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We theoretically study the modulation instability (MI) of the two-component helicoidal spin-orbit coupled
Bose-Einstein condensates (BECs). The effects of spin-orbit coupling, the helicoidal gauge potential, and atomic
interactions on MI are investigated. The results indicate that the presence of the helicoidal gauge potential
breaks the symmetric properties of MI, strongly modifies the distribution of the MI region and the MI gain
in parameters space, and the MI can be excited even when the miscibility condition for the atomic interactions
is satisfied. Furthermore, the effect of the helicoidal gauge potential on MI is strongly coupled with the intra
and intercomponent atomic interactions. Particularly, with the increase of the helical gauge potential, the MI
gain increases for the repulsive atomic interaction case, however, the MI gain decreases for the attractive atomic
interaction case. The direct numerical simulations are performed to support the analytical predictions, and a
good agreement is found. Our results provide a potential way to manipulate the MI in BECs with helicoidal

gauge potential.
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I. INTRODUCTION

Modulation instability (MI) is one of the most generic
phenomenon in the propagation dynamics of any nonlinear
media [1]. The MI is a result of the interplay between non-
linearity and diffraction effects, and any deviation from the
steady state in the form of any weak perturbation leads to an
exponential growth. The MI has been investigated in various
fields such as fluid dynamics [2], magnetism [3], plasma
physics [4], and Bose-Einstein condensates (BECs) [5-8].
In the context of BECs, MI has attracted great attention for
a long time, owing to its fundamental and significance in
various aspects. In the case of single-component BEC, MI
has been addressed in many earlier works, it was concluded
that the MI is possible only for BEC with attractive atomic
interaction [9,10]. In the two-component BECs, the MI was
first considered by Goldstein and Meystre [11], and it occurs
even for condensates with repulsive interaction [12,13].

The spin-orbit (SO) coupled BECs are also one of the
hottest topics of current research in the context of macroscopic
quantum phenomena, and great theoretical and experimental
progress have been made in this field. SO coupling describes
the interaction between the particles spin and orbital momen-
tum, it accounts for a number of fundamental phenomena in
semiconductor physics, such as the spin-hall effect [ 14], topo-
logical superconductivity [15,16], and realization of spintron-
ics [17]. In the two-component BECs, the experiment shows
that the synthetic SO coupling can be realized by using the two
Raman laser beams which couple two hyperfine ground states
of the atom [18]. Due to the production of the SO coupling
in BECs, the dynamical instability of supercurrents, as a
consequence of the violation of the Galilean invariance, was
investigated [19,20]. Meanwhile the MI of two-component
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BECs with SO coupling in one and two dimensions were
recently investigated [21,22].

Recently, a technique showed that a proper combination
of laser beams illumination can create the potentials of practi-
cally arbitrary form in atomic systems, which is possible to en-
gineer SO coupling in BECs [18,23]. The cold atomic systems
with tunable SO coupling [24-27] provide an ideal platform
for investigating a wide range of interesting physics in SO-
coupled systems. Based on the tunability of the SO coupling
in atomic systems and the intrinsic nonlinearity of SO-coupled
BECs stemming from interatomic interactions, the soliton dy-
namics in BECs with inhomogeneous SO coupling have been
extensively studied [28,29]. In particular, the propagation
of solitons in the BECs with inhomogeneous helicoidal SO
coupling is addressed [29], the helicoidal gauge potential can
arise in description of light propagation in helical waveguide
arrays [30]. Considering the MI is a key mechanism for the
formation of soliton trains in diverse physical media [31,32],
and inspired by the special features of SO coupling and the
physical relevance of two-component BECs system, we study
the dynamical behavior of MI in helicoidal SO-coupled BECs.

In this paper, we study the MI of the two-component
helicoidal SO-coupled BECs equally distributed between the
two pseudospin states. A linearized Gross-Pitaevskii (GP)
equation and the dispersion relation corresponding to the
instability of the flat continuous wave (cw) background are
obtained by considering a small perturbation approximation.
We presented detailed analyses of the effects of the helicoidal
gauge potential, SO coupling, and nonlinear interactions on
MI in two-component BECs. We find that the helicoidal gauge
potential plays an important role on the MI of the system. The
helicoidal gauge potential breaks the symmetric properties
of MI and the effect of the helicoidal gauge potential on
MI is strongly coupled with SO coupling and the intra and
intercomponent atomic interactions. The paper is structured
as follows. In Sec. II, we describe the theoretical model of
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the two-component BECs with helicoidal SO coupling. In this
section, we also derive the dispersion relation for the MI by
means of the linear-stability analysis. In Sec. III, the effects
of atomic interactions, SO coupling, and helicoidal gauge
potential on MI are systematically discussed and revealed.
In Sec. IV, the numerical simulations of the system are pre-
sented, which confirm our theoretical prediction. The paper is
concluded in Sec. V.

