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Model framework for emergence of synchronized oscillations
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Autonomy is an important concept when investigating the mechanism whereby biological systems exhibit
flexibility against unpredictable environmental changes. Herein we propose a parameter-tuning algorithm, based
on a selection principle, that allows the emergence of synchronization between populations of oscillators through
autonomous changes of the intrinsic parameters. With the algorithm, the populations exhibit self-recovery of
the synchronized state after the existing synchronized state is broken suddenly; that is, the system chooses
appropriate values of the intrinsic parameters to recover the synchronized state. We also propose a continuous
model in which the selection is described by the replicator model and the parameter values are determined by
the density profile of the oscillators in parameter space.
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I. INTRODUCTION

Elucidating the mechanism for adaptability in biological
systems is an important problem in biological sciences. Al-
though biological systems comprise many elements (e.g., cells
and organs), the behaviors of the elements are well organized
beyond the hierarchy of scale to adapt to environmental
changes.

Modeling studies have been conducted to clarify the mech-
anism for adaptability. When constructing models based on
differential equations, one approach is to assume that the sys-
tem has multiple attractors and that adaptive behavior arises
from switching among those attractors; a typical example of
this approach is the Hopfield model [1]. Another approach is
to assume that the system changes the values of its intrinsic
parameters appropriately according to environmental changes.
In that approach, the system has a parameter-tuning system
that receives information from the environment and outputs
appropriate parameter values to recover the system’s perfor-
mance. In the present study, we propose a model framework
for a parameter-tuning system based on the latter modeling
approach, in which the following difficulty arises frequently.
If the external parameter-tuning system depends on variables
derived from the environment, then the system cannot give
appropriate outputs when it encounters an unknown envi-
ronment. Consequently, so that the system can adapt to an
unknown environment, the parameter-tuning algorithm should
be independent of any and all environmental variables. Herein
we consider the simple question of whether it is possible to
construct a parameter-tuning algorithm that is independent of
external systems. Theoretical study of this simple question
should motivate new experimental studies involving biolog-
ical evolution and contribute to elucidating the mathematical
mechanism for how biological systems change their intrinsic
dynamics through the evolution process to adapt to environ-
mental changes.

In this paper, we investigate an autonomous parameter-
tuning system that stabilizes synchronized oscillations.
To describe our motivation, we introduce the coupled

oscillator system

u̇1 = μu1 − ωv1 − (
u2

1 + v2
1

)
u1 + η1u2,

v̇1 = ωu1 + μv1 − (
u2

1 + v2
1

)
v1 + η1v2,

(1)
u̇2 = μu2 − ωv2 − (

u2
2 + v2

2

)
u2 + η2u1,

v̇2 = ωu2 + μv2 − (
u2

2 + v2
2

)
v2 + η2v1,

where μ,ω ∈ R and the overdot denotes the derivative with
respect to time t . We refer to the (u1, v1) equations and the
(u2, v2) equations as systems 1 and 2, respectively. By means
of the coordinate changes uk = rk cos θk and vk = rk sin θk ,
Eq. (1) becomes

ṙ1 = μr1 − r3
1 + η1r2 cos(θ2 − θ1),

θ̇1 = ω + η1
r2

r1
sin(θ2 − θ1),

(2)
ṙ2 = μr2 − r3

2 + η2r1 cos(θ1 − θ2),

θ̇2 = ω + η2
r1

r2
sin(θ1 − θ2).

Thus, by taking φ := θ1 − θ2 we have

φ̇ = −
(

r2

r1
η1 + r1

r2
η2

)
sin φ.

We find that limt→∞ φ → 0 when η1 > 0 and η2 > 0 and
that limt→∞ φ → ±π when η1 < 0 and η2 < 0. In addition,
limt→∞ rk = √

ηk + μ if ηk + μ > 0 (k = 1, 2). These calcu-
lations indicate that phase-synchronized oscillation between
systems 1 and 2 occurs when the signs of η1 and η2 are
the same; we have in-phase (antiphase) oscillation for ηk >

0 (ηk < 0) when ηk + μ > 0 (k = 1, 2). When η2 is fixed,
we consider the following two questions: (i) What should
the dynamics of η1 be such that systems 1 and 2 exhibit
synchronized oscillations and (ii) when the sign of η2 is
changed abruptly, how does system 1 sense that change and
change the sign of η1 to generate synchronized oscillations?
These questions are easy to answer if system 1 can observe
system 2 and knows the value of η2. For example, a possible
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answer is

η̇1 = η2 − η1.

In addition, if system 1 can observe the phase of system 2
or (u2, v2) online, then questions (i) and (ii) are answered. In
fact, model equations involving the time evolution of the con-
nectivity between the oscillators have been proposed previ-
ously [2–7]; in those studies, the time evolution was described
as a function of the phase difference between the oscillators.
Furthermore, the self-organization of characteristic network
structures (including scale-free networks) through coevolu-
tion of the network structure and dynamical features has been
investigated [8,9]. Most of the models in such studies assume
that the connection (edge) weight dynamics are determined
by two oscillators connected to the edge. Algorithms for
controlling the synchronization of chaotic oscillators [10–12]
and control methods for synchronized oscillatory patterns
[13,14] have been investigated. However, because the purpose
of this study is to derive a parameter-tuning system that can
be described without using variables of the external systems,
such previous model frameworks are not applicable here.

