PHYSICAL REVIEW E 100, 032222 (2019)

Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
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We found stable soliton solutions for two generalizations of the cubic complex Ginzburg-Landau equation,
namely, one that includes the term that, in optics, represents a delayed response of the nonlinear gain and the
other including the self-steepening term, also in the optical context. These solutions do not require the presence
of the delayed response of the nonlinear refractive index, such that, they exist regardless of the term previously
considered essential for stabilization. The existence of these solitons was predicted by a perturbation approach,
and then confirmed by solving the ordinary differential equations, resulting from a similarity reduction, and also
by applying a linear stability analysis. We found that these solitons exist for a large region of the parameter space
and possess very asymmetric amplitude profiles as well as a complicated chirp characteristic.
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I. INTRODUCTION

Dissipative solitons are a class of localized solutions of
nonconservative nonlinear evolution equations that preserve
their form as they propagate. The name was coined after the
conservative solitons since they share with them the nonlinear
character and the undistorted propagation. The dissipative
solitons exist due to two types of balances, one between
dispersion and a conservative nonlinear effect and the other
between linear or nonlinear loss and amplification. The char-
acteristics of the dissipative solitons are determined by the
parameters of the evolution equation such that they do not
exist as families of solutions as in the case of conserva-
tive solutions [1]. They have been theoretically predicted
and experimentally observed in several areas, from different
branches of physics to biology [2].

Among the evolution equations that admit dissipative solu-
tions, the complex Ginzburg-Landau equation (CGLE) is one
that has been studied in different kinds of physical systems,
especially because it describes the amplitude evolution of
unstable modes close to a Hopf bifurcation [3-5]. In optics,
it describes the evolution of the envelope of a wave packet on
a medium modeled by linear dispersion up to second order,
nonlinear refractive index, linear loss dispersion, linear and
nonlinear gain or loss, and saturation of nonlinear refractive
index and gain [6-9]. In this latter context, solitons have been
observed experimentally [10—12]. In certain cases, the model
should also include higher-order effects such as the ones
named as gradient terms [5,13,14] that, in optics, correspond
to delayed response and dispersion of the nonlinear refractive
index and nonlinear gain.
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The CGLE equation and its generalizations, including the
higher order effects referred above, have been known to admit
solitons in specific regions of its parameter space, but not all
the solitons are stable, such that we have regions of existence
and smaller regions of stable solitons. In the particular case
of the cubic CGLE, the solitons are stable in a parameter
region where the background state is unstable, due to the
existence of linear gain; thus noise will be amplified and will
eventually perturb the soliton [15]. However, if the gradient
terms are added to the cubic CGLE, one usually observes
the onset of a new localized solution that may be stable in
cases of linear loss which corresponds to stable background.
This was first predicted for the cubic CGLE including the
delayed response of the nonlinear refractive index [16] but
later was extended to cases that, besides including the latter
term, also include the other gradient terms [17]. Here, we
report the existence of stable solitons for other cases of the
cubic CGLE including gradient terms other than the delayed
response of the nonlinear refractive index. The clue for the
existence of these stable pulses was obtained by finding the
equilibrium points of a system of four ordinary differential
equations (ODEs) that resulted from a perturbation approach
that used an ansatz similar to the exact chirped solutions of
the cubic CGLE. Then, the amplitude and phase profiles of
the actual solutions were obtained by solving a boundary
value problem of another set of ODEs that resulted from the
evolution equation by a similarity reduction, and their linear
stability was investigated using the Evans function method.
Finally, their existence was confirmed by direct integration of
the evolution equation.

In Sec. II, we describe the methods, namely, the pertur-
bation approach and the similarity reduction, as well as the
strategy to study the solutions stability. There, we also present
the main expressions for the parameters of the stationary
perturbed solutions. In Sec. III, we investigate the solutions
scenario for each isolated gradient term. The analysis is
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done utilizing the three methods, the perturbation stationary
solutions, the ODE solutions, and by fully integrating the
evolution equation. Finally, we summarize the main results
in Sec. IV.