II. MODEL AND LINEAR-STABILITY APPROACH

We consider a one-dimensional spatially inhomogeneous
two-component BECs with helicoidal SO coupling. The
single-particle Hamiltonian Hy of the system can be written
as [29]
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where p = —id/0x is the momentum operator, A(x) is the
spatially varying gauge potential, « is the potential amplitude,
A is the Zeeman splitting, o, , . are Pauli matrices. If the
interactions among the atoms in the BECs are taken into
account, in the Hartree approximation, the dimensionless GP
equation describing a spinor order parameter ¥ = (¥, W,)"
(T stands for the transpose) can be obtained as follows:
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where the spatial variable x, time 7, density |¥|?, and energy
are expressed in normalized units a; = /i/(mw, ), wll (wy
is the transverse trap frequency), ail, and fw,, respec-
tively, and m is the atomic mass. Here G = diag(g; |y |2 +
glval?, g2lva|> + g2l |?) characterizes the interatomic
interaction with the interaction constants g, » = 2a;»/a, and
812 = 2ayy/a, . The a; 5 and ay, are s-wave scattering lengths,
which are possible to control by optical and magnetic Fesh-
bach resonance techniques in actual experiments [33,34].

The SO coupling, whose strength is experimentally
tunable using different techniques, is considered of the
helicoidal shape with the period 7 /8, i.e., A(x) = o - n(x),
where n(x) = [cos(28x), sin(2fx), 0] and o = (o4, 0y, 07). B
is the frequency of rotation, the positive and negative values
of B are defined for the right-handed mode and left-handed
mode, respectively [30,35,36]. The helicoidal structure of
the vector potential is point translational symmetry (the
shift by the period 7 /8). For convenience, we use gauge
transformation to switch to the rotating frame for the chosen
gauge field A(x) [29]
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then the point translation symmetry of Eq. (2) becomes
a continuous translational symmetry of the transformed
equations, and the continuous GP equations for ¥ are
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where « represents the SO coupling, B represents the
helicoidal gauge potential. The total number of atoms are

N=/dx(|w1|2+|wz|2)=1v] +Ns. ©)

In the framework of Eqgs. (4) and (5), the MI of the cw state
in the form of a miscible binary condensate with uniform
densities njg, nyo and the common chemical potential u of
both components: ; = e~ /mj;. The densities, Zeeman
splitting, interactions, and chemical potential are determined
by algebraic equations:
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For the investigation of MI in the helicoidal SO-coupled
BECs, we add the small perturbations §v/; (§y; < /mjo)
to the cw solutions: ¥; = e~ (,/ijo + 8;). Linearized
equations for the small perturbations are as follows:
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where ¥* stands for the complex conjugate of ¥. We assume
the solution of the perturbation in the form of plane waves

S¢; = ¢jcos(kx — Q) + in; sin(kx — Qt), (10)

where k is real wave number, 2 is complex eigenfrequency, ¢;
and n; are amplitudes. A set of linearly coupled equations for
perturbation amplitudes ¢; and 7; are derived by substituting
Eq. (10) in Egs. (8) and (9):

M x (¢1, &, i, m)" =0, (1)

where M is a 4 x 4 matrix, it exists in a nontrivial solution
under condition with det M =0 and we can obtain the
dispersion relation of the system for €2:

Q4+ PP +PQ+P =0, (12)

where P, = —2k*(a? 4 B?) — k*(gimio + g2n20) — k*/2,
Py = 2K3[B(gin1o — ganao) — 20812 /Mionzl, Py =k*/16
{[kK* — 4(a® + B%) + 4giniollk* — 4(e® + B?) + 4gonn] —
16g212n10n20}. Solving Eq. (12), we can obtain the analytical
results
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FIG. 1. The MI gain £ as a function of helicoidal gauge potential
B for different intracomponent interaction g;, with (a) « = 0.025 and
(b)) =0.5.Here,k =1, g, =2, and g = 2.

here the coefficients A, A, and A, are given by
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From Egs. (13) and (14), the value of the 2 may be positive,
negative, or complex, depending on the signs and magnitudes
of the terms involved. The cw state is stable when €2 is real,
otherwise, MI takes place. The instability growth rate of MI
is defined as

