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We study temporally localized structures in doubly resonant degenerate optical parametric oscillators in the
absence of temporal walk-off. We focus on states formed through the locking of domain walls between the
zero and a nonzero continuous-wave solution. We show that these states undergo collapsed snaking and we

characterize their dynamics in the parameter space.
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I. INTRODUCTION

Localized structures (LSs) can be understood as domains
of a finite size enclosed by stationary interfaces, and therefore
their origin is usually related with the presence of bistability
between two steady states [1-3]. In nature, they may appear
in many different contexts ranging from vegetation patches in
semiarid regions or in sea grass ecosystems to localized spots
of light in driven nonlinear optical cavities [4—11].

Localized structures are a particular type of so-called dissi-
pative structures that emerge in systems far from the thermo-
dynamic equilibrium due to a self-organization process [12].
Dissipative LSs arise due to a double balance between spatial
coupling and nonlinearity, on the one hand, and gain and
dissipation, on the other hand [13]. Spatial coupling appears,
for example, through the dispersion and/or diffraction of
the light in optical systems and is associated with diffusion
processes in chemistry, biology, and ecology [14,15].

In optics, dissipative LSs have been widely studied in the
context of externally driven diffractive nonlinear cavities with
either cubic x® (Kerr) [16,17] or quadratic x® nonlinear
media [18-24]. In these cavities, LSs form in the plane trans-
verse to the propagation direction, and they are commonly
known as spatial cavity solitons. Localized structures have
been also studied in wave-guided dispersive Kerr cavities,
where LSs correspond to temporal pulses arising along the
propagation direction, and they are one-dimensional [11,25—
27]. Temporal LSs have been considered as the basis for
all-optical buffering [11], and in the last decade, also for
the generation of broadband frequency combs in microres-
onators [28-30].

Recently, it has been shown that dispersive cavities with
quadratic nonlinearities may provide an alternative to Kerr
cavities for the generation of frequency combs [31-35]. In
contrast to Kerr combs, quadratic ones may operate with de-
creased pump power and can reach spectral regions that were
not accessible before. Therefore, understanding the formation
of temporal LSs is important in this context.

In this work we study the formation of LSs through the
locking of domain walls (DWs) in a x®-dispersive cav-
ity matched for degenerate optical parametric oscillations
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(DOPO). A schematic example of such type of cavity is shown
in Fig. 1. The cavity is externally driven by a pump field Bj,
at frequency 2fj, and a field A is generated at frequency fy
through parametric down conversion. We consider a doubly
resonant configuration such that both fields A and B resonate
together in the cavity. In such systems, continuous-wave (CW)
states may coexist for the same values of a control parameter
(bistability), and DWs connecting them can eventually form.
Domain walls, also known as wave fronts or switching waves,
exhibit a particle-like behavior in such a way that they can in-
teract and lock, thus forming LSs of different extensions [1,2].

Domain walls have been previously studied in the context
of diffractive DOPOs [23,36], and the formation of LSs
through their locking has been analyzed in detail for both
singly and doubly resonant configurations [22,23]. Recently,
the formation of LSs has also been studied in dispersive
DOPOs and in the presence of temporal walk-off [37].

In all these studies, DWs and LSs form between CW states
that have the same amplitude and are equally stable. As such
they are also called equivalent CW solutions. However, in
DOPOs, bistability between nonequivalent CW states is also
present, and DWs and LSs may arise as well. Nonetheless, as
far as we know, the formation of this type of LSs has not been
analyzed in detail in either diffractive or dispersive cavities.
Hence, in this paper we elucidate the formation, dynamics,
and bifurcation structure of the last type of LSs (hereafter type
I) and their connection with the former LSs (type II). In this
work we neglect the effect of the temporal walk-off.

The manuscript is organized as follows. In Sec. II we
introduce the mean-field model describing doubly resonant
dispersive DOPOs and derive a single model with a nonlocal
nonlinearity. In Sec. III we present the stationary problem, an-
alyze the CW solutions and their linear stability, and introduce
the locking of DWs as the mechanism behind the formation
of LSs. Later, in Sec. IV, we calculate, applying multiscale
perturbation methods, a weakly nonlinear pulselike solution
about the trivial CW state. From Secs. V to VII, we then study
the bifurcation structure of the different types of LSs formed
through the locking of DWs and how this structure is modified
when varying the control parameters of the system. Finally, in
Sec. VIII, we discuss the main results of the paper.
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FIG. 1. Schematic example of a doubly resonant DOPO. A ring
resonator with a x® nonlinearity is driven by a CW field B;, at
frequency 2f;. The quadratic interaction gives rise to a field A
centered around frequency fy that resonates together with a field B
centered around frequency 2 fj.

II. MEAN-FIELD MODELS

In this section we introduce the mean-field model for a
dispersive DOPO in a doubly resonant configuration and we
derive a nonlinear nonlocal model that will be used in the
remainder of this work.

Assuming that the resonator exhibits high finesse, that both
fields do not vary significantly over a single round trip (i.e.,
the combined effects of nonlinearity and dispersion are weak),
and, following Refs. [32,38], the dynamics of a DOPO can
be described by a mean-field model for the slowly varying
envelopes of the signal electric field A centered at frequency
wp and, the pump field B centered at the frequency 2wy, as
already shown in Ref. [37]. The normalized mean-field model
reads:

HA = —(1 +iA)A — i 0°A + iBA, (la)
B = —(ot +iAy)B — (dd, + in237)B +iA* +S.  (Ib)

In the current formulation, ¢ corresponds to the normalized
slow time describing the evolution of fields after every round
trip at a fixed position in the cavity, and x is the normalized
fast time [37]. The parameter « is the ratio of the round-trip
losses o1 » associated with the propagation of the signal and
pump fields, A, are the normalized cavity phase detunings,
n12 are the group velocity dispersion (GVD) parameters of
A and B, d is the normalized rate of temporal walk-off or
wave-vector mismatch related with the difference of group ve-
locities between both fields, and S is the driven field amplitude
or pump at frequency 2w,. With the normalization used here
n1 = +1(—1) denotes normal (anomalous) GVD, and 7, can
take any value positive or negative.

The system of equations (1) is formally equivalent to
those describing diffractive spatial cavities [39,40]. In that
context, n; ~ 2mn, with n; > 0 are the diffraction parameters,
X represents a transverse spatial dimension, and af, applied to
A and B, is the beam diffraction.

In contrast to spatial cavities, where the walk-off is nor-
mally negligible, in dispersive cavities it is very large and
should be taken into consideration. The walk-off imposes
severe restrictions on the efficiency of optical parametric
amplification and often prevents the formation of LSs. Hence,
it would be desirable to suppress it. This can be done by
dispersion engineering as already shown in Ref. [35]. Thus,
in the following we will consider d = 0. The effects of the
walk-off on the stability and dynamics of LSs is beyond the
scope of the present paper and will be presented elsewhere.

Furthermore, we will consider perfect phase matching, which
in wave-guided systems, as the one discussed here, implies
Ay =2A,.

