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The development of synchronization strategies for dynamical systems is an important research activity that can
be applied in several different fields from locomotion control of multilimbed structures to secure communication.
In the presence of chaotic systems, synchronization is more difficult to accomplish and there are different
techniques that can be adopted. In this paper we considered a master-slave topology where the coupling
mechanism is realized through a second-order linear dynamical system. This control scheme, recently applied
to chaotic systems, is here analyzed in the presence of hyperchaotic dynamics that represent a more challenging
scenario. The possibility to reach a complete synchronization and the range of allowable coupling strength is
investigated comparing the effects of the dynamical coupling with a standard configuration characterized by a
static gain. This methodology is also applied to weighted networks to reach synchronization regimes otherwise
not obtainable with a static coupling.
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I. INTRODUCTION

Synchronization is an interesting phenomenon that
emerges in coupled dynamical systems. The different time
evolution of the state variables of even identical systems, due
to the presence of diversities in the initial conditions, can be
handled by exchanging information, typically related to an
error signal, between two or more systems that can adjust their
dynamics reaching a synchronous behavior [1]. Nowadays,
in the research field related to nonlinear systems, there are
several studies on this topic because there are multiple inter-
esting applications ranging from physics to communication
technology and control of robotic structures that can bene-
fit from adopting reliable synchronization techniques [2–4].
Synchronization techniques are of particular importance when
applied to complex nonlinear systems characterized by either
a chaotic or hyperchaotic regime [5]. The high sensitivity to
the initial conditions can produce completely different time
evolutions in identical systems with slightly different starting
values. This is an important aspect to be considered, which
can be studied in simulation and then exploited in the physical
realization (e.g., an electronic circuit) of the dynamical equa-
tions modeling the system [6]. Depending on the coupling
strategies and on the coupling strength [7–9], it is possible to
obtain different types of global synchronization, from phase
to complete synchronization [1]. In some cases [10], it is even
impossible to achieve the system synchronization. Coupling
strategies include master-slave configuration [11], diffusive
coupling [12], and system decomposition [13], all of them
leading to a regime of global and complete synchronization,
i.e., all systems behave following the same chaotic trajectory.
More recently, different ranges of synchronization includ-
ing the coexistence of different regimes, either synchronized
or incoherent, have been introduced in the literature, such

*Corresponding author: lpatane@dieei.unict.it

as chimera states [14,15] and remote synchronization [16].
These regimes are often linked to the existence of symmetries
in the coupling structure and on weighted, time-varying, or
weak coupling [17–19].

To evaluate the presence of a synchronization regime
between the coupled systems, the master stability function
(MSF) approach was introduced by Pecora and Carroll [20].
The propensity of a given dynamical system and the range
of suitable coupling gain are evaluated by calculating the
largest Lyapunov exponent transverse to the synchronization
manifold. Adopting this technique, which is independent of
the number of connected nodes and the coupling pattern,
has demonstrated that hyperchaotic systems, characterized by
multiple positive Lyapunov exponents, are in most cases diffi-
cult to synchronize [21]. An interesting work was proposed on
the synchronization of two hyperchaotic Chen systems [22]
where the error signal acquired from a single state variable
is not sufficient to reach a complete synchronization. The
problem was solved combining the error information coming
from the multiple state variables of the coupled systems.

Among the different connection topologies, we considered
a standard master-slave configuration [11] where one or more
state variable error signals, calculated comparing master and
slave dynamics, are used to drive the slave system through
a coupling matrix modulated by a coupling strength. The
master-slave approach is useful to reach synchronization in
most of the cases but the range of suitable values for the
coupling strength could be limited to a restricted region. To
further extend the application of this synchronization scheme,
the possibility to introduce a simple dynamic coupling is
here investigated. We started from a recent work developed
by Pena Ramirez and co-workers [23] where a second-order
mass-spring-damper system was used to mediate the error
signals generated to synchronize the slave system. This ap-
proach was applied to enhance the synchronization properties
in oscillators and chaotic systems. We are now investigating
the application of this strategy to nonlinear hyperchaotic
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dynamics, which introduces a further complexity to the prob-
lem when treated with analytical tools.

Among the multitude of hyperchaotic systems designed
in the last years [24], we selected two well-known systems:
the hyperchaotic Chua and Saito circuits. Each system was
analyzed using a simplified linear approximation to locally
verify the stability of the synchronization manifold treating
the nonlinear elements as a perturbation for the system [25].
The obtained results were compared with a nonlinear analysis
performed through the MSF to better understand the useful
indications that can be obtained and the limits of the linear
analysis. Furthermore, a simple strategy to select the param-
eters of the dynamical coupling system is provided. The pro-
posed method exploits information obtained from the classical
coupling strategy with a static gain improving the allowable
range, eliminating the upper-bound limit for the coupling
strength.