& = {|Im(€2)|}max- a7

Equations (13) and (14) reveal that different physical effects
inevitably affect the instability of the system. The dispersion
relation and the instability spectra are substantially influenced
by SO coupling and helicoidal gauge potential. Noting
that the parameter A has not appeared in the dispersion
relation for instability and it means that it cannot affect the
properties of the MI for cw in such system. Meanwhile, the
nature of the atomic interactions’ strength is found to be
fundamental to the existence of MI and it plays a crucial
role in characterizing the instability spectra. The commonly
known case of the MI in the two-component model, which
corresponds to o = 8 =0, is reproduced by the above
results: it occurs for gz12 > g1g» (interactions are repulsive)
in the interval of perturbation wave numbers 0 < k <

1/2
[2(v/(g1110 — g2120)* + 483,n10m20 — 1110 — §21120)]

[12]. For convenience, we assume the density of the two
components equal to 1, that is, njg = ny9 = 1. In this paper,
we would like to discuss the influence of different physical
effects on the instability spectrum.

III. ANALYSIS OF THE MI
A. Effect of the atomic interactions on the MI

In this section, the influence of the atomic interactions on
the MI is investigated and analyzed. At first, we discuss the
MI of the system when both the intra and intercomponent
interactions are repulsive. Figure 1 shows the MI gain as
a function of the helicoidal gauge potential g for different
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FIG. 2. The MI gain & against gy, for different physical parame-
ters with k = 1.

values of intracomponent interaction g; and SO coupling
strength o at fixed other parameters g, =2, g, = 2, and
k = 1. The MI gain & decreases gradually with the increase
of intracomponent interaction g;, and the instable region for
B changes from a single region with multipeak to multiple
regions when g1g2 > g%,. It is well known that when the
SO coupling is absent, i.e., « = 8 = 0, the MI immiscibility
condition is gz12 > g1g» for the binary condensates with re-
pulsive interactions. However, Fig. 1 indicates that the system
still exhibits MI under g;g» > gj, due to the appearance of
the SO coupling « and the helicoidal gauge potential 8. The
above results suggest that the M1 in the miscibility condition is
still possible even in the repulsive two-component BECs with
helicoidal SO coupling.

It is interesting to note that the MI gain £ and the MI region
for B are symmetry about 8 = 0 when o — 0 [see Fig. 1(a)],
or when g; = g [see Fig. 1(b)]. However, as the SO coupling
o increases [see Fig. 1(b)], the symmetry is broken. When
g1 < &2, the MI gain for B < 0 is larger than that for 8 > 0.
However, when g; > g,, the MI gain and the MI region of §
for B < 0 is smaller than that for 8 > 0, and the reduction
rate of the MI gain £ with g; in the range of 8 < 0 is larger
than that in the range of 8 > 0. That is, the MI properties
is different in the system with right-handed and left-handed
helicoidal SO coupling. To interpret the symmetry of the MI
regions in Fig. 1, we make the following analysis. From Eqgs.
(12) to (16) we can find that the symmetry of MI about 8 is
described by the parameter P;. Replacing the coefficient P
with —P; in Egs. (12) to (16), we obtain

Q= -Q Q=-,
Q=-, Q=-9. (18)

It can be obtained from the definition of modulation insta-
bility & = {|Im(£2)|}max that the MI gain & of the system is not
affected when P; is set to —P;. As we assumed nyg = nyg = 1,
then we have

Pi(X) = 2K’ [B(g1 — &) — 2ag12], (19)
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FIG. 3. The first row: The contour plot of the MI gain £ in the (k, g;) plane for fixed other interaction parameters, in (al)—(a2): g, =
g12 = 2, and in (b1)—(b2): g» = g1» = —2. The second row: The contour plot of the MI gain & in the (k, g;2) plane for fixed other interaction
parameters, in (c1)—(c2): g, = g» = 2, and in (d1)-(d2): g; = g = —2. In all cases @ = 0.5.

where X refers to any variable in P;. Naturally, we can obtain
that the MI gain & will be symmetric about X when P;(X)
satisfy the following condition:

|P1(=X) = [P1(X)]. (20)

Clearly, as shown in Fig. 1, when ¢ — 0 or g; = g», one has
|Pi1(—B)| = |P1(B)|. Therefore, the region of the MI and the
MI gain are symmetric about 8 = 0 in both cases. Equation
(19) indicates that the asymmetry of MI about 8 = 0 is differ-
ent for g; > g, and g; < g» [see also Fig. 1(b)]. Particularly,
Eq. (19) indicates that, when 8 = o =0or 8 =0or g, = g,
the MI is symmetric about g1» = 0 (|P1(—g12)| = [P1(g12)]),
otherwise, the presence of the helicoidal gauge potential S
(g1 # &2) breaks this symmetry, i.e., the MI for g, < 0 and
g12 > 0 is different. This is clearly shown in Fig. 2. When
g1 = g2 and B # 0, the MI gain and the threshold of g, for
the occurrence of MI are not symmetric about g1, = 0. The
asymmetry of MI induced by the helicoidal gauge potential in
parameter space will be further demonstrated in the following
subsection.