II. EVOLUTION EQUATION AND METHODS

Consider the evolution equation

. _2 2 _ . . . 2
iqz — > qrr +slql°q = —ig +iBqrr + i€lq|™q

+R(qP)rq — iSUqlPg)r, (1)

where, in the optical context, g is the normalized envelope of
the optical field and Z and T are the normalized propagation
distance and retarded time, respectively. The parameters in
this equation are all normalized versions of the actual param-
eters, namely, 8 for spectral filtering, € for nonlinear gain,
R for a delayed nonlinear response, and S for the dispersion
of nonlinear effects. R and § are allowed to be complex, i.e.,
R =R, +iR; and S = S, 4 iS;. In optics, the real part of R
describes intrapulse Raman scattering which is responsible
for soliton self frequency shift in conservative models [18-20]
and has also been used in dissipative models [21]. The imagi-
nary part of R models a delayed nonlinear gain. Also in optics,
the real part of S corresponds to the dispersion of the Kerr
effect and gives rise to the self-steepening effect [18-20,22]
and the imaginary part corresponds to the dispersion of the
nonlinear gain. The imaginary parts of R and S have not been
added to the optical models, but would be useful to model
resonant pulse propagation [9] and have been proposed in
fluid dynamics [5]. The parameters D and s may only take the
values =1, D = 1 if the dispersion is normal and D = —1 if
the dispersion is anomalous and s = 1 or s = —1 for positive
or negative Kerr effect, respectively. The first term in the right
hand side is responsible for linear loss. Note that we have
applied a change of variables proposed in [17] which reduces
the number of parameters.

A. Perturbation approach

In general, Eq. (1) does not exhibit closed form solutions.
However, it allows solutions in the form of chirped solitons
when R =S8 =0 [9,15]. On the other hand, the left hand
side of this equation is the well-known nonlinear Schrédinger
equation (NLS), which possesses an infinite number of con-
served quantities. The right hand side of the equation cancels
the conservation of these quantities. However, expressions for
their Z dependency may be deduced and those expressions are
useful to find approximate solutions of the full equation (1)
with small right-hand side. It should be noted that the success
of this approach strongly depends on the right choice of
the approximate profile. Recently, this approach was used in
Eq. (1) by considering the soliton of the NLS, which approx-
imated the infinite system (1) by a two-dimensional system
[17]. Although some interesting results were found with this
simple system, namely the prediction that the existence of
stable solutions required R, to be present, the phase profile
of the considered perturbed soliton varies linearly with 7" and
does not resemble the actual stationary pulse phase profile
obtained by numerical methods. Therefore, in order to obtain

a better agreement with the CGLE solitons, a more com-
plex perturbed pulse must be considered. This can be done
by allowing the amplitude and width to vary independently
from each other, and also by including a chirp term in the
phase. Traditionally, this chirp is added by considering a
second-order expansion of the phase profile, which leads to a
quadratic phase term [23-25]. However, in the case of CGLE
solitons, that quadratic term would only represent a rough
approximation of the actual soliton phase profile. Therefore,
here we proceed by considering a pulse with a chirp that
follows closely the CGLE chirped solitons:

q(T,Z) = Asech(y)exp(i{¢ + b(T — T)
+d In[sech(»)]}), )

where y = (T — Tp)/w and all the parameters A, Ty, w, ¢, b,
and d are dependent on Z. The substitution of g in the evo-
lution equation for the energy, momentum, and generalized
momenta [23-25], which in this case are given by Q = 242w,
P =—iQb, I) = OTy, b = > Qw?, and I; = —iQd, leads to
the following set of coupled differential equations:

49 ool 1 p(m+ L )4 £ |
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3
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E_s_w{E(D Bd)(1 + d*)
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dly 9 Ry _ €.
—7 = —Db+2pbd + =[(35, —2R) = Sidl,  (6)
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dp _ D, 1+d%\ sQ S0 T
ﬁ_z(b T3 ) 30 30 laz
dd d do
—{—(1—1112)%—%%

It is interesting to note that these six evolution equations
involve all the coefficients in Eq. (1), unlike the perturbation
equations based on the soliton of the NLS found in [17], which
did not contain R; and S,. As it will be shown below, the
presence of these two coefficients in these evolution equations
is quite relevant, since they are also associated with the
existence of stable stationary pulses.