The numerical exploration of the dynamics of Egs. (1)
for a large range of parameters suggests that the B field
varies slowly in ¢. Thus, assuming that ;B =~ 0, and following
Refs. [32,37,41], we can further simplify Egs. (1) to a single
mean-field model for A (see Appendix A) with a nonlocal
nonlinearity:

FA = —(1+iADA —in3’A—AA?@J) +pA, (2

where ® denotes convolution with the nonlocal kernel

14A2 [ ek
Joy =32 [
2r Jooo 1 +i(Ay — 2k?)

3

with Ay = Ay /a, fjy = n2/a, although in the following we

drop (7).
The normalized field reads
Ae™
A=——2 )
a(l+ A3)
with
Y = /4 + atan(—A,)/2 5)

and the normalized pump amplitude

S

p=—F
a,/1+ A3

Equation (2) is a kind of parametrically forced Ginzburg-
Landau (PFGL) equation [42] with long range coupling in
x introduced by the nonlocal nonlinearity A? ® J. In this
framework the interaction between A and B is equivalent to
the propagation of A in a medium with a nonlocal nonlinearity
leading to an effective third-order nonlinearity.

With this approximation, the B field is dynamically slaved
to A and explicitly given by

(6)

B = (_AZ ®J + p)eiatan(_AZ). (7)

Models with a similar type of nonlocal response have already
been considered in single-pass problems [41] and in quadratic
dispersive cavities [31-34]. In particular Eq. (2) is formally
equivalent to the mean-field model derived in Refs. [33,34]
for the description of a singly resonant DOPO (with a different
response function).

In all these cases the nonlocal response in Eq. (2) de-
pends on A2, in contrast to other nonlocal models describing
Raman [43,44], diffusion [45,46], or thermal [45,47,48] ef-
fectzs, where the nonlocal response depends on the intensity
|A]=.

The models (1) and (2) are equivalent when studying
stationary states, such as L.Ss. Unless stated otherwise, here
we focus on the study of Eq. (2).

In terms of the real and imaginary part of A =U + iV
Eq. (2) yields the system

U U
a,[v} =(L +N)[V}, (8)
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with £ and AV being the linear and nonlinear operators defined
by

-1 A + r/laxx
[ = P 1 9
[—m e —(p+1) ] ©)
and
a Nb

NZ_I:Nb _Na}, (10)

with coefficients
NC=U?QJr —V?Q@Jg —2UV ®J,, (11a)
N =U?®J, —V2®J; +2UV ® Jg, (11b)

where Jg and J; correspond to the real and imaginary parts of
the kernel J (see Appendix A). In the following we focus on
the normal GVD regime (1 = +1) and choose o = 1.

III. STATIONARY SOLUTIONS

In this work we focus on the study of stationary states.
In the current mean-field formulation these states satisfy
(0;A, 3,B) = (0,0). They are thus solutions of the integro-
differential equation:

—inAyx — (1 +iADA—AA’ Q)+ pA =0, (12)

or, equivalently, stationary states are solutions of

« +N>m _ [8] (13)

Stationary states can be of different nature such as homo-
geneous CW states [49], periodic patterns [39,50], or DWs
and LSs [23,36]. Notice that Egs. (2) and (12) are invariant
under the transformations x — —x and A — —A. The first
symmetry means that any stationary solution is left-right
symmetric (i.e., has a reflection symmetry), and according to
the second symmetry, if A, is a solution, then so is —A;.

As stated before, in this work we focus on the study of
LSs formed through the locking of DWs connecting different
CWs. Hence, in this section we introduce the CW solutions of
Eq. (12), analyze their linear stability, and study the formation
of LSs.

A. Continuous-wave solutions

The CW states of this system were first studied in Ref. [49]
in the context of diffractive cavities. Here we review some of
the results of that study in terms of the nonlinear nonlocal
model (2). In this framework the CWs correspond to the
homogeneous steady-state solutions of Eq. (2), which satisfy
the algebraic equation:

—(14+iADA; — (1 —iADAJAP + pA, =0.  (14)
Writing A, = |A,|e’?, Eq. (14) becomes
[—(1+iA) — (1 —iA)IA + pe ] |A| =0, (15)

which yields three solutions: the trivial state A; = Ag = 0 and
.. st .
the two nontrivial states AT = |A*|e™”, with

(AyA, — l)i\/(l +A2)p% — (A + A

Ai2:
A 1+ A3

(16)
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FIG. 2. In (a) the phase diagram in the (A}, p)-parameter space
showing the principal bifurcation lines of the CW solutions: the
pitchfork bifurcation p, (black line) and the fold or turning line
p; corresponding to SN, (green line). (b) The CW solutions for
Ay = —0.5 and (c) those for A; = —2. The linear stability with
respect to homogeneous perturbations is shown using solid (dashed)
lines for stable (unstable) states. The different regions are labeled by
I-1II and their description is given in the main text.

and phase
¢* = acos[(IA** + 1)/p/2. (17)

If AA; > 1, then only the AT branch exists and bifurcates
supercritically from a pitchfork bifurcation [51] occurring at

pump strength
pa=+/1+ A2 (13)

The pitchfork bifurcation defines a line in the phase diagram
in the (A, p)-parameter space plotted in Fig. 2(a) (see the
solid black line). An example of the CW bifurcation diagram
in the supercritical regime is shown in Fig. 2(b) for A| =
—0.5. In contrast, for AyA; < 1, A~ arises subcritically as
shown in Fig. 2(c) for A; = —2 and undergoes a fold or
turning point [51] at

A+ A

pr = ———,
V1443

where it merges with A*. This line is plotted in green in
Fig. 2(a). The transition between these two regimes occurs
at a degenerate point at exactly A,A; = 1 or, equivalently,
A =1/4/2.

We can therefore identify three main regions in the phase
diagram of Fig. 2(a):

(i) Region I: Only Ay exists and is stable. This region is
spanned by the parameter region below p, for A; < 1/4/2
and p < p, for A; > 1//2.

(ii) Region II: The nontrivial solution A" coexists with Ag
that is now unstable. This region is spanned by p > p,.

19)
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(iii) Region III: Solutions Ag, A, and A coexist, where
Ao and AT are both stable. This region is spanned by the
values of p such that p, < p < p,.

B. Linear stability analysis of the continuous-wave solutions

Here we perform the linear stability analysis of the CW
solutions in the presence of dispersion. Dispersion can cause
the emergence of pattern-forming instabilities, such as the
Turing or modulational instability (MI) [52]. In the absence of
dispersion, it is known that Ay can undergo a Hopf instability
leading to self-oscillations, period doubling, and chaos [49].
Later the analysis was extended to include the effect of diffrac-
tion in the context of spatial cavities [21], and the spatiotem-
poral dynamics arising from the interaction of the Turing and
Hopf modes was examined in detail in Refs. [53,54]. In this
work we focus on the bistable regime (A;A; < 1), where
self-pulsing of the CW states does not exist. In this context the
linear stability of the CW can be analyzed by using model (2)
instead of Egs. (1).