Improving system adaptability is an important issue in
not only biological systems but also engineering. For in-
stance, when a robot encounters an unpredicted environmental
change, the system must find appropriate parameter values
to achieve systemwide functionality. Automatic parameter
control inspired by self-organized dynamics has been applied
to robotics. The advantage of using a dynamical system is that
the system can change an attractor flexibly according to the
external perturbation or environmental change. Examples of
this include bipedal locomotion in an unpredictable environ-
ment [15] and frequency control using resonance [16,17]. In
the present study, we show that (i) synchronized oscillations
appear spontaneously as a result of self-organized dynamics
and (ii) our proposed model concept can also be applied to
an automatic parameter-tuning algorithm for a locomotion
system.

II. SIMPLE MODEL

Herein we consider hierarchical coupled oscillator sys-
tems, the framework of which has been investigated for sev-
eral decades in biological sciences, including neural networks
and cell-cell interactions [18,19]. In particular, we investigate
interactions between populations of oscillators (Fig. 1). We
refer to the kth population as Pk . The model has the following
properties: (i) The populations are coupled by a mean-field
interaction; (ii) each oscillator in the population possesses
parameters whose values are updated by a parameter-tuning
algorithm; (iii) the algorithm used in (ii) for Pk involves only
variables of the oscillators belonging to Pk .

Note that the algorithm to control the parameter values of
the oscillators in Pk is formulated using only the variables of
those oscillators and none corresponding to the other popula-
tions; that is, the algorithm uses only local variables.

We begin by proposing a simple model for the parameter-
tuning algorithm; then we propose a continuous version of the
simple model. For both models, we use an algorithm based
on a selection principle. For this we define an order parameter
and propose a selection algorithm.

FIG. 1. Framework of the two-population model. Each popula-
tion contains oscillator elements. Selection occurs through the com-
petition between elements. Populations P1 and P2 interact through a
mean field.

A. Simple model: Single parameter

1. Population dynamics

The dynamics of oscillator j in population k (Pk) are
described by

u̇( j)
k = F(u( j)

k ; ω) + C
K∑

l=1,l �=k

η
( j)
lk U l + Uptb

k + AW k (t ),

U k = t (ūk, v̄k ), (3)

ūk = 1

J

J∑
j=1

u( j)
k , v̄k = 1

J

J∑
j=1

v
( j)
k ,

where t ∈ (0, T ], u( j)
k = t (u( j)

k , v
( j)
k ), k = 1, 2, . . . , K , and

j = 1, 2, . . . , J . Here J is the number of oscillators in
Pk , C and A are positive constants, ω is the angu-
lar frequency, and Uptb

k represents external perturbations.
We add a noise W k = t (W u

k ,W v
k ), where W ∗

k (∗ = u, v)
is Gaussian noise with zero mean and unit variance.
We use a typical oscillator model, namely, F(u( j)

k ; ω) :=
t ( f (u( j)

k , v
( j)
k ; ω), g(u( j)

k , v
( j)
k ; ω)), where f (u, v; ω) := μu −

ωv − (u2 + v2)u and g(u, v; ω) := ωu + μv − (u2 + v2)v.
The parameter η

( j)
lk determines the sign and strength of the

signal from Pl to Pk , which are taken as time-dependent
variables unless stated otherwise.

2. Order parameter

Because our algorithm is based on selection of elements,
we define an order parameter to evaluate an element’s state,
and selection occurs according to the rank of the order
parameter. We use a simple order parameter, namely, the
time average of the amplitude of the oscillators, to evaluate
the goodness of the parameter values. We suppose that the
order parameter is updated every period τ . That is, the order
parameter of element j in population k for t ∈ [(m − 1)τ, mτ ]
(m = 1, 2, . . . ) is defined by

S( j)
k (m) = 1

τ

∫ mτ

(m−1)τ

√(
u( j)

k

)2 + (
v

( j)
k

)2
dt, (4)

where τ is the updating period.
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FIG. 2. Schematic of the function H .

3. Selection

The dynamics of the parameters are described by differ-
ential equations. We introduce our algorithm for η

( j)
lk as an

example, but it is the same for the other parameters. We
assume that the parameter values vary (i) as a random walk
and (ii) because of the selection algorithm. The random-walk
process is described by

η̇
( j)
lk = H

(
η

( j)
lk ; ηmin, ηmax

) + AηW (t ),

H (η; ηmin, ηmax) = (ηmin − η)+ − (η − ηmax)+, (5)

(x)+ =
{

x if x > 0
0 otherwise,

where Aη is a positive constant and W is Gaussian noise with
zero mean and unit variance. We introduce the first term on
the right-hand side to prevent the parameters from diverging
in practice (Fig. 2). The parameters ηmin and ηmax determine
the boundaries of η

( j)
lk .