Equations (3)—(6) do not depend on Ty and ¢. Furthermore,
the evolution equations for 7y and ¢ only depend on Q, b,
w, and d, implying that only Eqgs. (3)-(6) need to be taken
into account for the determination of the approximate pulse
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solution given by Eq. (2). In the following, the stationary so-

lutions of this four dimensional (4D) will be directly obtained

as the roots of the right-hand sides of these four equations. In

order to do so, we start by using Eqgs. (5) and (4) to write
I 2Ae+SpA?

w? 4B +3Dd —2pd?
and b = EA?, where
_ 2R+ Rid — S,d) + 53+ d?)

E =
58(1 +d?)
Moreover, A and d are found to satisfy
(—BE? + gSiE)A* + geA> — 1 =0, (7)
with
2(B + Dd — Bd?)
87 48 1 3Dd — 2842
and

p(d) + [S:(2D — 6Bd — Dd?)
— S,(48 +3Dd — 2Bd*)|EA* = 0, (8)
where we have defined
p(d) = —(De 4 2B5)d> — 3(2¢ — Ds)d + 2(De + 2s).

Equations (7) and (8) are coupled to each other and, when
solved, allow the determination of the stationary solution of
(3)—(6) and thus an approximate solution to Eq. (1) given by
(2). Furthermore, the linear stability properties of this solution
can be investigated by computing the four eigenvalues of the
(4x4) Jacobian matrix of the right-hand side of Egs. (3)-(6)
evaluated at the stationary solution. In order for a given sta-
tionary solution to be stable, the eigenvalues must be located
in the half-plane with negative real part.

Also note that, as expected, for R =§ = 0 this approx-
imate solution coincides with the CGLE chirped soliton
[9,15]. In this case, the previous equations lead to b =0,

J

G + 2,32>F” + [2Bv 4+ DR, + 3S)F? + 2B(2R; — 3S,)F*|F' + (=28 + Dw)F — Du%l — (% + 2,32>

+ (—=Ds + 2B€)F> 4+ (DS, + 2BS)FM = 0,

w? = B+ Dd — Bd?, and A> = 1/ge, with the chirp param-
eter d satisfying p(d) = 0, which indeed corresponds to the
CGLE chirped soliton previously obtained. As pointed out in
[9], these chirped solitons can only exist for one of the two
solutions of the second order equation for d, namely for

_ 3(sD —2B€) + /9(sD — 2B¢€)* + 8(De + 2Bs)?
- 2(De + 28s) '

d

€))

Furthermore, for the equation written as in (1) which only
admits linear loss, these solitons are only allowed when g +
Dd — ,de > 0, that is, € > ¢; with ¢, = PO 1H4P"+Ds) W, but
are unstable in this region. However, it has been already shown
that the presence of real R when 8 > 0 allows for the existence
of another branch of solutions that are stable in a limited
region of the (8, €) plane [16,17].

B. Reduction to ODEs

The approach proposed in the previous subsection is valu-
able for finding stable solitary solutions of (1), as we shall
see in the next section; however, an inspection of the actual
stable solutions shows that, in some cases, the amplitude
profiles are far from symmetric, and thus the assumed profile
given by (2) is not a good estimate in those cases. As a
consequence, the actual regions of existence of these solitons
are also significantly different from the ones found within the
perturbation approach.

Thus we have used another method to find the station-
ary solitary solutions, a numerical approach that is not
as computationally expensive as the direct integration of
Eq. (1). For that purpose, we assumed an ansatz of the form
g(Z, T) = F(t)e?D*®Z witht =T — vZ and real F and 6,
that is inserted into the partial differential equation (PDE)
(1) to obtain two ordinary differential equations, for F' and
M = F?0'[16,17], given by

M2
F3

(% + 2,32)M/ + [2Bv + (DS; — 2B8S,)F*IM + [Dv + D(2R; — 3S,)F? — 2B(2R, + 3S;)F*|FF'

+(=2Bw — D)F* + (2Bs + De)F* = 0.

The solitary solutions should be the solutions of the above
ODEs that obey F — 0 for t — +o0o. To find this kind
of solution, we have used a shooting method for the PDE
parameters that scanned the plane (8,€¢) and R; #0 or
S, # 0. However, the solutions of the ODEs may be
stable or unstable solutions of the PDE. Thus, to study
their stability, we obtained the eigenvalues of the linear
stability operator (see [17]) using the Evans function method
[26,27].

(10)

II1. RESULTS AND ANALYSIS

A. Existence and stability of approximated solutions

We now address the existence and stability of the stationary
solutions of the 4D system obtained with the perturbation
analysis in two different cases: when S = 0 and when S # 0.