To perform this analysis we insert into Eq. (2) the ansatz

A(t,x) = A, +ece® ™ e, (20)

describing a small modulation about the CW A;, where o
is the growth rate of the perturbation and ¢ the eigenvector
associated with the linearization of Eq. (2) at order €. The
linear problem has modulated solutions if the growth rate
satisfies

o’ +a0+ay=0, 20

where
ar = 2(1 + 2L,F[JR)), (22a)
ap = el + 11 + co, (22b)

and

2 = HF[rI* + FLIIP), (23a)
1 = 4F[Jgl — (mk*> = ADF[ID), (23b)
co = okt — 2m ALK (23¢)

Here F denotes the Fourier transform as defined in Ap-
pendix A. The CW solutions Ay and A* are linearly stable
to perturbations with a given k if Re[o (k)] < O and unstable
otherwise. When k = 0 we recover the homogeneous stability
analysis performed in Ref. [49]; however, when k is allowed to
vary the system can undergo a MI and periodic patterns may
appear.

Through a linear stability analysis of the trivial solutions
A, = Ay, we obtain that Ay undergoes a MI at

p=p=1, (24)

where patterns with a characteristic wave number,

ke = /Ay, (25)

arise, provided that n;A; > 0. Two situations can be distin-
guished depending on the sign of the product n;A;. When
n1 = 1 (normal GVD regime), Ay undergoes a MI if A; > 0.
In contrast, when n; = —1 (anomalous regime), the MI occurs
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FIG. 3. Panels (a) and (b) show the marginal instability curve
and the bifurcation diagram associated with the CW solution for
(Ay, n2) = (=2, —0.8). Gray area in (a) shows the range of /; where
the CW is unstable and correspond to the dashed lines plotted in (b).
The CW solution is stable outside this region as shown with solid
lines in (a). Panels (c) and (d) show the same type of diagrams but
for (A, n2) = (=2, —0.05). The MI occurs at the maximum of this
curve and is signaled with a blue dot in (d). The vertical gray dashed
lines correspond to the Maxwell point py of the system for such
values of the parameters.

if A} < 0. Notice that the stability of the trivial state does not
depend on 1.

The linear stability analysis of the nontrivial CW states
A* is cumbersome and exact analytical expressions of the
MI threshold and critical wave number do not exist [21].
Nevertheless, we can analyze the stability of these states
by means of the marginal instability curve I;(k). This curve
defines the band of unstable modes and is composed by two
branches I~ (k) satisfying the quadratic equation obtained by
setting o = 0 in Eq. (21):

el + eyl + ¢ = 0. (26)

The CW state is unstable against a perturbation with a fixed &,
if I, is inside the curve, i.e. Ii(k)~ < I, < I;F (k), and unstable
otherwise. For k # 0 the extrema (k, ;) = (k.,I.) of this
curve define the MI.

Figure 3(a) shows the marginal instability curve associated
with the CW solution shown in Fig. 3(b) for (A, n2, n1) =
(=2, —0.8, 1). The maximum of this curve occurs at I, for
k = 0, and therefore A~ is unstable from p, to SN; [see dotted
line in Fig. 3(b)], while A™ is stable for any value of k # 0 as
shown in Fig. 3(b).

Decreasing the value of |1;| the maximum migrates from
the fold SN, at (k, I;) = (0, ) to (k, I;) = (k., I.) where MI
takes place. This is the situation shown in Fig. 3(c) for n, =
—0.05. In this case A~ remains unstable, and AT is stable
above the MI, i.e., for I, > I., and unstable otherwise [see
solid and dotted lines in Fig. 3(d)].

The MI defines a manifold p. = p(l;(k.), n2, A1) accord-
ing to which region III can be subdivided as follows:
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FIG. 4. [(a) and (b)] The real component of a DW of type I (Ag — A*) (a) and a DW of type Il (A" — A™) (b). (c) Sketch of the
oscillatory interaction defined by Eq. (29) at the Maxwell point (v = 0) and two locations away from the Maxwell point (i.e., v = v; and v,).
The stable (unstable) separations D; are labeled using e (o); [(d) and (e)] examples of Type I (d) and Type II (e) LSs.

III,: At is unstable in response to nonhomogeneous per-
turbations (i.e., k # 0). This region spans the parameter space
P <P < Pe-

III,: At is stable in response to nonhomogeneous pertur-
bations. This region spans the parameter region p > p,.

C. Formation of localized states through domain wall locking

As shown in the previous sections, the CW solutions may
coexist stably depending on the range of parameters. There-
fore, in the presence of dispersion, DWs may arise connecting
two different CWs. In this context two different types of DWs
occur:

Type-I: The connection occurs between Ay and AT [see
Fig. 4(a), left]. They exist in region III,.

Type-II: The connection arises between two equivalent
(equally stable) nontrivial states, i.e., —A* and A*. They
occur in regions II and III, [see Fig. 4(b), left].

The tails of both type-I and type-II DWs around the CW so-
lution A™ [see the close-up view in Fig. 4(a)] can be described
asymptotically by the ansatz A(x) = A + ee** + c.c., where
the eigenvalues A satisfy the condition o (—iX) = 0 and are
therefore solutions of the polynomial

bgAS + bgA® + byr* + bya? 4+ by = 0, (27)

where the coefficients b, are functions of the parameters of
the system.

Due to the reflection symmetry x — —x, Eq. (27) is invari-
ant under A — —X and A — A [55]. Equation (27) cannot be
solved analytically except in some particular conditions [22].
The tails can approach AT either monotonically or in a
damped oscillatory fashion. The latter case is related with
the existence of at least four complex eigenvalues A; 234 =
+0Q =+ iK, those with the smallest real part |Q|. The oscillatory
damped tails are described by

A(x) = A + acos(Kx)e 2. (28)

In contrast, when K = 0 the oscillations disappear, and the
DW approaches AT monotonically. In what follows we sep-
arately describe the interaction of DWs and the formation of
type-I and type-II LSs.

1. Type-I domain walls and localized structures

The CW states Ag and A™ are nonequivalent, and type-I
DWs move with a constant velocity that depends on the
control parameters of the system. In gradient systems, where
an energy functional can be defined, the velocity is propor-
tional to the energy difference between Ay and A*. In this
context, the Maxwell point of the system is defined as the
parameter value where both CW states have the same energy
or, equivalently, as the point where the velocity of the DWs be-
comes zero [56]. Here, despite the system not having gradient
dynamics, we will still refer to such a point as the Maxwell
point, and hereafter we label it as ps. This point is marked
using a dotted-dashed line in Figs. 3(b) and 3(d). In a range
of parameters around py two DWs with different polarity,
say, a kink Ag — A% and antikink AT — Ay, separated by
a distance D interact as described by

8,D = pcos(KD)e ?P + v = f(D), (29)

where v ~ p — p); measures the distance from the Maxwell
point py, and o depends on the parameters of the system [2].

When K # 0, the oscillatory nature of the interaction
leads to alternating regions of attraction and repulsion [see
Fig. 4(c)]. Domain walls lock at different stationary separa-
tions Dy satisfying f(Dy) = 0. At p = py (v = 0) [Fig. 4(c),
top], the width of the LSs (D) is quantized: D} = 55 (2n + 1),
withn =0, 1,2,... [1,2]. Figure 4(d) shows an example of
an LS of width Dy, corresponding to the stationary distances
shown in Fig. 4(c). The stable (unstable) separation distances
are marked with e (o). We refer to these states as Type-I
LSs. When v # 0 the red curve shifts upward or downward
(depending on the sign of v), and as a result, the number of
stationary intersections decreases as is shown in Fig. 4(c) for
v = v; and v,. Hence, when moving away from the Maxwell
point oy, the widest LSs disappear first, but eventually even
the single peak LS is lost. In Sec. V we will see that the inter-
action described by Eq. (29) is responsible of the bifurcation
structure that the previous LSs undergo.