For the selection process, we assume simply that the pa-
rameter values in the same population are replaced at t = mτ

(m = 1, 2, . . . ) by those of the best element. That is,

η
( j)
lk (mτ ) = η

( j∗k )
lk (mτ ), (6)

where j = 1, 2, . . . , J , l ∈ {1, 2, . . . , K}\{k}, and j∗k =
arg max j S( j)

k (m).

4. Loop network structure

In the present study, the selection algorithm is described by
the variables belonging to the corresponding population and
is independent of the variables of the other populations. This
means that evaluating the goodness of the parameter values
requires feedback from the other populations. Therefore, we
suppose that the interaction network among populations has a
loop structure.

5. Parameters

We take values of the parameters μ, ηmin, and ηmax such
that each oscillator (i) exhibits large-amplitude oscillation
when synchronization occurs between the populations and
(ii) converges to a stationary state when synchronization does
not occur: μ = −1.0 × 10−4, ηmin = −1, and ηmax = 1. The
parameter τ is set to 100. Because we take values of ω

between 1.0 and 2.0, those of τ range from approximately
16 to 32 times the oscillator period. Once all the oscillators
have approached the stationary state (or U l = 0), no further
oscillatory motion appears because μ < 0. By taking A > 0,
it is observed that the oscillatory motion recovers after all the

oscillators have approached the stationary state. Thus, we take
A = 0.004.

B. Results: Single parameter

We consider a two-population model (K = 2) and vary
η

( j)
lk in Eq. (3) according to the algorithm given by Eqs. (5)

and (6). As a numerical scheme, the explicit Euler-Maruyama
method is used. For notational convenience, we define
η

( j)
1 := η

( j)
21 and η

( j)
2 := η

( j)
12 ( j = 1, . . . , J). From analysis

of Eq. (2), each oscillator exhibits large-amplitude in-phase
and antiphase synchronization when (η( j)

1 , η
( j)
2 ) = (+1,+1)

[=(ηmax, ηmax)] and (η( j)
1 , η

( j)
2 ) = (−1,−1) [=(ηmin, ηmin)],

respectively, for all j. Because the phase differences among
the oscillators in the same population tend to vanish, two types
of synchronization occur simultaneously, namely, intrapop-
ulation synchronization and interpopulation synchronization.
Specifically, intragroup synchronization occurs if and only if
intergroup synchronization occurs.

To examine the performance of the algorithm, we investi-
gate the following two cases. In case 1, the dynamics of η

( j)
1

are described by Eqs. (5) and (6) whereas those of η
( j)
2 are

fixed at +1 or −1. In case 2, the dynamics of η
( j)
1 and η

( j)
2 are

described by Eqs. (5) and (6). In case 1, we also confirm that
our algorithm exhibits self-recovery of synchronization when
the sign of η

( j)
2 is changed suddenly. In case 2, we confirm that

the parameters η
( j)
k vary such that excitatory-excitatory (EE)

or inhibitory-inhibitory (II) interaction occurs spontaneously.
In addition, we confirm that transitions between EE and II
interaction occur when external perturbations are applied.
More precisely, we confirm that η

( j)
k switches from +1 (−1)

to −1 (+1) when P1 and P2 are forced to switch from in-phase
(antiphase) to antiphase (in-phase) synchronization.

1. Case 1

We take η
( j)
2 ≡ +1 for t � T/2 and η

( j)
2 ≡ −1 for t > T/2

for all j. We expect η( j)
1 (i) to approach +1 for t � T/2 and for

there to be EE interactions between the populations and (ii) to
approach −1 for t > T/2 and for there to be II interactions be-
tween the populations. Figure 3(a) shows the time sequences
of η̄1 and η̄2, where η̄k := ∑

j η
( j)
k /J . The sign of η̄1 changed

from positive to negative around t = T/2, thereby indicating
that the algorithm chose the sign of η

( j)
1 successfully and that

there were stable synchronized oscillations between P1 and P2.

2. Case 2

Next we consider the case in which the dynamics of η
( j)
1

and η
( j)
2 are governed by the algorithm [Eqs. (5) and (6)]. We

consider the following questions.
(i) Does the system exhibit autonomous in-phase or an-

tiphase synchronization through the mean-field interactions
between P1 and P2?

(ii) Do the signs of η
( j)
1 and η

( j)
2 change autonomously

from EE to II interaction or from II to EE interaction when
the oscillator phase difference between P1 and P2 is forcibly
changed?

032218-3



KEI-ICHI UEDA PHYSICAL REVIEW E 100, 032218 (2019)

t

t

(a)

(b)

1

-1

0

30

1

-1

0

30

FIG. 3. Black and gray lines indicate time sequences of η̄1 and
η̄2, respectively. Perturbations are applied at the times indicated
by the closed black triangles: (a) t = T/2 and (b) t = t1, t2. We
set T = 3.0 × 105, J = 20, ω = 1.0, C = 0.05, Aη = 0.01, and τ =
100. (a) η

( j)
2 is changed from +1 to −1 at t = T/2. (b) External

perturbation given by Eq. (7) is applied.