The advantages introduced by the dynamic coupling were
further underlined showing an application of the proposed
methodology to a weighted network of hyperchaotic systems.
We analyzed a network with an open chain topology char-
acterized by three nodes and weighted directed connections.
Here, the advantage characterized by the wider region of ad-
missible coupling gains, introduced by the dynamic coupling,
represents the key element to obtain the network synchroniza-
tion in a case where the static coupling scheme fails in finding
a suitable solution.

The paper is organized as follows: Section II describes
the adopted synchronization strategy, in Sec. III the control
scheme was applied to the selected hyperchaotic systems,
Sec. IV proposes a discussion on the parameter selection,
Sec. V presents an application to weighted networks, and
finally Sec. VI draws the conclusions.

II. SYNCHRONIZATION STRATEGY

The coupling scheme considered for the synchronization of
a pair of hyperchaotic systems is here discussed. The idea is
based on a recent work where the synchronization of harmonic
oscillators and chaotic systems is presented [23]. In our work
we extended the methodology considering two identical hy-
perchaotic systems, connected in a master-slave configuration,
where the error signal is filtered by a linear system. The role
of the dynamic coupling system is schematically represented
in Fig. 1 where a standard coupling mechanism, based on the
state-variables feedback error modulated by a coupling gain is
enhanced through the inclusion of a linear dynamical system.

Following the strategy introduced in [23], the dynamical
system, representing the coupling mechanism, is modeled
through a second-order linear system designed as a simple
mass-spring-dumper mechanism.

The dynamic evolution of the state variables of the consid-
ered master-slave system, with the dynamic coupling, can be
modeled through differential equations:

ẋM = F(xM ),

ẋS = F(xS ) − Ch, (1)

ḣ = Ah − κB(xM − xS ),

FIG. 1. Comparison between the master-slave coupling scheme
(a) with a direct connection using only a coupling gain κ and (b) with
the inclusion of a linear dynamical system to modulate the error
feedback.

where xM ∈ Rn and xS ∈ Rn represent the vectors of the
state variables for the master and slave systems, respectively,
and F is the nonlinear function describing the dynamics of
the hyperchaotic systems taken into consideration. The linear
coupling system is modeled through the state variables h ∈
R2, and A represents the state matrix here modeled as a
mass-spring-damper system:

A =
[−α 1
−γ1 −γ2

]
, (2)

where γ1 and γ2 are related to the undamped natural frequency
and the damping ratio, whereas α is an additional term here
introduced to increase the degrees of freedom while search-
ing the suitable values of the parameters to synchronize the
coupled systems. Furthermore, κ is the coupling strength,
and B ∈ R2×n and C ∈ Rn×2 represent the input and output
matrices of the linear second-order coupling system. In detail,
B indicates how to build the error driving signal from the
state variables of master and salve to be processed by the
dynamic coupling system, whereas the matrix C describes
which variables of the slave system are subject to the control
input.

The parameters of the coupling system have to be properly
selected in order to obtain the master-slave synchronization.
The selection can be performed either through extensive sim-
ulations trying to explore the different eligible combinations
of the parameters or by analyzing the stability of the error
dynamics, considered as a perturbed linear system.

A. Stability analysis

The parameters introduced in the coupling scheme have
to be tuned to reach a synchronous behavior between the
selected master and slave systems. In this section a series of
conditions will be introduced. Looking to the linear dynamical
coupling system, when the master and slave are synchronized
(i.e., xM = xS), the coupling signal needs to exhaust its effect.
To reach this behavior, A in Eq. (2) has to be a stable matrix
with all the eigenvalues presenting a negative real part. If the
parameters α, γ1, and γ2 are positive, this condition is verified.

To find further stability conditions without applying an
analysis based on the master stability function, Eq. (1) can
be decomposed into linear and nonlinear parts. The synchro-
nization error dynamics for the master and slave systems can
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TABLE I. Parameters used in the Chua system [Eq. (5)] to obtain
a hyperchaotic behavior.

Parameter Value

αc 9.5
βc 16
mc0 − 2

7
mc1

1
7

kc1 −0.1
kc2 0.6
ωc 0.03

be described by the following equation:

ė = LDe + p(t, e), (3)

where e := (xM − xS, h)T and p(t, e) is a perturbation due to
the nonlinear terms that vanishes when the master and slave
systems are synchronized.