The MI discussed above is mainly focused on the cases
when the intracomponent interaction is repulsive, and now
we discuss it in general interactions’ cases. Figures 3(al) to
3(a2) and Figures 3(bl) to 3(b2) show the MI gain in the
(k, g1) plane when the intra (g,) and intercomponent (g;»)
interactions are repulsive and attractive, respectively. Figures
3(cl) and 3(c2) and Figures 3(d1) and 3(d2) show the MI gain
in the (k, g;2) plane when the intracomponent interactions
g1, g» are repulsive and attractive, respectively. In this case,
we choose g; = g», and the MI region is symmetrical about
g12 = 0 from the previous analysis. Figure 3 shows that the
atomic interactions significantly affect the development of the
MI, and the presence of the helicoidal gauge potential greatly
enriches the region of the MI and affects its intensity. In the
next section, we will discuss the effect of the SO coupling o
and the helicoidal gauge potential B on the MI in detail.

B. Effect of SO coupling and helicoidal gauge potential
on the MI

To explore the coupled effect of the SO coupling and the
helicoidal gauge potential, Fig. 4 illustrates the MI gain £ in
the («, B) plane with different wave numbers k when the inter-
actions are repulsive and satisfy the condition of gz12 < 8182
Figure 4 shows that the MI takes place when « and 8 satisfy
certain conditions. There exists a set of the symmetrical MI
region of crescent shape in the (o, 8) plane and the slope of
the symmetry axis is related to the strength of the interactions.
As seen in Fig. 4(al), we arbitrarily select four points in the
(e, B) plane which are symmetrical with each other, and these

278
g 1,588,
(c1)

e
54
[\)

_{4

FIG. 4. The contour plot of the MI gain £ as a function of
a and B. The first column for g, =4, g, = 1, and g1, = 0. The
second column for g; = 1, g, = 4, and g1, = 2. The third column
for g, =4, go = 4, and g\, = 2. The last column for g, =4, g, = 1,
and g1, = 2. The first (second, third) row for k = 1 (k = 3, k = 5).
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FIG. 5. The contour plot of the MI gain £ in the (k, ) plane
for fixed interactions. In (al)—(a3): g=1, g2 = 2. In (b1)—(b3):
g=—1,gp=-2.

points satisfy the following conditions: &? + f7=a3 + p7 and
Pi(ar, p)=Pi(az, fo)=—Pi(—a1, —p1)= —Pi(—02, —fo).
The symmetry axis of the MI region is perpendicular to
the straight line AB and B'A’, therefore, the slope R of the
symmetry axis is

B _ g —g
dae  2g1n

R= 1)

The slope R is irrelevant of the wave number &, and we will
discuss it in the following four cases.

(i))When the intercomponent interaction is not considered
(g12 =0), Pi(a) and P;(B) satisfy the symmetric condition
Eq. (20), i.e., Pi(—a) = Pi(«), and P;(—B) = P;(B). So the
MI region is symmetric with respect to « = 0 (R — 00) and
B =0, as shown in Figs. 4(al) to 4(a3). It can also be seen that
the system is always stable at @ — 0 regardless of the value
of B. Under the condition of g; =0, o« — 0, Egs. (13) and
(14) can be simplified to

k
Qio=—kBF 5\/k2 +4g1,
k
Qg =kBF SV k2 + 4gs, (22)

here g; > 0, g» > 0. Equation (22) indicates that €2;, and
Q3 4 are always real, i.e., £ = 0. The system is stable.

When the intercomponent interaction g1, > 0, the symmet-
rical region of MI in the («, B) plane can be divided into the
following three cases according to the intensity of the atomic
intracomponent interactions.

(i) When g| < g», it can be obtained from Eq. (21) that
the slope R of the symmetric axis of the MI region is positive,
as shown in Figs. 4(bl) to 4(b3). When o # 0, the MI is
asymmetric about 8 = 0. The intensity of the MI is greater
when the sign of @ and S is opposite.