For question (ii), we expect the signs of η
( j)
1 and η

( j)
2 to

become positive (negative) when in-phase (antiphase) syn-
chronization occurs between P1 and P2. It is well known
that the sign of η

( j)
k determines the phase difference between

P1 and P2. However, question (ii) asks whether the phase
difference between P1 and P2 can change the sign of η

( j)
k .

To control the phase difference between in-phase and an-
tiphase synchronizations, we add to the system the perturba-
tions

Uptb
k =

⎧⎨
⎩

t (10 sin(ω′t − θk ), 0) if t ∈ [t1, t1 + tδ]
t (10 sin(ω′t − θ ′

k ), 0) if t ∈ [t2, t2 + tδ]
t (0, 0) otherwise,

(7)

where we set t1 = T/3, t2 = 2T/3, tδ = 1.0 × 104, ω′ = 2,
(θ1, θ2) = (0, π ), and (θ ′

1, θ
′
2) = (0, 0). Because of Eq. (7),

antiphase and in-phase synchronizations are induced for t ∈
[t1, t1 + tδ] and t ∈ [t2, t2 + tδ], respectively.

Figure 3(b) shows that the signs of η
( j)
1 and η

( j)
2 change

from positive to negative around t = t1 and from negative
to positive around t = t2. Consequently, the system exhibits
stable antiphase and in-phase synchronizations for t ∈ [t1 +
tδ, t2] and t ∈ [t2 + tδ, T ], respectively. This indicates that the
algorithm changes the parameters flexibly according to the
phase difference between P1 and P2.

3. Four populations: Application to a central pattern
generator system

The algorithm can be applied to systems involving multiple
populations, a typical example being a central pattern gen-
erator of animal gait patterns. The mathematical mechanism
for the gait transition in response to perturbations has been in-
vestigated (e.g., [20]). Here we investigate case 2 as discussed
in the two-population model. That is, we consider whether the
algorithm can control the sign of η

( j)
lk according to the phase

difference between populations for a four-population sys-
tem shown in Fig. 4(a); we set η

( j)
13 = η

( j)
31 = η

( j)
24 = η

( j)
42 ≡ 0

for all j.

1 21 4

2 3

1 21 4

2 3

1 21 4

2 3

(b)(a)

t

t

t

t

1

-1
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1

-1

0
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1

-1

0

60

1

-1

0

60

FIG. 4. (a) Phase differences of populations 1–4 for t < t1 (top),
t ∈ (t1 + tδ, t2) (middle), and t > t2 + tδ (bottom). Arrows indicate
interaction networks with ηlk �≡ 0. (b) Time sequences of η̄lk . The
parameters are set to T = 6.0 × 104, J = 20, ω = 1.0, C = 0.05,
Aη = 0.01, and τ = 100.

We show that the population can undergo a transition by
adding the external perturbation

Uptb
k =

⎧⎨
⎩

t (0.5 sin(ω′t − θk ), 0) if t ∈ [t1, t1 + tδ]
t (0.5 sin(ω′t − θ ′

k ), 0) if t ∈ [t2, t2 + tδ]
t (0, 0) otherwise,

where t1 = T/3, t2 = 2T/3, tδ = 1000, ω′ = 2,
(θ1, θ2, θ3, θ4) = (0, π, 0, π ), and (θ ′

1, θ
′
2, θ

′
3, θ

′
4) =

(0, π, π, 0). We expect the signs of (η12, η23, η34, η41)
[(η21, η32, η43, η14)] to switch to (−,−,−,−) and
(−,+,−,+) around t = t1 and t2, respectively. Similar
to the results in Fig. 3(b), the sign of η̄lk changes according
to the oscillator phase difference, where η̄lk := ∑

j η
( j)
lk /J . In

fact, as shown in Fig. 4(b), P1-P3 and P2-P4 exhibit in-phase
synchronization and P1-P2 and P3-P4 exhibit antiphase
synchronization for t ∈ [t1 + tδ, t2], and P1-P4 and P2-P3

exhibit in-phase synchronization and P1-P2 and P3-P4 exhibit
anti-phase synchronization for t ∈ [t2 + tδ, T ]. This means
that the parameter values are selected appropriately, as was
observed in the two-population model.

C. Simple model: Multiple parameters

The algorithm can be used to control multiple parameters.
In addition to η

( j)
lk , we take ω in Eq. (3) as a control parameter.