On the basis of the application of stability theory to per-
turbed systems [25], to guarantee the local stability of the error
system, LD ∈ Rn+2×n+2 has to be a stable matrix. It can be
formalized as follow:

LD =
[

LF C
−κB A

]
, (4)

where LF ∈ Rn×n is a constant matrix containing the coeffi-
cient of the linear part of the error dynamics between master
and slave.

It can be noticed that the introduction of the dynamical
coupling allows us to extend the classical static coupling
where we can similarly define a matrix LS ∈ Rn×n to be com-
pared with LD. The available parameters present in LD can be
selected to extend the domain of κ where the synchronization
is obtained.

III. SYNCHRONIZATION OF HYPERCHAOTIC SYSTEMS

To analyze the effect of the dynamic coupling in a master-
slave configuration, compared with the static coupling, we
selected two different hyperchaotic systems: the Chua and
Saito circuits. In the following the two systems are analyzed
and the presence of a synchronization regime, depending on
the control parameters, is discussed.

A. Case study: Hyperchaotic Chua circuit

The previously depicted strategy has been applied to the
hyperchaotic extension of the Chua circuit [26] that is charac-
terized by the following equations:

ẋ = αc[y − hChua(x)],

ẏ = x − y + z + w,

ż = −βcy + w,

ẇ = kc1 x + kc2 y + ωcw,

(5)

where hChua(x) = mc1 x + 0.5(mc0 − mc1 )(|x + 1| − |x − 1|).
Choosing the parameters as reported in Table I, the system
exhibits hyperchaotic behavior with two positive Lyapunov
exponents.

We considered a static coupling mechanism and a dynamic
one, as described in Eq. (1), applying the following input and
output matrices:

B =
[

0 0 0 0
0 0 1 0

]
, C =

⎡
⎢⎣

0 0
0 0
0 1
0 0

⎤
⎥⎦. (6)

The connection between the coupling system and the slave
system is expressed through the matrix C: the second variable
of the linear coupling system is used as input for the third
equation of the slave system. The input matrix B of the
coupling system indicates that the error signal is evaluated
comparing the third state variables of both master and slave
systems and the error is used as input in the second dynamical
equation of the linear coupling system. The selection of
different input and output matrices can be easily performed
in simulation obtaining different synchronization behaviors;
however, in other cases more related to a physical implemen-
tation (e.g., electronic circuit), the access to all state variables
may not be guaranteed.

The complete equations of the master and slave systems
using either a static or a dynamic coupling are here reported:

Static coupling:

ẋM = αc[yM − hChua(xM )],

ẏM = xM − yM + zM + wM,

żM = −βcyM + wM,

ẇM = kc1 xM + kc2 yM + ωcwM,

ẋS = αc[yS − hChua(xS )],

ẏS = xS − yS + zS + wS,

żS = −βcyS + wS + κ (zM − zS ),

ẇS = kc1 xS + kc2 yS + ωcwS.

Dynamic coupling:
ẋM = αc[yM − hChua(xM )],
ẏM = xM − yM + zM + wM,

żM = −βcyM + wM,

ẇM = kc1 xM + kc2 yM + ωcwM,

ẋS = αc[yS − hChua(xS )],
ẏS = xS − yS + zS + wS,

żS = −βcyS + wS − h2,

ẇS = kc1 xS + kc2 yS + ωcwS,

ḣ1 = −αh1 + h2,

ḣ2 = −γ1h1 − γ2h2 − κ (zM − zS ).

(7)

We can start analyzing the static coupling: the character-
istic piece-wise linear function hChua allows us to evaluate
the matrix LChua

S ∈ R4×4 in the three different linear regions
identified by the nonlinearity. In detail, we considered the
following cases:

hChua(x) = mc1 x − (mc0 − mc1 ) if x < −1,

hChua(x) = mc0 x if x < −1,

hChua(x) = mc1 x + (mc0 − mc1 ) if x > 1.