When the tails are monotonic (K = 0) a different phe-
nomenon known as coarsening occurs where two DWs with
different polarity attract each other until eventually they anni-
hilate one another [57].
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2. Type-1I domain walls and localized structures

In regions II and III, the solutions —A™" and A" coexist
and are linearly stable, and hence type-II DWs connecting
them may also arise. In this case these CWs are equivalent,
and therefore the DWs are stationary [see Fig. 4(b)]. Here the
interaction between kink (—A*™ — A™) and antikink (AT —
—AT) is described by Eq. (29) by setting v =0 [1] [see
Fig. 4(c)]. The LSs resulting from this interaction are referred
to as type-II LSs, and have been largely studied in the context
of diffractive cavities [22,23]. Domain walls of this type may
undergo nonequilibrium Ising-Bloch transition, where DWs
start to drift [58], and as result LSs may show very complex
dynamics [59]. An example of such a state is shown in
Fig. 4(e).

IV. WEAKLY NONLINEAR SOLUTIONS AROUND
THE PITCHFORK BIFURCATION

While the locking of DWs explains the formation of high-
amplitude LSs, it does not describe their origin from a bifurca-
tion point of view. In this section we show that those structures
are connected with small-amplitude states that arise from the
Pitchfork bifurcation occurring at p,. In order to do so we
derive a stationary normal form for the pitchfork bifurcation
by applying weakly nonlinear multiscale analysis. We find
two types of extended solutions that explain the origin of the
structures discussed in Sec. III. The solutions of this normal
form have been studied in the context of the parametrically
forced Ginzburg-Landau equation [42]. However, in our case,
we have a long-range nonlocal coupling in x in terms of
the nonlocal nonlinearity A> ® J. In order to deal with this
difficulty we follow the approach shown in Ref. [60].

Following Ref. [42] we fix A and consider the asymptotic
expansion of the fields U and V as a function of the expansion
parameter € defined by p = p, + 8€2, where § is the bifurca-
tion parameter. Then the expansion reads

-]

where we allow each of the terms in the previous expansion to
depend just on the long scale x| = ex. Considering Eq. (30)
the linear operator expands as

L=Lo+e L, €2V
with
_ | Pa— 1 A1
o= [ —AL —(pa+ 1)} (320)
and
I mo;
Ly = |:—71133, 5l (32b)
Similarly, the nonlinear operator becomes
Y VA PV R
w-en=-3 ] o
with
N2a = M%@JR—UIZ®JR—2M1U1 ®J1, (343)
N =2 ®@J; — 0P @ J; + 2uiv; ® Jg. (34b)

The insertion of the previous expansions in the stationary
equation (13) yields a hierarchy of equations for successive
orders in €, which up to third order read:

oo-al [}

RE EO[Z } + (L, +J\/2)[Z:] - [8] (35b)

3
3

(35a)

and

At first order in € the solvability condition provides

pa= AT+ 1, (36)

which confirms the position of the pitchfork bifurcation al-
ready calculated in Sec. III. The solutions at this order are of

the form
[Zi] = ﬁ]a(xl), (37)

where £ = A /(1 — p,) and a(x;) is the real envelope ampli-
tude to be determined at next order in the expansion.

Applying the same procedure as in Ref. [60] we show (see
Appendix B) that the solvability condition at O(e?) gives the
stationary normal form for the amplitude a:

C10;a=8a+ Csa’, (38)
with the coefficients
—2mé
C, = 39
1 1+ &2 (39a)
and
C=1-E§E+2A). (39b)

This last equation admits the CW solutions a = /—4§/C3
or, equivalently,

U A1 o —p
= _ 2 40
[v} el g * (40)

which confirms the result already obtained in Sec. III: The
CW bifurcates supercritically (p > p,) if AyA; > 1 and sub-
critically (p < p,) if ApA; < 1.

In the supercritical regime (A;A; > 1) the normal
form (38) admits DW-like solutions of the form

() = |~ tann [ 41
ax;) = e an _chxl , 4D

yielding a supercritical bifurcation to states of the form

Ay
U P — Pa P — Pa
= — tanh —_— RN ¥)
[V:| 1 P ¢, @n (,/ re X>+ (42)

This analytical solution was first obtained in the context of
diffractive cavities in Ref. [21], where the normal form around
p, was derived in terms of the full model (1).
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FIG. 5. Weakly nonlinear solution around the pitchfork bifur-
cation p,. Panels (a) and (b) show in blue the real and imaginary
profiles of the weakly nonlinear state given by (44) for A; = —2 and
p — p, = 0.01. Red dashed lines represent the numerical solutions
of Eq. (12) at the same point. Both lines are indistinguishable.

In contrast, for AjA, < 1, the normal form (38) admits
solutions of the form

Y N 43
a(xl)— C—386C axl s ( )

which provides the subcritical emergence of type-I LSs,

A
4 = 1 _1 Msech ux + ...
1% lpa G —C

(44)

These weakly nonlinear solutions are only valid close to
the pitchfork bifurcation at p,. In the next section we show
how these solutions are modified when entering the highly
nonlinear regime as one of the control parameters of the
system is changed. Notice that the weakly nonlinear solu-
tions (42) and (44) are independent of the parameter 7,. This
shows that in the weakly nonlinear regime the states studied
here are not influenced by the presence of the long-range
interaction in x.

In the coming section we focus on the subcritical regime
and study the bifurcation structure of LSs of the form (44).
To check the validity of our calculations, in Fig. 5 we have
plotted the real and imaginary parts (blue line) of the weakly
nonlinear state (44) together with the numerical solutions
(dashed red line) obtained through a Newton-Raphson solver,
showing excellent agreement.

V. BIFURCATION STRUCTURE OF TYPE-I
LOCALIZED STATES

In this section we study the bifurcation structure of the
type-I LSs. In Sec. IV we have derived a normal form equa-
tion around the pitchfork bifurcation occurring at p,. Two
stationary weakly nonlinear solutions are found correspond-
ing to a small-amplitude DW and bump [see Eqgs. (42) and
(44)] that arise in the supercritical and subcritical regimes,
respectively.

In what follows we focus on the subcritical regime and,
unless stated otherwise, fix A} = —2 and 7, < 0. Weakly
nonlinear solutions are only valid in a neighborhood of the
bifurcation at p,. However, applying numerical continuation
techniques [61] we are able to track these solutions to pa-
rameter values away from the small-amplitude bifurcation

pas and therefore to build bifurcation diagrams as those
shown in Fig. 6. In these diagrams the L?> norm [|A||* =

% f_ng |A(x)|?dx is plotted as a function of the pump inten-
sity p for different values of ;.

Figures 6(a) and 6(d) show the bifurcation diagram for
1, = —0.8, where Fig. 6(d) is a close-up view of the diagram
shown in Fig. 6(a). The blue lines in Fig. 6(a) represent
the CW solution, whose linear stability is shown using solid
(dashed) lines for stable (unstable) solutions. The vertical
gray line corresponds to the Maxwell point of the system py,.
At this point the velocity of the DWs connecting the trivial
solution Ay with the nontrivial one A" is zero, and around
this point two DWs of different polarities can lock to each
other and form LSs of type I, as already discussed in Sec. III.
Close to p, the LS is well described by the small-amplitude
weakly nonlinear solution (44) and is initially unstable.