That is, we consider the following equation:

u̇( j)
k = F

(
u( j)

k ; ω( j)
k

) + C
K∑

l=1,l �=k

η
( j)
lk U l + AW (t ). (8)
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We consider a two-population model (K = 2) and we define
η

( j)
1 := η

( j)
21 and η

( j)
2 := η

( j)
12 ( j = 1, . . . , J). Similar to Eq. (5),

the time evolution of η
( j)
k and that of ω

( j)
k are described by

η̇
( j)
k = H

(
η

( j)
k ; ηmin, ηmax

) + AηW (t ),

ω̇
( j)
k = H

(
ω

( j)
k ; ωmin, ωmax

) + AωW (t ), (9)

where we take ηmin = −1.0, ηmax = 1.0, ωmin = 1.0, and
ωmax = 2.0. The algorithm for selecting η

( j)
k and ω

( j)
k is given

by

η
( j)
k (mτ ) = η

( j∗k )
k (mτ ),

ω
( j)
k (mτ ) = ω

( j∗k )
k (mτ ), (10)

where j = 1, 2, . . . , J; k = 1, 2; m = 1, 2, . . . ; and j∗k =
arg max jS

( j)
k (m).

D. Results: Multiple parameters

We investigate two cases. In case 1, the dynamics of η
( j)
1

and ω
( j)
1 are described by Eqs. (9) and (10) while η

( j)
2 and

ω
( j)
2 are taken as the constants η∗

2 and ω∗
2, respectively. As a

perturbation, we change η∗
2 and ω∗

2 from +1 to −1 and from
1.3 to 1.7, respectively, at t = T/2. In case 2, the dynamics of
η

( j)
1 , η

( j)
2 , ω

( j)
1 , and ω

( j)
2 are described by Eqs. (9) and (10). As

a perturbation, we apply Eq. (7).
In case 1, we expect η

( j)
1 and ω

( j)
1 to approach η∗

2 and ω∗
2,

respectively. Figure 5(a) shows that η̄1 and ω̄1 successfully
approach η∗

2 = 1.0 and ω∗
2 = 1.3, respectively. In case 2, we

observe that η
( j)
1 and ω

( j)
1 have almost the same values as η∗

2
and ω∗

2, respectively. Note that because the amplitude of the
oscillation in Eq. (1) is independent of ω when (η1, η2) =
(+1,+1) or (η1, η2) = (−1,−1), the order parameter S( j)

k

is independent of ω
( j)
k (t ) if all of ω

( j)
1 (t ) and ω

( j)
2 (t ) ( j =

1, 2, . . . , J) have the same values for all t . Because of
this property of translation invariance, the time sequences
of ω̄1 and ω̄2 fluctuate. However, their values remain ap-
proximately the same for the entire time, which implies
that the system successfully chooses the optimal parameter
values.

E. Self-recovery mechanism and parameter dependence

The autonomous parameter tuning after the perturbations
(sudden parameter changes and external forces) of the two-
population system is completed through the following four
steps: (i) From the perturbations, both |U1| and |U2| decrease
because of the inharmonic oscillations; (ii) S( j)

k decreases
for all j and k; (iii) the distribution of parameters in each
population becomes larger, thereby increasing the flexibility
regarding the choice of parameter values; (iv) the optimal
parameter is selected from the various options.

We use loop interaction networks because processes (i)
and (ii) are driven by the mutual interaction between P1

and P2. Desynchronization of P1 decreases the degree of
synchronization of P2 and vice versa. This indicates that the
desynchronization of oscillators in each population is impor-
tant for the self-recovery property. We therefore add noise
to the oscillators such that intrapopulation desynchronization

t

t

t

t
(a)

(b)

1

-1

0

30

2

1
30

1

-1

0

30

2

1
30

FIG. 5. Solid black lines indicate the time sequences of η̄1 and
ω̄1 and dashed gray lines indicate the time sequences of η̄2 and ω̄2.
Triangles indicate the beginning of the perturbations: (a) t = T/2
and (b) t = t1 and t2. The parameters are set to T = 3.0 × 105, J =
20, ω = 1.0, C = 0.2, Aη = 0.01, Aω = 0.01, and τ = 100.

occurs when interpopulation desynchronization occurs. Qual-
itatively the same process takes place for the four-population
model.

The amplitude of the noise (Aη and Aω) crucially affects
the self-recovery performance. So that the system robustly
chooses appropriate parameter values after the perturbations,
the distribution of the parameters in each population [process
(iii)] should be large. That is, the noise amplitude should be
large. In fact, the self-recovery fails for small noise amplitude
[Fig. 6(a)]. By contrast, the fluctuation of the time series of
η

( j)
k tends to increase with the noise amplitude [Fig. 6(c)].

Therefore, the noise amplitude should be taken in an appro-
priate regime [Fig. 6(b)].

Numerically, we find qualitatively the same behavior for a
large number of oscillators. Indeed, we observe self-recovery
for J = 100 with the same parameter values [Figs. 6(d)–6(f)].

The parameter τ should be given in an appropriate regime.
Figure 7(a) shows examples of time sequences of Eq. (3)
with perturbation (7) when τ is changed. When τ is smaller
than the period of u( j)

k (τ = 4), the degree of synchronization
decreases [Fig. 7(a)]. When τ = 4000, which is larger than
100 times the period of u( j)

k , the behavior of η̄ j fluctuates,
while the synchronized state can be maintained.