(8)
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The first and third conditions produce the same LS matrix,
therefore we can consider:

LChua
Si

=

⎡
⎢⎣

−hChua
i αc αc 0 0
1 −1 1 1
0 −βc −κ 1

kc1 kc2 0 wc

⎤
⎥⎦, (9)

where i = {a, b}, hChua
a = mc1 , and hChua

b = mc0 .
Analyzing the error dynamics for the master and slave with

the static coupling, we can acquire information on the local
stability. The characteristic polynomial of LChua

Sa
is

P
(
λLChua

Sa

) = λ4 + (κ + 2.33)λ3 + (2.33κ + 7.19)λ2

+ (21 − 8.81κ )λ + 0.38κ − 0.516. (10)

To verify the asymptotic stability of the error system, we
can apply the Routh-Hurwitz criteria obtaining the following
constraints:

1.36 < κ < 2.37, (11)

therefore when both the master and slave system state vari-
ables behave in the first region in Eq. (8), the synchroniza-
tion manifold is locally asymptotically stable if the coupling
strength is selected in a narrow region identified in Eq. (11).
We can now investigate the effect of the dynamical coupling
in this working region. The matrix LD ∈ R6×6 in Eq. (4) is
here reported:

LChua
Di

=

⎡
⎢⎢⎢⎢⎢⎣

−hChua
i αc αc 0 0 0 0
1 −1 1 1 0 0
0 −βc 0 1 0 1

kc1 kc2 0 wc 0 0
0 0 0 0 −α 1
0 0 −κ 0 −γ1 −γ2

⎤
⎥⎥⎥⎥⎥⎦

,

(12)

where i = {a, b}, hChua
a = mc1 , and hChua

b = mc0 . The presence
of four state variables in the hyperchaotic system, increased
to six with the introduction of the dynamic coupling, does not
allow a complete parametric analysis of the matrix stability.
To address the problem, a value must be assigned to the
parameters of the coupling system, keeping κ as the only
free parameter. Selecting for the coupling system the follow-
ing parameters: α = 3 and γ1 = γ2 = κ/2, the characteristic
polynomial associated with LChua

Da
corresponding to the first

linear region analyzed is

P
(
λLChua

Da

) = λ6 + (0.5κ + 5.33)λ5 + (4.16κ + 14.17)λ4

+ (13.57κ + 42.57)λ3 + (23.05κ + 62.53)λ2

+ (15.71κ − 1.55)λ1 + 0.11κ. (13)

The range of κ that guarantees negative eigenvalues is

κ > 1.1, (14)

which is wider with respect to the standard coupling.
Figure 2(a) shows the comparison between the two cou-

pling mechanisms in terms of λmax of the Jacobian matrix
associated with the error system, as a function of the coupling
strength. Extending the proposed analysis to the second region
considering i = b, it can be verified that a range of κ that
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FIG. 2. Trend of the λmax of the synchronization error dynamics
as a function of the coupling strength for the static and dynamic
coupling. The analysis for the (a) first and (b) second linear regions
identified in the Chua circuit are both reported.

guarantees asymptotic stability for the error dynamics does
not exist for either coupling strategy; this result is summarized
in Fig. 2(b). The local analysis here performed does not allow
us to reach a clear conclusion; therefore, we adopted the MSF
as a global method to verify the presence of a synchronization
manifold.

In Fig. 3 the largest Lyapunov exponent transverse to the
synchronization manifold (�max), in relation to the coupling
coefficient κ , is reported for both the static and dynamic
coupling schemes. The global analysis demonstrates that the
introduction of a dynamic coupling improves the range of κ

that allows us to reach a synchronization regime. The trend
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FIG. 3. Relation between the �max and the coupling gain κ

obtained applying the MSF in the case of static and dynamic coupling
for the Chua circuit, with parameters α = 3 and γ1 = γ2 = κ/2. The
static coupling allows synchronization in the range 0.8 < κ < 1.6
whereas the dynamic coupling extend the range to κ > 2.5.
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FIG. 4. Synchronization of two hyperchaotic Chua circuits.
(a) Time evolution of the first state variable x for the master and slave
system. (b) Trend of the state variable h1 and h2 of the second-order
coupling system, when the coupling gain κ = 3 is selected.

of the first state variable for both master and slave systems
(xM, xS) and the state variables of the coupling system (h1, h2),
selecting κ = 3, are reported in Fig. 4: the master and slave
systems, providing that the initial conditions behave in the
basin of attraction of the hyperchaotic dynamics, after a short
transitory, reach a complete synchronization, canceling the
error signal. This is also demonstrated by the time evolution
of the state variables of the coupling system that relax to zero
in the absence of an input signal.

B. Case study: Saito circuit

The second case study reports the synchronization of two
hyperchaotic Saito systems [5]. This system presents, as in the
case of the Chua circuit, a single nonlinearity with a Piecewise
linear shape. The dynamical equations of the master-slave

TABLE II. Parameters used in the Saito system [Eq. (15)] to
obtain a hyperchaotic behavior.