1. =0

When S =0, Eq. (8) becomes p(d) = 0, which implies
that the chirp parameter d in the absence of nonlinear
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FIG. 1. Solutions for R = 0.026 and S = 0. Region of existence and stability (a): the lines associated with ¢,, and €, correspond to the
existence and stability boundaries, respectively, obtained with the perturbation approaches. Peak amplitude of the perturbation and ODE
solutions and of the CGLE soliton as a function of € for 8 = 0.4 (b). Comparison of (c) amplitude and (d) phase derivative profiles obtained
with the perturbation approach and with the ODEs (10) for 8 = 0.4 and € = 0.23.

dispersion is the same as for the chirped solitons of the CGLE.
In effect, even in the presence of complex R, the only root of
p(d) associated with real and positive values of A> and w? is
again the one satisfying Eq. (9). On the other hand, when E is
not zero we find that

A2 ge + /(ge)* — 4BE?

2BE2

Thus, if B > 0, two real and positive values of A? will be
possible when ge > 2|E|/B, that is, when

c(B+Dd—Bd?)  2IR, + R
46 +3Dd — 282~ 5(1+d)B

This result implies that two different solutions might be
allowed when R, + R;d # 0. In particular, this contradicts
our previous result that R, should always be present in order
for two different solutions to be allowed [17]. Thus this

perturbation analysis is saying that the terms associated with
R, or R; are sufficient to allow another solution unless their
effects cancel each other if R, 4+ R;d = 0. Thus, regardless of
the sign of R, + R;d, the previous condition defines for each
value of f a minimum value of € (¢,). At €, the amplitude
of the two solutions coincide and, below it, no solution is
allowed.

As far as the stability is concerned, similar to what was
shown in [16,17] for R, # 0, in this 4D system with S =0
and R # 0, we have found that the low-amplitude solution,
which is very similar to the CGLE soliton, is always unstable,
whereas the high amplitude one is stable in a limited region of
the (B, €) plane defined between €, and a critical value of €
(e.) that corresponds to the eigenvalues crossing the imaginary
axis. It should be noted that, even though stationary solutions
are allowed for any combination of coefficients D and s, we
only found stable solutions when Ds < 0.

See the curves corresponding to the approximate solutions
with R, and R; taken separately in Figs. 1 and 2.
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FIG. 2. Solutions for R = 0.1/ and S = 0. Region of existence and stability (a). Peak amplitude of the perturbation and ODE solutions
and of the CGLE soliton as a function of € for § = 0.3 (b). Comparison of (c) amplitude and (d) phase derivative profiles obtained with the

perturbation approach and with the ODEs (10) for § = 0.3 and € = 0.2.

2.8#0
When S # 0 we can use Egs. (8) and (7) to write
A2 f(d)

= BEp(d) — 2(sS; + €5,)(B + Dd — pd?)
and
P()[2(sS; + €S,)(B + Dd — Bd*) — BEp(d)]
—Ef*d) =0, (11)
where, for simplicity, we have defined
f(d) = S;(2D — 6Bd — Dd*) — S.(48 + 3Dd — 2Bd?).

Equation (11) is a sixth-order polynomial equation for d. Note
that, of all the roots of this polynomial, we are only interested
in those corresponding to real and positive values of A2
and o’

The real and imaginary parts of S are associated with
stationary solutions with different characteristics. When the
effect of S, is considered separately, we find a behavior
similar to that of § = 0. Nevertheless, for lower values of
€, we now have one allowed solution, whereas with S =0
we had none. This solution exists for € > 0 and is always

unstable. Note that, for very small €, that is, € ~ 0, Eq. (11)
predicts that d ~ 0, which in turn implies that A> — occ.
Furthermore, for larger € two other solutions appear, in-
creasing the number of allowed solutions to three. These
two solutions have a behavior that closely resembles that of
S = 0: the lower amplitude solution is similar to the CGLE
soliton and is always unstable and the high amplitude one is
stable in a limited € region. See the curves corresponding to
the perturbation approach in Fig. 3. It is also interesting to
mention that, for low B, our perturbation approach predicts
solutions besides the three already mentioned but, of all the
five solutions we were able to obtain for low g [see Fig. 3(b)],
only one was found to be stable in a limited € region.
Note that, as before, stable solutions were found only when
Ds < 0.