The stability of the x-dependent steady state is obtained
from the analysis of the eigenspectrum of the linear operator
associated with Eq. (2) evaluated at such a steady state. This
linear operator must be calculated numerically, and hence
it corresponds to the Jacobian matrix associated with the
coupled algebraic equations that originate from discretizing
Eq. (2). To confirm the validity of the stability results, we have
also performed such analysis using the full model (1). Indeed,
for the type of states studied here, the stability analysis using
both models agrees.

Decreasing p the amplitude of the LSs increases [see
profile (i)] until reaching the first fold of the diagram. This
fold correspond to a saddle-node bifurcation that we label
as SNl1 [see Fig. 6(d)]. Once SN’1 is passed the LS become
stable. At this stage the LS corresponds to a high-amplitude
state as the one shown in panel (ii). Increasing p further the
amplitude of the LS grows, and it becomes unstable at a
second saddle-node SN (see inset). At the same time a small
dip is nucleated in the central position of the LS forming an
almost flat plateau [see Fig. 6(iii)]. While increasing the norm
the LS broadens and becomes stable one more time at SN
[see Fig. 6(iv)]. Proceeding up in the diagram (i.e., increasing
||A]|?) the process repeats, resulting in the broadening of the
LSs as shown in Fig. 6(v). At this stage one can observe how
the LS is formed by a pair of DWs connecting Ay with A™ of
different polarities, namely DWs™ and DWs™.

In the course of this process the solution branches undergo
a sequence of exponentially decaying oscillations in p at
the vicinity of the Maxwell point py ~ 1.6578 [see inset
of Fig. 6(d)]. This type of bifurcation structure is known as
collapsed snaking [42,62,63] and has been studied in detail in
the context of Kerr cavities [64].

In periodic systems like ours the LS branch eventually
moves away from p & py and the solution turns into a dark
LS sitting on A* [see Fig. 6(vi) translated L/2]. This branch
terminates at SN,, where the amplitude of the LS becomes
zero. In terms of spatial dynamics this point corresponds
to a reversible Takens-Bogdanov bifurcation [51,55], and a
weakly nonlinear solution of the form A — A* ~ asech?(bx)
can be obtained as already done in Refs. [64—66].

The bifurcation diagrams shown in Figs. 6(a) and 6(d)
correspond to a slice for constant 17, = —0.8 of the phase
diagram shown in Fig. 7 (dashed vertical line, where the main
bifurcation lines are plotted in the (1., p)-parameter space
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FIG. 6. Bifurcation diagrams for LSs of type I at A; = —2 and different values of 7,. Collapsed snaking [(a) and (d)] for n, = —0.8,
[(b) and (e)] for n, = —0.2, and [(d) and (f)] corresponding to 1, = —0.05. Panels (d), (e), and (f) are close-up views of the bottom parts of the
bifurcation diagrams shown in (a), (b), and (c). Solid (dashed) lines correspond to stable (unstable) solutions. The vertical gray point-dashed
line denotes py, and red and orange vertical lines in panel (f) refer to Fig. 4(c). The different SN of the LSs are labeled through SNﬁ", and the
red dots correspond to the LSs shown in the subpanels (i)—(xviii), where blue and green solid lines represent U and V, respectively.

for constant Ay = —2. The saddle-node and the pitchfork
bifurcations of the CW p; and p, are plotted in black and green
solid lines, respectively. The Maxwell point py, is indicated
with a red solid line, the MI p, is shown in purple, and the
SN ll and SN7 are plotted in blue. The gray area between these
lines is the region where type-I LSs exist. Increasing |n;],
the different folds SN’ and SN/ with i = 1,2, ... approach
one another and disappear in a sequence of cusp bifurcations.
Here we only show the cusp that involves the collision of SN’
and SNj.

When decreasing |n,|, the situation is rather different. The
MI instability, not present before, arises from SN, around
1, ~ —0.6 and separates from it when moving toward lower
values of |n,|, destabilizing the CW branch A™. Figures 6(b)
and 6(e) shows the bifurcation diagram corresponding to this
situation for n, = —0.2. As in the previous case, a branch of
LSs arises from the pitchfork bifurcation at p, and undergoes
collapsed snaking. However, in this case, the Maxwell point,
and the bifurcation diagram itself have shifted to higher values
of p. Furthermore, while in Figs. 6(a)-6(d) the solutions
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FIG. 7. Phase diagram in the (112, p)-parameter space for A; =
—2. The gray area limited by SN’ and SN/ corresponds to the
parameter region where LSs of type I exist. The red and purple lines
correspond to the Maxwell point py and the MI p., respectively.
The horizontal bifurcation lines in black and green are the pitchfork
bifurcation p, and the saddle-node bifurcation p; of the CW solution.
The inset shows a close-up view about the cusp bifurcation (C) where
SN and SN’I collide and disappear. The pointed, dashed-pointed, and
dashed vertical lines correspond to the bifurcation diagrams shown
in Fig. 6 for n, = —0.8, —0.2, and —0.05.

branches collapse rapidly to py as increasing the ||A[|?, in
Figs. 6(b)-6(e) the collapse is much slower, and hence the
solution branches of wider structures persist.

Figures 6(vii)-6(xii) show how the LSs are modified while
passing through two consecutive folds [see Fig. 6(e)]. In
Fig. 6(vii) the LS consist in a single bump. Soon after passing
SN/ the structure start to develop a central dip [see profile
(viii)] that deepens as decreasing p until reaching SN ’2 [see
Fig. 6(ix)] where it becomes stable. This process repeats: At
every SN} a new dip is nucleated from the center of the LS
which broadens as increasing ||A||? [see Figs. 6(viii)—6(xii)].

As before, the branch of LSs detaches from py, ~ 1.8079
when ||A]|? &~ 0.6 and persists until it meets with A*. Here,
however, the merging occurs not at the SN, but at the MI at
Pe & 1.4963. Indeed, close to the MI, one can show that a
weakly nonlinear periodic pattern of wavelength 27 /k. exists
and arises subcritically from p, together with a bump solution
of the form A — A" ~ asech(bx)cos(k.x + ¢), where a and b
depend on the control parameters of the system and ¢ controls
the phase of the pattern within the sech [66,67]. This structure
is plotted in Fig. 6(xviii) for n, = —0.05. These types of LSs
may undergo homoclinic snaking [68,69], although for the
range of parameters explored here, such a structure has not
been found.

The collapsed snaking structure is a consequence of the
damped oscillatory interaction between the two DWs forming
the LSs of type I (see Sec. III). To understand this phe-
nomenon, let us take a look at Fig. 4(c). At the Maxwell
point (v = 0) a number stable and unstable LSs form at the
stationary DWs separations DY. The stable (unstable) LSs in
Fig. 4(c) then correspond to a set of points on top of the
stable (unstable) branches of solutions at py, in the collapsed
snaking diagrams of Fig. 6 (see, for example, Fig. 6(f)]. As
o moves away from py, the branches of wider LSs start to

disappear in a sequence of SN bifurcations, and only narrow
LSs survive. At this point [see the red vertical line in Fig. 6(f)]
the scenario corresponds to the situation shown in Fig. 4(c)
for v = vy, where four intersections of f(D) with zero take
place. Decreasing p even further, only two intersections occur
[see Fig. 4(c) for v = v,] which correspond to the stable and
unstable single peak branches [see the orange vertical line in
Fig. 6(f)].