Parameter Value

γ 1
ρ 14

ε−1 0.01
η 1
δ 0.94

with linear system coupling are here reported:

Static coupling:
ẋM = −zM − wM,

ẏM = γ (2δyM + zM ),
żM = ρ(xM − yM ),
ẇM = ε−1[xM − hSaito(wM )],
ẋS = −zS − wS + κ (xM − xS ),
ẏS = γ (2δSyS + zS ),
żS = ρ(xS − yS ),
ẇS = ε−1[xS − hSaito(wS )].

Dynamic coupling:
ẋM = −zM − wM,

ẏM = γ (2δyM + zM ),
żM = ρ(xM − yM ),
ẇM = ε−1[xM − hSaito(wM )],
ẋS = −zS − wS − h2,

ẏS = γ (2δSyS + zS ),
żS = ρ(xS − yS ),
ẇS = ε−1[xS − hSaito(wS )],

ḣ1 = −αh1 + h2,

ḣ2 = −γ1h1 − γ2h2 − κ (xM − xS ),

(15)

where hSaito(w) = {
w − (1 + η) if w � η,

−η−1w if |w| < η,

w + (1 + η) if w � −η.

Choosing the system parameters as reported in Table II,
each Saito system exhibits hyperchaotic behavior with two
positive Lyapunov exponents. For this system we selected the
first state variable for the generation of the error feedback
between master and slave. Following the same procedure
reported in Sec. III A we can identify, for the static coupling
scheme, two different LS matrices:

LSaito
Si

=

⎡
⎢⎢⎢⎣

−k 0 −1 −1

0 2γ δ 1 0

ρ −ρ 0 0

ε−1 0 0 −hSaito
i ε−1

⎤
⎥⎥⎥⎦, (16)

where i = {a, b}, hSaito
a = 1 when w � −1 ∪ w � 1, and

hSaito
b = −η−1 when −1 < w < 1.

The characteristic polynomial of LSaito
Sa

and LSaito
Sb

can be
analyzed to verify the interval of acceptable coupling gain that
produces a Hurwitz matrix:

1.88 < κ < 7.45 for LSaito
Sa

,

1.90 < κ < 2.88 for LSaito
Sb

. (17)

Therefore, there is a regime of κ , obtained from the inter-
section between the acceptable values for the two working
regions, in which the synchronization manifold is locally
stable.

The dynamical coupling system was also considered using
the following parameters: α = 100 and γ1 = γ2 = κ/2. The
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FIG. 5. Trend of the λmax(κ ) for the synchronization error dy-
namics of the linear restriction of the hyperchaotic Saito circuit in
the presence of either static (top panel) or dynamic (bottom panel)
coupling.

LD matrices are described in the following:

LSaito
Di

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 −1 0 1

0 2γ δ 1 0 0 0

ρ −ρ 0 0 0 0

ε−1 0 0 −hSaito
i ε−1 0 0

0 0 0 0 −α 1

−κ 0 0 0 −γ1 −γ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

In this case for both regions (i = a and i = b), the range that
guarantees the local stability is κ > 13.13. The evaluation
of λmax for the matrices LSaito

S and LSaito
D as function of κ is

shown in Fig. 5; when λmax < 0 we have local stability for the
synchronization manifold. Independent of the linear region
considered, with a static coupling a narrow region of allow-
able κ is identified, whereas the dynamic coupling enlarges
the range of κ eliminating the upper boundary. The nonlinear
analysis performed with the MSF confirms these results as
demonstrated in Fig. 6. In detail the range of κ obtained from
the linear analysis is conservative if compared with the global
stability results obtained from the MSF technique.
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m
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FIG. 6. Relation between the �max and the coupling gain κ

obtained applying the MSF for the static and dynamic coupling for
the Saito systems, with parameters α = 100 and γ1 = γ2 = κ/2. The
static coupling allows synchronization in the range 0.9 < κ < 5.6,
whereas the dynamic coupling extends the range to κ > 3.6.
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FIG. 7. Map of the maximum Lyapunov exponent transverse to
the synchronization manifold, as function of α and κ , for the Saito
circuit with dynamic coupling. The other parameters of the second-
order linear coupling system are γ1 = γ2 = κ .