The scenario with only §; is quite different. Even though
we found regions with one or with two allowed solutions, we
were not able to find any stable solution.

B. Existence and stability of ODEs solutions

Let us first show the results for R, # 0 that were already
presented in our previous work [17]. Here we reproduce
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FIG. 3. Solutions for R = 0 and S = 0.05. Region of existence and stability (a). Peak amplitude of the perturbation and ODE solutions
and of the CGLE soliton as a function of € for (b) 8 = 0.045 and (c) B = 0.25. Comparison of (d) amplitude and (e) phase derivative profiles
obtained with the perturbation approach and with the ODEs (10) for § = 0.25 and € = 0.15.

Fig. 2 of [17] for R, = 0.026 [Fig. 1(a)], which shows the
region of existence of stable solitons and that was obtained
as indicated in Sec. IIB. For comparison purposes, in this
figure we have also represented the boundaries of the stability

regions obtained with perturbation analysis using the chirpless
NLS soliton (represented in the figure as “2D”’) and using the
chirped soliton proposed here. Clearly, the 4D system consid-
ered allows a much better description of the stability region,
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in particular, for higher values of €. This better agreement
of the 4D results can also be observed in Fig. 1(b), which
depicts the peak amplitude of solutions of both branches for
different values of €. In Figs. 1(c) and 1(d) the amplitude and
phase derivative profiles of the actual solutions and of the
solutions obtained with the 4D perturbation system are shown
for B = 0.4 and € = 0.23. Note that no solution is predicted
by the 2D system for these 8 and € values, since in this case
€m2p 18 approximately 0.25.

For R; # 0, confirming the predictions of the perturbation
approach used here, we have found two solutions above some
minimal € that may be distinguished by peak amplitude, as it
is represented in Fig. 2(b) for R; = 0.1 and § = 0.3. Note that
the low amplitude solutions have peak amplitude very close
to the peak amplitudes obtained by perturbation and also of
the CGLE soliton; however, the same does not happen for the
higher amplitude branch. In fact, the actual peak amplitudes
are lower and increase slower with €. Moreover, both branches
exist for smaller § than it was predicted by the perturbation
approach. We have not studied consistently the low amplitude
solution but the few results that we have confirm that it is
unstable. The higher amplitude solution is stable in certain
regions of the existence parameter space as shown for R; =
0.1 and 8 = 0.3 in Fig. 2(b) and in the (B, €) plane also for
R; = 0.1 in Fig. 2(a). The existence and stability regions of the
actual solitons are considerably different from the ones found
by the perturbation analysis. The latter figure reveals that the
curve for minimal € for existence is almost independent of S
and that the stable solutions exist from smaller € and up to
much larger € than expected from the previous section. The
reason for such disagreement should be in the discrepancy
of the assumed profile in the perturbation approach and the
actual solution profile as we may verify in Figs. 2(c) and
2(d) for the case R = 0.1i, 8 = 0.3, and € = 0.2. The peak
amplitudes are considerably different; the actual amplitude
profile is very asymmetric, with a steeper tail on the left. The
actual phase derivative profile has very different right and left
limits and also its structure at the peak location is considerably
different from the tanh profile which characterizes the ansatz
(2). Another property of the solutions is related with the
sign of R;, which is not relevant for existence and stability;
symmetrical R; produces solutions whose amplitude profiles
are symmetrical in respect to 7' and that travel with opposite
velocities but that exist and are stable in the same region of
the parameter space. This effect of the sign of R; is also pre-
dicted by the results of the 4D perturbation system considered
here.

In the case of S, # 0, we have found three branches of
solutions as in Figs. 3(b) and 3(c). Two of them only exist
above a certain € and differ in peak amplitude. The lower
peak amplitude branch extends to regions of large € but the
higher amplitude branch ceases to exist at certain € at which
the branch folds, in the lower € direction, to another branch
consisting of even higher peak amplitude pulses. In all the
cases that we have studied, this latter branch ceases to exist
at certain €. Further studies are needed to understand this
bifurcation. The only branch that has stable solutions is the
one of intermediate peak amplitudes. As in the case of R; # 0,
the lower amplitude solutions obtained by the perturbation