(iii) When g; = g» = g, as mentioned in the previous
section, the MI region in the («, 8) plane is symmetric with
respect to B = 0 (R = 0) and o = 0, as shown in Figs. 4(c1)
to 4(c3). Particularly, the system is always stable at 8§ =0
regardless of the value of the SO coupling strength «. Under
the condition of gy = g» = g, B8 = 0, Egs. (13) and (14) can

3.0

2.0

0.0

FIG. 6. The change of the MI gain & with the variation of 8 for
fixed interactions. In (a): gy = go =g=1land g, =2.In(b): g =
g =g=—land g, = —2.Inall cases @ = 0.5.

be simplified to

k
Q2= —kaF 3 k> +4(g — g12),
k s
93,4 = ko F 5 k* +4(g+ g12), (23)

when g > g1» > 0, Eq. (23) shows that €, and €234 are
always real, i.e., £ = 0. The system is stable.

(iv) When g; > g, it can be obtained from Eq. (21) that
the slope R of the symmetric axis of the MI region is negative,
as shown in Figs. 4(d1) to 4(d3). When « # 0, the MI is
asymmetric about 8 = 0. In this case, the intensity of the MI
is greater when the sign of « and 8 is identical.

Figure 4 also indicates that the MI gain £ increases grad-
ually and the distribution region of MI gradually diffuses
outward in the («, 8) plane with the increase of wave number
k for all cases. More importantly, Fig. 4 shows that the system
remains stable when both o and S are zero. It can be explained
that the appearance of the SO coupling and the helicoidal
gauge potential change the well-known condition in which
the MI occurs in g7, > g1g> when the interactions are all
repulsive.
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FIG. 7. The space-time evolution of cw in the different SO cou-
pling o and helicoidal gauge potential 8. (al)—~(bl): « =0 and 8 =
0. (a2)-(b2): « =0 and B = 1.5. (a3)-(b3): « =0 and g = —1.5.
(a4)-(b4): « = 0.5 and B = 1.5. (a5)-(b5): « = 0.5 and § = —1.5.
Inall cases g = 5,8, = 2,812 =2,and k = 1.

We also plot the MI gain £ in the plane of (k, o) with
different 8 values. For convenience, we assume the intracom-
ponent interactions g; = g» = g in the following study. The
first row of Fig. 5 and the second row of that indicate the
change of the MI gain & with 8 when the interactions are
repulsive and attractive, respectively. As shown in Figs. 5(al)
and 5(bl), the MI gain & and the MI region in the (k, o)
plane remain constant with the increase of o when g = 0.
In this case, it can be obtained from Eq. (23) that the MI
gain & = {|Im(2)|}max is independent of «. In the presence
of the helicoidal gauge potential g8, Figs. 5(a2) and 5(a3)
and Figs. 5(b2) and 5(b3) show that the situation is changed
significantly. The MI region in the (k, @) plane is modified
by the helicoidal gauge potential and strongly depends on «
and B, especially for the repulsive interactions case (the first
row of Fig. 5). It can also see that the intensity of MI in
the attractive interactions is greater than that in the repulsive
interactions case.

To emphasize the effect of 8 on the MI, we plot the
change of the MI gain £ with the variation of 8 > 0 for
fixed interactions due to the MI region mentioned above is
symmetric about 8 = 0. Figure 6 illustrates the MI gain £ in
the (k, 8) plane when the atomic interactions are repulsive
[Fig. 6(a)] and attractive [Fig. 6(b)], respectively. As shown
in Fig. 6(a), as the strength of B increases, the MI gain & of
the system increases gradually and the MI region for k shrinks
and shifts toward large |k| region. However, Fig. 6(b) shows
the MI gain £ of the system decreases with the increase of §.
The MI regions change from two to four and the outer band
diffuses outward. Overall, Fig. 6 shows that the MI gain &
increases with 8 when the interactions are repulsive. However,
it decreases with 8 when the interactions are attractive. This
conclusion can also be well confirmed by Fig. 5.

IV. NUMERICAL RESULTS

The dynamically instability predicted by the linear stability
analysis can be confirmed by the time and space evolution of
the cw via the directly numerical simulation of Egs. (4) and
(5). Initially we set ¥(x,0) = ¥n(x, 0) = ¥y + € cos(kx),
where the wave amplitude ¥y = 1 and the perturbation am-
plitude ¢ = 0.01, which is sufficiently small and will not
cause significant variation in the qualitative nature of the
results. The value of A is 0.01 in all numerical simulations.

