
evaluating the ratio φi/(iT ) for a large value of i. In the
top panel of Fig. 8, we plot the values of ρ against the
modulation frequency ν for a fixed value of the modulation
amplitude (m = 0.541 V). Phase locking patterns occur for
several values of ν and the larger interval is approximatively
centered at ν = νfree (as expected). Similar results occur also
for half the golden mean case with m = 0.6 V (bottom panel).
Then, similar simulations are performed to study the depen-

FIG. 11. First return maps obtained with the tUJT showing
torus breakdown using 240 000 points. Top panel: data where the
modulation frequency is equal to the golden mean and τ = 2 μs,
m = 1.620 V. In the bottom panel we show the the data when the
modulation frequency is equal to half the golden mean and τ = 2 μs,
m = 1.100 V.

dence of the rotation number on the modulation amplitude
m for a fixed modulation frequency. The data for the golden
mean case [ω = ωGM = 4πνfree/(1 + √

5)] are reported in
the top panel of Fig. 9. The data show that several phase

FIG. 12. Sensitivity to the initial conditions. For both panels the
initial conditions are the following: solid line, q(0)/C = 0.331 ×
10−13 V, q1(0)/C = 1.0 × 10−13 V; dashed line, q(0)/C = 0.192 ×
10−9 V, q1(0)/C = 1.0 × 10−13 V. Top panel: data when the modu-
lation frequency is equal to the golden mean and m = 1.620 V; the
maximum Lyapunov exponent is λmax = 0.0963 ± 0.0009. Bottom
panel: data when the modulation frequency is equal to half the
golden mean and m = 1.100 V; the maximum Lyapunov exponent
is λmax = 0.0851 ± 0.0007. For both panels τ = 2 μs.
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FIG. 13. Properties of the phase maps in the case of quasiperiodic dynamics and torus breakdown. Top panel: data corresponding to a
modulation frequency equal to the golden mean. Left top panel: τ = 0.5 μs, m = 0.541 V; right top panel τ = 2 μs, m = 1.620 V. Bottom
panel: data when the modulation frequency is half the golden mean. Left bottom panel: τ = 0.5 μs, m = 0.600 V; right bottom panel τ = 2 μs,
m = 1.100 V.

locking patterns occur, and the largest one falls within the
interval [2, 4] V. Similar results are obtained for a modulation
frequency ωGM/2, and the corresponding data are reported in
the bottom panel.

D. Torus breakdown and chaotic dynamics in the UJT circuit

Let us now consider torus breakdown as the parameter m
is increased beyond after the locking regimes. This route to
chaos in electronic circuits was explored by Matsumoto et al.
[25] and Baptista and Caldas [26]. In the top panel of Fig. 10,
we report torus breakdown when the modulation frequency
is set to the golden mean ratio. Similar results were found
also for half the golden mean ratio (bottom panel of Fig. 10).
Starting from these experimental results, several simulations
of the tUJT model were performed, aiming to get a similar
dynamical behavior. The model with τ = 0.5 μs does not re-
produce torus breakdown but only periodic (or quasiperiodic)
dynamics with a decreasing number of spots on the Poincaré
section, as observed in the experiment. An accurate tuning
of the delay τ is needed to get torus breakdown. In Fig. 11,
evidence of torus breakdown is reported for τ = 2 μs and

m = 1.62 V. It is important to note that the tuning of this value
occurs on fast timescale dynamics.

Similarly, at half the golden mean ratio, torus breakdown
occurs for the same τ value and m = 1.1 V (bottom panel of
Fig. 11). In both cases the tUJT model at the torus breakdown
exhibits sensitivity to the initial conditions, as shown in
Fig. 12 [27,28]. In addition, a quantitative measure of this
complex dynamical behavior is achieved by estimating the
corresponding maximum Lyapunov exponents for both cases
reported in Fig. 12. To this aim we generated time series,
each containing the values of the capacitor potential at the
threshold, and then the corresponding maximum Lyapunov
exponent was estimated by adopting the method proposed in
Ref. [29]. To have statistically significant results, nr = 10 time
series were generated by using random initial conditions, and
then for each of them the corresponding maximum Lyapunov
exponent [λmax( j), j = 1, 2, . . . , nr] was estimated. Then,
for each modulation regime, the corresponding mean value
of the maximum Lyapunov exponent was computed as
λmax = [

∑nr
j=1 λmax( j)]/nr , and the error of the mean as

σ/
√

nr . For the data reported in the top panel of Fig. 12 the
maximum Lyapunov exponent is λmax = 0.0963 ± 0.0009,
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while for those in the bottom panel λmax = 0.0851 ± 0.0007.
To get more insight into these chaotic regimes, the
corresponding phase maps are computed and compared
with the quasiperiodic dynamics. The upper panels of Fig. 13
correspond to the golden mean ratio, while the lower ones
correspond to half the golden mean ratio. Clearly the maps
on the left side are invertible while those on the right are
not. Similarly, in the left bottom panel we show the results
for the case at half of golden mean modulation frequency
(τ = 2 μs, m = 0.6 V). Also in this case the map is invertible.
The right panels give the results when a torus breakdown
occurs and the corresponding maps are no longer invertible.
In conclusion, the experimental data on torus breakdown, the
loss of invertibility of the map, and the sensitivity to the initial
conditions suggest that some dynamical regimes of the tUJT
are compatible with chaotic dynamics.

V. CONCLUSION

In this work we have reported experimental evidence of
torus breakdown in a driven UJT oscillator. The results have
been explained by using a nonsmooth delayed dynamical
system where the delay time plays a crucial role in the
transition to chaos, requiring an accurate tuning. The presence
of delay effects remains consistent with the fact that the UJT
can be considered as a memristor, that is, a nonlinear resistor
with memory, as recently studied by using a continuous four-
dimensional model [10], with the advantages of providing the
correct sequence to chaos as in the experiment and possessing
a strict analogy with neurodynamics. The results are in agree-
ment with those obtained by Chacron et al. [19], where chaos
in a modulated LIF model is obtained only when memory
effects are strong and the threshold includes nonlinear fatigue
functions.
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