In this context, the SN bifurcations of the collapsed snaking
diagram take place when the extrema of f(D) become tan-
gent to zero. Indeed, the tangency observed in Fig. 4(c)
corresponds to the occurrence of SNIZ. Eventually, the last
tangency corresponding to SN’ occurs, and the single peak
LS is destroyed.

Decreasing |n2| to even lower values, the morphology of
the collapsed snaking does not change much, despite the
widening of the solution branches. As a result, the region
of existence of the LSs increases (see Fig. 7). This is the
situation shown in Figs. 6(c)-6(f) for n, = —0.05. The LSs
corresponding to this diagram are labeled (xiii)—(xviii).

The widening of the LSs solution branches when decreas-
ing |ny| is related with the modification of the oscillatory
tails of the DWs involved in the formation of the LSs. It
therefore depends directly on the spatial eigenvalues A. In-
deed, decreasing |7,], the oscillations in the tails become less
damped, and its wavelength shortens. This can be appreciated
when comparing the LSs plotted in Figs. 6(i1)—6(vi) with those
shown in Figs. 6(xiv)—6(xviii).

The limit 7, — 0 is particularly interesting. When 7, = 0
the nonlocal nonlinear term becomes A @ J = (1 — iA,)A?,
and Eq. (12) reduces to

§A = —(1 +iADA — in d2A — (1 — iAy)|APA + pA,
(45)

which is a particular version of the more general PFGL
equation with 2:1 resonance, which has been studied in detail
in Ref. [42]. We have confirmed, although not shown here,
that the same type of solutions reported in this work are also
present in model (45). Hence, the effect of 1, mainly consists
of modifying the region of existence of the type-I LSs and
eventually may imply their disappearance.

While decreasing |n,| to zero, high-order dispersion terms
may become relevant and should normally be included in
the study. The next term to be considered corresponds to the
third-order dispersion effect. This term breaks the reflection
symmetry x — —x, inducing the drift of the LSs and the
modification of the collapsed snaking as reported in Ref. [70].
Although these effects are very relevant regarding real phys-
ical systems, their study is beyond the scope of the present
work and will be examined elsewhere.

VI. BIFURCATION STRUCTURE OF TYPE-II
LOCALIZED STATES

In this section we focus on the study of type-II LSs and
its bifurcation structure. As discussed previously, these states
are formed through the locking of DWs of different polarities
connecting —A™ with A™. In contrast to the type-I states that
exist in a reduced region around the Maxwell point, type-II
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FIG. 8. Bifurcation diagram for type-II LSs at (A, ) = (=2, —0.05). In panel (a) the collapsed snaking in green correspond to the type-I
LSs [see profiles (i)—(v)] that has been added for comparison. The diagram in red correspond to the mixed structures shown in panels (vi)—(xiv)
that eventually become a type-II LS as the one shown in panel (xv). The inset shows a close-up view of the bottom part of the bifurcation
diagram including the stability of the branches, which alternates from unstable to stable between consecutive folds. In panel (b) we have
removed the type-I bifurcation diagram and added the purple diagram corresponding to transition shown in panels (xvi)—(xx).

LSs live in a broader area in parameter space including regions
IT and III,. When approaching p,; in region III the type-II
states become a hybrid state formed by two type-1 LSs related
by the symmetry A — —A. In what follows we will show
how this hybrid state also undergoes collapsed snaking. In
this work we only consider stationary type-II LSs, which
are formed through the locking of DWs of Ising type [58].
For high values of p, the DWs may undergo nonequilibrium
Ising-Bloch transitions [58], resulting in the drifting of LSs,
domain oscillations, and complex dynamics that were studied
in detail in Ref. [59].

To start we fix (A, n2) = (=2, —0.05), as in the diagram
shown in Figs. 6(c) and 6(f), and we analyze the bifurcation
structure associated with a hybrid state composed by two LSs
of type I which are related by the transformation A — —A
and separated by half of the domain size L/2. The bifurcation
structure corresponding to this type of states is shown in red in
Fig. 8(a). The bifurcation diagram in green is the same shown
in Figs. 6(c) and 6(f) and is plotted here for comparison. The
green dots correspond to the profiles labeled (i)—(v).

Close to the pitchfork bifurcation p,, solutions of the form
A(x) — A(x + L/2) exist, where A(x) is the weakly nonlinear
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solution about p, (44). This mixed state corresponds to the
profile (vi) plotted on the red curve shown in Fig. 8(a) (see
close-up view). When moving upward along the curve, each
component of this mixed state behaves as a single isolated
state, undergoing collapsed snaking. At each fold on the right
a new dip is nucleated from the center of each structure
resulting in the widening of both states. This process can be
seen in the Figs. 8(ix)—8(xi).

At this stage we can clearly identify the four DWs involved
in the formation of the two LSs [see Fig. 8(xi)], which connect
the CW solutions in the following sequence: —AT — Ay —
A+ — Ay — —A™. Increasing ||A||? further, the trivial state
Ay decreases in width [see Figs. 8(xii)—8(xiv)] and eventually
disappears. This occurs approximately at the moment that A
becomes unstable. As a result the two DWs —AT — Aj —
AT become a single DW connecting —A™* with A*, such that
a pair of type-I LSs transforms into the single type-II state [see
Fig. 8(xv)]. This type-II state persists for higher values of p
and extends to region II. The linear stability of these structure
is shown in the close-up view of Fig. 8(a).

We have verified that LSs of type II with different initial
widths undergo a similar type of bifurcation structure. To
illustrate this behavior let us consider a single bump state,
initially in region II, as the one plotted in Fig. 8(xvi). When
modifying both p and |[|A||?> this structure is described by
the bifurcation diagram plotted in purple in Fig. 8(b), where
we also plotted the bifurcation structure corresponding to the
states (vi)—(xv) for comparison (red diagram).

When decreasing p, the LS [Fig. 8(xvi)] enters region III,
where Ay is stable. Soon after that a plateau is created around
Ay whose extension increases when approaching py [see
Fig. 8(xvii) and Fig. 8(xviii)]. At this stage one can clearly
identify two DWs connecting —A™* with Ag and vice versa,
and the single bump type-II LSs becomes a pair of type-I LSs
consisting in a bright bump sitting on Ay at the central position
and a dark wide LSs centered at distance L/2 from the former
one. Proceeding down in the diagram the wider structure un-
dergoes collapsed snaking, losing one dip at each crossing of
the SN [see Figs. 8(xviii)-8(xx)], until it becomes just a dark
single bump. This hybrid state finally collides with the red
bifurcation diagram at SNi in a symmetry-breaking pitchfork
bifurcation. Indeed, at every SN/ other pitchfork bifurcations
occur from where branches of mixed states solutions emanates
and undergo similar bifurcation structure, until becoming a
type-II LS.