In our algorithm, the parameter values in the same popu-
lation are assumed to be replaced at t = mτ (m = 1, 2, . . . )
by those of the best element. We can find qualitatively the
same behavior as that shown in Fig. 3(b) when algorithm (6)
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FIG. 6. Examples of time sequences of η̄1 (solid black line) and
η̄2 (dashed gray line) of Eq. (3) when (a) (Aη, J ) = (0.001, 20),
(b) (Aη, J ) = (0.01, 20), (c) (Aη, J ) = (0.1, 20), (d) (Aη, J ) =
(0.001, 100), (e) (Aη, J ) = (0.01, 100), and (f) (Aη, J ) = (0.1, 100).
Triangles indicate the beginning of the perturbations (t = T/2).

is replaced by

η
( j′ )
lk (mτ ) = η

( j∗k )
lk (mτ ), (11)

where j′ ∈ {1, 2, . . . , J} is the number of the worst element
and j∗k = arg max jS

( j)
k (m). That is, only the parameter values

of one element are replaced. Figure 7(b) shows the time
sequence of η̄ j with Eq. (11), where the experimental settings
are the same as those used for Fig. 3(b) except for Eq. (6).

III. CONTINUOUS MODEL

We propose a continuous model that shows qualitatively
the same properties as those of the simple model. In the simple
model, the number of oscillators is finite and the selection

1

-1

0

30

1

-1

0

30 t

t

1

-1

0

30 t

(a)

(b)

FIG. 7. Examples of time sequences of η̄1 (solid black line) and
η̄2 (dashed gray line) of Eq. (3) when (a) τ = 4 and τ = 4000 and (b)
Eq. (11) with τ = 100 is employed. Triangles indicate the beginning
of the perturbations: t = t1 and t2.

occurs at every time interval τ . To derive a continuous model,
we take the limit J → ∞ and assume that selection occurs
at random times. Herein we show a continuous model corre-
sponding to the two-population model shown in Sec. II C.

A. Continuous model

Because we take the limit J → ∞, we describe the number
of oscillators as the density in the parameter space. We define
by ρk (t, η, ω) the density of oscillators in Pk at time t with
the intrinsic parameter values η and ω. In our setting, all
oscillators in the same population receive the same signal by
the mean-field interactions [see Eq. (8)]. Thus it is reason-
able to assume that the phases of the oscillators having the
same parameter values are equivalent for all t , that is, uk is
independent of ρk . Therefore, we describe the dynamics of
the oscillators in population k by

u̇k = F(uk, ωk ) + CηkU k′ + Uptb
k + AW k,

U k′ = 1

ρ∗

∫ ηmax

ηmin

∫ ωmax

ωmin

ρk′ (t, η, ω)uk′ (t, η, ω)dη dω,

where uk = t (uk, vk ), uk = uk (t, η, ω), vk = vk (t, η, ω), ρk =
ρk (t, η, ω), ρ∗ := ∫∫

ρ(·, η, ω)dη dω, and (k, k′) = (1, 2) or
(2,1).

As in the simple model, we use the oscillator amplitude as
an order parameter; that is, we take

sk (t, η, ω) = |uk (t, η, ω)|.
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The selection process is described by a replicator model [21]
in which we use the average of sk:

s̄k (t ) = 1

ρ∗

∫ ηmax

ηmin

∫ ωmax

ωmin

sk (t, η, ω)ρk (t, η, ω)dη dω.

We assume that the density of oscillators with parameters
η = η̂ and ω = ω̂ increases (decreases) if sk (·, η̂, ω̂) > s̄k

[sk (·, η̂, ω̂) < s̄k] holds. The parameter fluctuation [noise ef-
fect in Eq. (3)] is described by a diffusion equation. Based on
these assumptions, we propose a model that we refer to as a
reaction-diffusion-replicator system [22,23]

∂ρk

∂t
= Dη

∂2ρk

∂η2
+ Dω

∂2ρk

∂ω2
+ γ [sk − s̄k]ρk,

t > 0, η ∈ (ηmin, ηmax), ω ∈ (ωmin, ωmax), (12)

where Dη and Dω are the diffusion coefficients and γ de-
termines the convergence rate of sk to s̄k , which corre-
sponds qualitatively to τ in Eq. (6); large γ corresponds
to small τ . The parameters are set to T = 4.0 × 104, μ =
−1.0 × 10−4, A = 1.0 × 10−6, Dη = 1.6 × 10−5, Dω = 4 ×
10−8, C = 0.001, γ = 100, (ηmin, ηmax) = (−1,+1), and
(ωmin, ωmin) = (0.1, 0.2). The initial data u(0, ·) and v(0, ·)
are taken randomly between −1 to 1, and ρ(0, ·, ·) = 1. We
impose the Neumann boundary condition

∂ρk

∂η

∣∣∣∣
η=ηmin,ηmax

= ∂ρk

∂ω

∣∣∣∣
ω=ωmin,ωmax

= 0.

Noted that from Eq. (12) and the Neumann boundary condi-
tion, ρ∗ is constant, that is,

d

dt

∫ ηmax

ηmin

∫ ωmax

ωmin

ρk (t, η, ω)dη dω = 0.