approach and using the ODEs are very similar regarding the
peak amplitude. However, the actual high amplitude solutions
have higher peak amplitude than predicted and, as noted
above, do not extend to regions of large € but cease to exist
at the point where the other branch starts. In Fig. 3(a), we
show the region of existence and stability of the intermediate
amplitude branch for S, = 0.05. In the same figure, we show
the lines for €,, and €, obtained with the perturbation approach
also for its intermediate peak amplitude branch. From this
perspective, the two results show a significant disagreement
as well. This disagreement can also be justified by the fact
that the profile assumed in the perturbation is considerably
different from the actual one, as we show in Figs. 3(d) and
3(e). For the parameters here considered, there was no evi-
dence of any other branch. The results concerning existence
and stability are again not dependent on the sign of S, but, as
in the case of R; # 0, the change of the sign of S, transforms
the amplitude profile in the symmetrical one with respect to T
and also changes the sign of the velocity.

It should also be noted that, even though discrepancies
were found between the actual solutions and the ones as-
sociated with the 4D perturbation system when R; and S,
are the only gradient terms, mainly in the phase derivative
profile and stability region, the 4D system is able to predict
relevant characteristics of the solutions exhibited by Eq. (1).
In particular, unlike the simpler 2D perturbation system which
has only one unstable solution branch in these cases [17], the
4D system presented here is able to anticipate the existence of
more branches of solutions, with one of them being stable in
a given parameter region. Finally, let us mention that, similar
to what was obtained using either perturbation method, we
were not able to find any stable solution from the numerical
integration of (10) when S; is the only nonzero gradient term.
Furthermore, although we have considered here each of the
gradient terms separately, stable solutions are allowed for
combinations of these terms, even if those combinations also
include S;. Examples of the solutions when different terms are
added to R, can be found in [17].

C. Full integration of the PDE

In order to confirm the existence of the stable solutions
presented in Sec. II, including their amplitude and phase
derivative profiles and parameter regions, we have integrated
(1) directly using unchirped sech profiles as inputs. After
a distance of adjustment, the amplitude and phase profiles
are in good agreement with the ones obtained using the
ODEs. To verify the parameter regions where the stable
solutions do exist, we have done the integration referred to
above for randomly chosen pairs of (8, €) in each stability
region of Figs. 2(a) and 3(a). Apart from some discrepan-
cies for (B, €) at the boundaries of those regions that we
attribute to numerical inaccuracies of the Evans method or
to a limited basin of attraction of the stable solution, the
PDE integration confirmed the regions of stable propagation.
In Fig. 4, we show the evolution of 15sech (157) and
25 sech (25T ) to stable pulses for § = 0.3, ¢ = 0.2, R = 0.14,
and S=0 and 8 =0.25, ¢ =0.15, R=0, and S = 0.05,
respectively.
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FIG. 4. Evolution to stable pulses of (a) 15sech (157) for 8 = 0.3, ¢ = 0.2, R = 0.1i, and S = 0 and of (b) 25 sech (25T) for 8 = 0.25,
€ =0.15,R =0, and S = 0.05. The insets show the input amplitude profile (bottom) and the output amplitude profile (top).

IV. CONCLUSIONS

Following a perturbation approach that uses six modified
conservation laws of the NLS and a chirped soliton of the
cubic CGLE, we were able to predict the existence of branches
of solutions, stable in certain regions, for two generalizations
of the cubic CGLE, one including a term responsible for a
delayed nonlinear gain and another contemplating dispersion
of the nonlinear refractive index (an effect that is also known
as self-steepening). In previous publications, it was assumed
that the existence of stable solitons requires that the delayed
nonlinear refractive index (also known as intrapulse Raman
scattering) was nonzero. However, here we proved that these
perturbation results were valuable and that, in fact, the cubic
CGLE admits stable solitons whenever one of those two terms
is nonzero, such that they do not require the presence of
intrapulse Raman scattering. The amplitude profiles of these

solitons are very asymmetric and their phase derivatives have
a considerable structure in the peak location. The parameter
region of those stable solitons is large in both cases but es-
pecially for nonzero delayed nonlinear gain. These results en-
large the known conditions for stable pulse propagation in sys-
tems modeled by generalizations of the CGLE which include
the gradient terms considered. Furthermore, these results may
be useful in other areas of physics where the CGLE is
applicable.
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