We have confirmed that for higher values of |;| the bifur-
cation structure becomes much more complex, and therefore
the numerical continuation of the LSs is more cumbersome.
Despite this complexity, the connection between type-I and
type-1I LSs persists and is qualitatively equivalent to the one
shown in Fig. 8.

VII. LOCALIZED STRUCTURES IN THE
(Ay, p)-PARAMETER SPACE

In previous sections we have fixed A; = —2 and studied
how the different types of LSs and their bifurcation structures
are modified when changing 7,. However, in experiments, 1,
is normally fixed when choosing the frequency of the input
pump field, and A; becomes one of the most relevant control

-20 0 20 =20 0 20

FIG. 9. Phase diagram in the (A, p)-parameter space for 7, =
—0.4. The gray area between SN} and SN/, corresponds to the region
where LSs of type I exist. The pitchfork p, and saddle-node p,
bifurcations of the CW solutions are plotted in black and green solid
lines, respectively. The MI is the purple line labeled p., and the
Maxwell point of the system py, is the red solid line. The inset shows
a close-up of the phase diagram around the cusp bifurcation C. The
labels (i) to (ii) and (iii) to (iv) correspond to the LSs shown in the
panels below for A} = —2 and A, = —6, respectively.

parameters of the system. Because of that, we study the effect
that the modification of A causes in the previously presented
scenario when 1, is fixed to n, = —0.4.

Figure 9 shows the phase diagram in the (A, p)-parameter
space. Here, together with the pitchfork p, and saddle-node
p, bifurcation lines, we have added the lines corresponding
to SN 11 and SN (blue curves), the Maxwell point oy, and the
MI p,. corresponding to the chosen value 17, = —0.4. The gray
area between SN} and SN/ corresponds to the region where
type-I DWs can lock and form LSs.

When decreasing the absolute value of the A;, SN!, and
SN/ approach one another and the gray region shrinks until it
eventually disappears. SN} and SN’ collide at the Maxwell
point and disappear in a cusp bifurcation C. The Maxwell
point then persists until A; = 1/+/2 where the SN; collides
with Ay at p,.

In contrast, increasing | A | the region of existence widens,
and as a result it is easier to find LSs. We find that LSs undergo
the same type of collapsed snaking bifurcation diagram while
modifying A, which shows that these type of solutions and
their bifurcation structure are robust. Figures 9(i)-9(iv) show
the LSs corresponding to two fixed values of A: Figures 9(i)
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FIG. 10. Real and imaginary parts of of A and B for two different
types of LSs of type I. Panels (i)—(iii) show the signal field A, and
panels (ii)—(iv) the correspondent pump field B. Here (Ay, ;) =
(=6, —-0.4).

and 9(ii) correspond to A} = —2, and Figs. 9(iii) and 9(iv) to
A = —6 (see the dots on the vertical dashed lines in Fig. 9).

In the limit of large A, the mean-field model (1) reduces
to a single PFGL equation with pure Kerr nonlinearity that
supports analytical sech solutions of high amplitude [21].
Those solutions would correspond in our work to the single
bump type-I LS shown in Fig. 9(iii) for a large-enough A;.
However, no analytical solution has been found for the wider
LS [see Fig. 9(iv)].

Type-II LSs exist in region II and region I1I;, for values of p
above pyr. However, for high values of |A;| their bifurcation
diagram can eventually become more complex.

VIII. DISCUSSION

In this article we have presented a detailed and comprehen-
sive analysis of the bifurcation structure and stability of LSs
formed through locking of domain walls in y®-dispersive
cavities in the absence of walk-off. To do so we have con-
sidered a degenerate optical parametric oscillator in a doubly
resonant configuration, and we have focused on the subcritical
regime with normal GVD.

To perform this analysis we have derived a PFGL type of
equation with a nonlocal nonlinearity [see Eq. (2)], which we
have verified to reproduce the same results as the full mean-
field model (1) (Sec. IT). In the PFGL context the pump field
B is dynamically slaved to A [see Eq. (7)], and therefore it is
characterized by the latter.

In regions II and III,, the system is bistable and two
types of DWs exist, forming connections between different
CW solutions: (i) Ag — AT and (i) — AT — A*. We refer
to these DWs as type I and type II. In the presence of
oscillatory tails, two DWs with different polarities can lock,
forming LSs of different widths. We refer to these LSs as
types I and II, depending on the type of DW involved in
their formation. We have shown that LSs of type I undergo
collapsed snaking [62—64]. Here “collapsed” refers to the
fact that the region of existence of LSs shrinks exponentially
as the width of the LS increases. Wider structures can only
be found around the Maxwell point, and the observation of
LSs with a single bump is favored. Two examples of such
type-I LSs are plotted in Fig. 10 for (A, 1) = (—6, —0.4)

using the variables A and B: Figure 10(i) shows the real and
imaginary part of A for a single bump LS, and in Fig. 10(ii) the
slaved field B is plotted using the relation (7). Figures 10(iii)
and 10(iv) represent the pump and signal fields corresponding
to a wide structure.

The collapsed snaking emerges from the pitchfork bifurca-
tion on Ay, and it connects back to the nontrivial CW state A™,
either at the saddle-node SN, or at the MI, depending on the
control parameters of the system. Applying multiscale pertur-
bation methods, we have been able to calculate an analytical
sech pulselike solution close to the pitchfork bifurcation at p,,.

We have studied how the LSs and their associated bifurca-
tion structure are modified when the group velocity dispersion
1, changes. For doing so we fixed A; = —2 and calculated the
phase diagram in the (1,, p)-parameter space shown in Fig. 7.
The phase diagram shows that when increasing |1;| the type-I
LSs disappear, while type-II LSs persist in regions II and III,
well above the Maxwell point. In contrast, decreasing |1, |, the
region of existence of type-I LSs increases, and many more
type-1 LSs can be found.

When 7, — 0, the nonlocal nonlinear model (2) reduces to
Eq. (45), which is a simpler case of the more general PFGL
equation [42]. We have confirmed that the LSs presented in
this work persist in such a limit and undergo a similar type of
bifurcation structure. A complete understanding of this PFGL
system [Eq. (45)] is of great interest, and a detailed study
of this model will be presented elsewhere. From a physical
perspective the previous limit must be considered carefully
since when |n;| becomes very small, high-order dispersion
effects may play an essential role and should be taken into
account.

In addition to the type-I LSs, a large variety of type-II
LSs also formed through locking of DWs connecting the
equivalent states —A™1 with AT, These states exist for a wider
range of parameters in region II and III, and may undergo
nonequilibrium Ising-Bloch transitions [58], resulting in com-
plex dynamics [59]. We have shown that in region III,, every
type-II LS becomes a hybrid state composed of two type-I
LSs related by the symmetry A — —A and are separated by
L/2. Moreover, each of these states independently undergoes
collapsed snaking around the Maxwell point, which is also the
bifurcation structure characterizing its components.

Finally, in Sec. VII, we have shown that type-I and type-
IT LSs persist for different values of A; and that they are
described by the same kind of bifurcation structure.

IX. CONCLUSION

The analysis presented in this paper provides a detailed
study of the bifurcation structure and stability of the LSs
arising in doubly resonant optical parametric oscillators in the
absence of temporal walk-off. A potential physical realizable
configuration for which the walk-off vanishes is described in
Ref. [35].