B. Results

Similar to Sec. II C, we examine the following two cases.
In case 1, the dynamics of ρ1 and ω1 are described by Eq. (12)
while (η2, ω2) is fixed at (η∗

2, ω
∗
2 ) and described by using the

Dirac δ function such that ρ2 satisfies

1

ρ∗

∫ ηmax

ηmin

∫ ωmax

ωmin

ρ2(·, η∗
2, ω

∗
2 )u2(·, η∗

2, ω
∗
2 )dη dω= u2(·, η∗

2, ω
∗
2 ).

(13)

In case 2, the dynamics of ρ1 and ρ2 are described by Eq. (12).
For convenience, we define the averages of ηk and ωk as

η̄k = 1

ρ∗

∫ ηmax

ηmin

∫ ωmax

ωmin

ρk (·, η, ω)η dη dω,

ω̄k = 1

ρ∗

∫ ηmax

ηmin

∫ ωmax

ωmin

ρk (·, η, ω)ω dη dω.

1. Case 1

For the time integration of the ρ1 equation [Eq. (12)], the
spatial grid was taken as 50 × 50. Due to Eq. (13), U2(t ) =
t (u2(t, η∗

2, ω
∗
2 ), v2(t, η∗

2, ω
∗
2 )) holds for all t . In addition, η̄2 ≡

η∗
2 and ω̄2 ≡ ω∗

2 hold for all t . To confirm the adaptability, we

t
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t

t
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(b)
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0.1
0 4
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0 4

1
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FIG. 8. Solid black lines indicate the time sequences of η̄1 and
ω̄1 and dashed gray lines indicate the time sequences of η̄2 and ω̄2

for the continuous model. Triangles indicate the beginning of the
perturbations: (a) t = T/2 and (b) t = t1 and t2.

change η∗
2 and ω∗

2 as follows:

η∗
2 =

{+1 if t � T/2
−1 if t > T/2,

ω∗
2 =

{
0.13 if t � T/2
0.17 if t > T/2.

Figure 8(a) shows the typical behavior of the time se-
quences of η̄1 and ω̄1. We observe that η̄1 approaches +1 for
t < T/2 after the transient state at the initial stage, whereupon
it approaches −1 after the change of η∗

2 at t = T/2. The
average of the angular frequency of P1, namely, ω̄1, follows
the time sequence of ω∗

2 even after the parameter is changed.

2. Case 2

Next we consider the case in which both ρ1 and ρ2 are
described by Eq. (12). For the time integration of Eq. (12),
the spatial grid for the parameter space of P1 and P2 was
taken as 50 × 50. To confirm the adaptability, we apply the
perturbation

Uptb
k =

⎧⎨
⎩

t (0.1 sin(ω′t − θk ), 0) if t ∈ [t1, t1 + tδ]
t (0.1 sin(ω′t − θ ′

k ), 0) if t ∈ [t2, t2 + tδ]
t (0, 0) otherwise,

(14)

where we set t1 = T/3, t2 = 2T/3, ω′ = 2, tδ = 200,
(θ1, θ2) = (0, π ), and (θ ′

1, θ
′
2) = (0, 0).

Figure 8(b) shows that η̄1 approaches +1 and the popula-
tions exhibit in-phase synchronization for t ∈ [0, t1]. Whether
EE or II interactions are selected in t ∈ [0, t1] depends on
the noise and the initial data. After the external perturbation
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FIG. 9. Solid black and dashed gray lines indicate the time
sequences of η̄1 (black lines) and η̄2 (gray lines). Triangles indicate
the beginning of the perturbations: (a) t = T/2 and (b) t = t1 and t2.
The parameters are set to T = 3.0 × 105, J = 20, C = 0.5, ω = 1.0,
τ = 100, and Aη = 0.004.

at t = t1, the signs of both η̄1 and η̄2 were changed by
the perturbation, which induced antiphase synchronization
between P1 and P2. Similarly, the signs of η̄1 and η̄2 were
changed by the perturbation at t = t2, which induced in-phase
synchronization between P1 and P2. In addition, it is found that
ω̄1 follows the time sequence of ω̄2 even after the perturbation
was applied.

These results indicate that parameter changes occur
quickly following the external perturbation of Eq. (14). For
both cases 1 and 2, the results are consistent with those for the
simple model shown in Sec. II C.

IV. DISCUSSION

We proposed a model framework for the emergence of
synchronized oscillations. The advantage of our framework
is that the formulation of the algorithm is independent of the
variables corresponding to the other populations. Because of
this property, the same algorithm could be applied to the two-
population system and the four-population system. This also
means that we do not need to change the algorithm according
to the change in the environment. We expect the algorithm to
enable robots to adapt to unpredictable environmental changes
because the formulation of the algorithm is independent of
the variables corresponding to the environment. Owaki et al.
[17] used an oscillator model and took advantage of the reso-
nance phenomenon that occurs through the robot-environment
interaction. We have developed their concept such that the
population can control the sign of interactions and the angular
frequency, whereas the model in [17] was restricted to control-
ling the angular frequency. The key point of our framework is
that the model generates attractors of the dynamical system
involving the parameter-tuning algorithm. In other words, the
parameter tuning is accomplished by the convergence of the
solution orbit to one of the attractors. For this, the model au-
tonomously finds appropriate parameter values and generates
synchronized oscillation. As discussed in Sec. II E, the loop
structure of interaction networks between the population and
the system was crucial for our framework. Because of the loop

structure, synchronization and desynchronization occur when
both populations choose appropriate and inappropriate values,
respectively.