(b) (c)

3.0
= B=15(p) (a) —pB=15(y)
B=-15 (1) 20 | e =15 (9)
25t * f=15(p)
e f= 15 (y) K 4
]
(ﬁ 20 -
B ; 15}
."*‘*ﬁ
15+
o
1.0 L 1.0
0 25 50 0

25 50 0 25 50

t t

FIG. 8. The time evolution of the maximum modulus square |¥|* with SO coupling & and helicoidal gauge potential 8 as used in Figs.
7(a2) to 7(a5) and Figs. 7(b2) to 7(b5). (a): « = 0. (b)—(c): « = 0.5. Inall cases g, =5, g, = 2,81 =2,and k = 1.
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FIG. 9. The time evolution of the maximum modulus square [y
with different helicoidal gauge potential 8. (a,b): g =g, =g=1
and gp =2. (c,d): gy =g =g=—1 and g, = —2. In all cases
a =0.5.

For instance, Fig. 7 demonstrates the evolution of the square
amplitude of the cw in the system in time and space for
different SO coupling « and helicoidal gauge potential S.
When the two-component BECs satisfy the miscibility con-
dition (g1g2 > g3,), we generally expect the condensates to
be stable. As can be seen from Figs. 7(al) and 7(bl), with
the miscibility condition (i.e., g1 =35, g =2, g1 = 2, see
Fig. 1), and in the absence of helicoidal gauge potential and
the strength of SO coupling is extremely weak (i.e., 8 = 0,
o — 0), the density in both condensates performs only a
small oscillation that does not bring the system away from its
initial state, thus, the system is stable. However, the stability
is strongly affected when the helicoidal gauge potential comes
into play, and the density perturbation grows exponentially,
this means that the MI is excited [see Figs. 7(a2) and 7(b2)
and Figs. 7(a3) and 7(b3)]. Furthermore, one can find that,
when the SO coupling ¢ — 0, the MI for the system has a
similar character for the right-handed (8 > 0) and left-handed
(B <0) of the helicoidal gauge potential. To observe the
phenomenon more clearly, we illustrate the time evolution
of the maximum modulus square |¢|> of Figs. 7(a2) and
7(a3) and Figs. 7(b2) and 7(b3) in Fig. 8(a) and observe that
the |y]2,, for the right-handed and left-handed helicoidal
gauge potential is coincident. However, Figs. 7(a4) and 7(a5)
and Figs. 7(b4) and 7(b5) show that the right-handed and
left-landed helicoidal gauge potential have different effects on
the MI for the system with larger SO coupling strength, and

the time evolution of the maximum modulus square |y|? of
them are also shown in Figs. 8(b) and 8(c), respectively. It
can be clearly found that the |¢|2 for different signs of the
helicoidal gauge potential A is inconsistent, and the [¢|2,,, for
the right-handed helicoidal gauge potential is larger than that
for the left-hand one. All these results are in good agreement
with the theoretical analysis shown in Fig. 1.

Figure 9 shows the time evolution of the maximum mod-
ulus square |¥|? for different helicoidal gauge potential 8
with the parameter values of Fig. 6. It can be seen from
Fig. 9 that the |¥|*> of the cw increases gradually as the
strength of helicoidal gauge potential 8 increases when the
atomic interactions are repulsive [see Figs. 9(a) and 9(b)], and
decreases gradually with 8 when the atomic interactions are
attractive [see Figs. 9(c) and 9(d)]. The numerical results are
also consistent with those in Fig. 6.

V. CONCLUSION

In summary, we study the modulation instability of the
spatially inhomogeneous two-component BECs with the he-
licoidal SO coupling by linear-stability approach. The dis-
persion relation corresponding to the instability of the flat
continuous wave background against small perturbation is ob-
tained. For comprehensive research, we analyze the effects of
the helicoidal gauge potential, the SO coupling, and different
atomic interactions on the MI. Our analysis illustrates that the
presence of the helicoidal gauge potential inevitably affects
the distribution of the MI region and the MI immiscibility
condition is no longer significant for the system with repulsive
interactions. In particular, the MI gain increases as the heli-
coidal gauge potential increases when the atomic interactions
are repulsive. However, it decreases as the helicoidal gauge
potential increases when the atomic interactions are attractive.
The numerical calculations are consistent with the theoretical
researches. The present results could potentially provide ways
to generate and manipulate MI and solitons in the helicoidal
SO coupling BECs.
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