The type of states studied here arise through the locking of
DWs formed between two continuous-wave states that coexist
in the same parameter range, i.e., in the presence of bistability.
The oscillatory damped nature of the DW interaction deter-
mines a particular bifurcation structure known as collapsed
snaking, which is generic and appears in a large number of
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systems in different contexts [42,62—64]. In contrast to the
type-II LSs, which have been analyzed in detail in quadratic
cavities [22,23], as far as we know, the type-I LSs presented
here have not been reported elsewhere.

To perform this analysis we have derived a nonlinear
nonlocal model (2) similar to those derived for quadratic
nonlinear cavities [31,32,34]. The results found here can be
extended to singly resonant cavities, where the model is
formally equivalent to (2), albeit with a different nonlocal
response [34].

A natural extension of this work must include the effect of
the temporal walk-off, which breaks the x — —x symmetry
inducing asymmetry and drift. We expect that for weak walk-
off the collapsed snaking is modified in the same fashion as
in the context of Kerr cavities in the presence of third-order
dispersion [70].

Quadratic dispersive cavities have gained a lot interest in
the past few years as an alternative to Kerr cavities for the
generation of optical frequency combs [31-35]. Therefore,
these results present a series of wave-forms whose frequency
spectrum could be of interest for applications.
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APPENDIX A: DERIVATION OF THE PARAMETRICALLY
FORCED GINZBURG-LANDAU EQUATION WITH
NONLINEAR NONLOCAL COUPLING

In this Appendix we derive Eq. (2) from the mean-field
model (1). To do so we apply the same procedure as in
Refs. [32,41]. This approach assumes the adiabatic elimina-
tion of the pump field B in Eq. (1b), i.e., B varies slowly with
t, at least at a timescale slower than the A field. Hence, one
can assume that 9,8 = 0 and thus Eq. (1b) reduces to

—(a+iAy+dd +ind})B+iA>+S=0.  (Al)
Defining the direct and inverse Fourier transforms
Pl = [ ermdr=iw @)
and
~ 1 L
FUFR)x) = Zf e fldk = f(x),  (A3)
one gets from Eq. (A1)
FIB] = iF[J1F[A*] + FIJ1FS] (Ad)
with
1
FlIK)] = (A5)

o +i(Ay + kd — nok?)’

Applying the inverse Fourier transform, Eq. (A4) then be-
comes

B(x) = iF'[FUJ) - FAHI+ F'[FU)-F©S). (A6)

Due to the convolution theorem, the first term on the right-
hand side of Eq. (A6) becomes

FUFWD - FAH] = / ” JODA (x — XNdx' =T @ A2,
- (A7)

where J(x) is the kernel defining a long-range nonlocal cou-
pling in x, and ® stands for the convolution operation.
With the definition of Dirac distribution

| Rl
8(k) = — e™dx,
27 J_

o]

(A3)
and taking A=A, /o, the second term on the right-hand side
of Eq. (A6) yields

FUF)-FS)] =2rSF'[FWJ)-8(k)] = SFLJ(0)]
S

— eiatan(—ﬁz). (A9)
a1+ A3
Thus the pump field finally reads
B(x) = iJ ® A2 + peian(=A2), (A10)
where we have defined
S
p=—— (All)

(X\/1+A2'

Inserting (A10) into Eq. (1a), the latter becomes in a PFGL
type of equation with a nonlinear nonlocal long-range interac-
tion term:

dA = —(1+iADA — ind°A — A(J ® A?) + pAe*,

(A12)
with
¥ =7 /4 +atan(—A,)/2. (A13)
Rescaling the A field as
A=AV [a(l+ A3) (Al4)

Eq. (A12) then becomes
§A = —(1+iA)DA —in3’A —AA’ ® J) + pA. (Al5)

With this normalization the long-range interaction kernel
becomes

(A16)

1+ A /00 e " dx

oo L+ i(Ag + yk — 72k?)’
with y = d /o and 7, = n/a. The real and imaginary parts
of this kernel are

1+ A2 ek
Jr(x) = = — , (A1)

2 Joso 14+ (Ay + vk — 2k?)?

1 A2 00 A k — 7 k2 7ikxd
Ji) = 182 f G L L INTS

2 Jooo 14+ (Ay+ vk — 2k?)?

With this normalization the B field becomes

B = (—A?®J + p)etan=22) (A19)

In this work we consider y =0, and therefore (A17)
and (A18) are symmetric under the transformation x — —x.
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The square root factor in Eq. (A14) has been introduced for
convenience in order to obtain the standard form of the PFGL
Eq. (45) in the limit y, 7, — 0.

APPENDIX B: WEAKLY NONLINEAR ANALYSIS
AROUND THE PITCHFORK BIFURCATION

In this Appendix we show how to obtain the stationary
amplitude equation (38) around p, starting from the equation
at order €3 in the perturbation expansion, namely:

co[’“} = (L) +N2>[ﬁj]. (B1)

U3

To solve this equation we have first to deal with the nonlinear
nonlocal operator

N =N, = _[sz _NAZ[;;] (B2)

with
M= ®@Jg—1>Q@Jg —2uv; ®J;,  (B3a)
N =2 ®@J -’ ®J;+2ujv; ® Jg,  (B3b)

where the solution of the problem at O(¢) reads

[Zj] - ﬁ]a(xl), (B4)

with & = Ay/(1 — p,) and a(x;) a real function.

At this point we have to evaluate the convolution terms, and
we follow the procedure described in Refs. [60,71]. In order to
perform this calculation we consider that all the terms posed
on the long length scale x| are assumed to be almost constant
over the region where the kernel J is large, what is equivalent
to consider for a very narrow kernel [45]. This makes sense
when one assumes that the amplitude a of the envelope is
smooth, and the kernel decays much more rapidly than the
envelope.

With these considerations we obtain:

@ Jg =/ w2 (¢ Wr(x — x)dx’

o0

= g2 /00 a(x))*Jg(x — x')dx’

~ £a(x;)? /Oo Jr(x — x)dx’'

= £2a(x)) > F ' (2n 8 (k) F[IR1(K))
= £2a(x; )’ FIIr0) = £2a(x) ),

o @ J; = / (Y0 (W (¢ — XN’

[ee]

~ Ea(x)? / Ji(x — x)dx’
= §a(n P FII10) = =€ Asa(n ),
and with the same approach

v ® Jg & a(x))> F[JRI(0) = a(x)?,
Ui @ Jy & —Asg’aln ),
v ®Jr & —Asra(x ),
vy ® Jp ~ Ealx)’.
Thus, the components of the nonlinear operator (B2) be-
come
N# = (82 4+ 26 A5 — Da(x, ),
NY = (=880 + 26 + Ap)alxy)’.

(B7a)
(B7b)

The amplitude equation about p, is then obtained from the
solvability condition

w’ cz[ﬂ +w’ Nz[ﬁj = [g], (B8)

where w” = [—&, 1], such that ng =0.
The evaluation of the first term yields

w’ L [Z‘i] = 88"+ Da—26mda,  (BY)
while the second one gives

w’ Nz[ } = (% + )(E* +2A26 — Da(x)’.  (B10)

uj
V1
After arranging these terms and simplifying them one gets the
stationary amplitude equation (38) for p,.
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