In [16,17], the degree of resonance was used to evaluate
the performance of systems. In our model, the degree of
resonance can be used as an order parameter. A possible
formulation is given by

S( j)
k = u( j)

k Uk′ , (15)

where (k, k′) = (1, 2) or (2,1). We examined the same nu-
merical experiments as those in Sec. II B. Figure 9 shows
examples of the time sequence of Eq. (3) when Eq. (15) is used
instead of Eq. (4). It is found that the system with Eq. (15)
exhibits adaptability against parameter changes. However, we
did not use Eq. (15) because the order parameter of the
oscillator in Pk depends on the dynamics of the other systems
(Uk′), which is beyond our problem setting.

A large number of mathematical models of locomotor
systems describe the phase of the leg motion by coupled
oscillator systems. In such models, so that the locomotor
system can adapt to external perturbations, the oscillatory
pattern should be changed according to the leg motion. That
is, the leg motion should regulate the central pattern generator
dynamics. The difficulty is how to describe the oscillatory
dynamics by using the variables corresponding to the leg
motion. As shown in Fig. 4, we succeeded in showing that
the oscillator dynamics can control the interaction parameter

t

0.01

-0.01

0

60

t

2000

-2000

0

60

t

5

-1
60

x

(a)

(b)

FIG. 10. (a) Model framework. (b) Time sequences of η̄, ζ̄ ,
and x. The parameters are set to C = 10−6, A = 1.0 × 10−5,
ηmax = −ηmin = 0.01, ζmax = −ζmin = 2000,  = 1, γ = 10, Dη =
1 × 10−9, Dζ = 4, k1 = 0.1, k2 = 200, ν = 1000, and g = 9.8.
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η
( j)
lk . We expect that our algorithm can be applied to the

autonomous control of locomotor systems.
In [17] it was shown that the online parameter-tuning

system automatically amplifies the oscillation of the spring-
damper system. We consider a similar model setting. Here we
use the sign and strength of the input U in and output Uout of the
population as control parameters [Fig. 10(a)]. The governing
equation is described by

u̇ = F(u, ω) + CηU in + AW , (16)

U in = t (x − x̄, 0),

Uout =
∫ ηmax

ηmin

∫ ζmax

ζmin

ζρ(t, η, ζ )u(t, η, ζ )dη dζ ,

s = |u|,

s̄ = 1

ρ∗

∫ ηmax

ηmin

∫ ζmax

ζmin

s(t, η, ζ )ρ(t, η, ζ ) dη dζ ,

∂ρ

∂t
= Dη

∂2ρ

∂η2
+ Dζ

∂2ρk

∂ζ 2
+ γ [s − s̄]ρ,

x′′ =
{−k1x′ − k2(x − ) − g + Uout if x � 

−g otherwise,

t > 0, η ∈ (ηmin, ηmax), ζ ∈ (ζmin, ζmax), (17)

where the prime indicates the derivative with respect to t̃ =
νt ,  is the natural length of the spring, k1 is the friction
coefficient, k2 is the spring coefficient, g is the gravitational
acceleration, uk = t (uk, vk ), uk = uk (t, η, ζ ), vk = vk (t, η, ζ ),

ρk = ρk (t, η, ζ ), ρ∗ := ∫∫
ρ(·, η, ζ )dη dζ , and x̄ =  − g/k2.

The parameter ν > 0 is introduced to adjust the time scale of
the oscillators (16) and the spring-damper system (17). We
impose the Neumann boundary condition

∂ρ

∂η

∣∣∣∣
η=ηmin,ηmax

= ∂ρ

∂ζ

∣∣∣∣
ζ=ζmin,ζmax

= 0.

Figure 10(b) shows time sequences of η̄ and ζ̄ , where

η̄ = 1

ρ∗

∫ ηmax

ηmin

∫ ζmax

ζmin

ρ(·, η, ζ )η dη dζ ,

ζ̄ = 1

ρ∗

∫ ηmax

ηmin

∫ ζmax

ζmin

ρ(·, η, ζ )ζ dη dζ .

It is found that the amplitude of the spring-damper system is
increased by appropriate parameter controls.

In this paper, we proposed a general framework for the self-
organization of a synchronized oscillator system involving
appropriate parameter choices. It was found that a simple
algorithm enables the system to find appropriate parameter
values to generate synchronized oscillations. We expect that
this study will motivate a new experimental setting to eluci-
date the self-organization process in biological systems.
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