The parameters adopted for the dynamical coupling can
modify the results obtained as demonstrated in Fig. 7 where
the MSF for the Saito circuit with dynamic coupling is re-
ported for a different value of the parameters γ1 = γ2 = κ and
as functions of κ and α. When α is too small, the synchroniza-
tion cannot be achieved independently of the value chosen
for κ . Moreover, to enlarge the range of κ that guarantees a
stable synchronization we need to increase α. In the following
section we will analyze these aspects providing a series of
qualitative and quantitative indications on the selection of the
suitable coupling system parameters under certain conditions.

IV. PARAMETER SELECTION

To better understand the effect of the dynamical coupling
and the role of the parameters α, γ1, and γ2 used in the model
and arbitrarily set in the case studies previously presented, we
are now analyzing in detail the coupling system. The trans-
fer function of the coupling system, including the coupling
strength κ , considering that the external input acts on the
second state variable (h2) and that the output is generated by
the same state variable, is the following:

G(s) = κ
s + α

s2 + (α + γ2)s + αγ2 + γ1
. (19)

The system presents a zero in s = α and two poles. Supposing
we select α = 100 and γ1 = γ2 = κ/2 as in the previous
analysis with the Saito circuit, the position of the poles as a
function of κ is reported in Fig. 8.

From this analysis we can underline two important consid-
erations:

(i) The system is almost overdamped; in fact, the damping
ratio ξ = α+γ2

2
√

γ1+αγ2
with the selected parameters presents a

minimum value of ξmin = 0.995.
(ii) The effect of the zero in G(s) is almost completely

compensated for by one of the poles that is next to it. For low
values of κ (i.e., κ < 250) λ1 and then λ2 are next to the zero
position, as reported in Fig. 8.

By using the Bode diagram as shown in Fig. 9, we can
verify that there is a band of frequencies that is modulated by
κ , in which the behavior of the system can be approximated
to a fixed gain whose value can be calculated from Eq. (19):

G(0) = κ
α

αγ2 + γ1
. (20)
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FIG. 8. Change of the poles for the transfer function in Eq. (19)
depending on the coupling strength κ . The other parameters are
α = 100 and γ1 = γ2 = κ/2.

Imposing the parameters adopted in the hyperchaotic Saito
circuit study, we obtain G(0) = 2 100

100+1 = 1.98, which is in-
dependent from the parameter κ . From the analysis performed
in Sec. III B with the MSF, the static coupling guarantees syn-
chronization in the range 0.9 < κ < 5.6; and G(0), obtained
by adopting the dynamic coupling system, is included in this
range.

Therefore, we can state that if ∃ κc ∈ [ak, bk], which
allows us to synchronize two systems coupled in a master-
slave configuration with a static gain, it is possible to create a
dynamic coupling system that extends the range of allowable
coupling strength, eliminating the upper bound. To obtain
this effect it is possible to select γ1 = γ2 = κ/κc and α large
enough to guarantee a good zero-pole compensation in G(s).
In this case the dynamical coupling system leads to a stable
synchronization for κ > κmin that guarantees, in the band of
frequencies of interest, an admissible attenuation of the mod-
ules and phase delay introduced by the dynamical coupling.
As the coupling gain increases, the behavior of the dynamic
coupling system will be more and more similar to a static gain
for which synchronization is already guaranteed.

Alternatively it is possible to select κc and α so as to verify
the following conditions:

κc
α

α + 1
∈ [ak, bk]. (21)

In this case the problem is that for low α values the zero-
pole compensation is less precise and the system gain is no

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (

dB
)

10-1 100 101 102 103 104
-90

-45

0

P
ha

se
 (

de
g)

k=5
k=10
k=13.13
k=50
k=100
k=200
k=500

Frequency (rad/s)

K=5

K=5

K=500

K=500

FIG. 9. Bode diagram for the coupling system in Eq. (19) with
parameters α = 100, γ1 = γ2 = k/2, for different values of κ .
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FIG. 10. Relation between �max and the coupling gain κ ob-
tained applying the MSF for the first- and second-order dynamic
coupling in the Saito systems, with parameters: α = 100, γ1 = γ2 =
κ/2 for the second-order coupling and γ = κ/2 for the first-order
coupling.

longer constant as the frequencies change, so the κ region
that guarantees synchronization could be absent or with an
upper-bound limitation as previously shown in Fig. 7.

Considering the Saito circuit, if we select κc = 1, we can
easily verify that selecting ak = 0.9, as obtained from the
MSF with the static coupling (as shown in Fig. 6), to satisfy
the constraint introduced in Eq. (21) we need to impose
α > 9. The results reported in Fig. 7 show that the constraint
obtained on α represents the transition from a limited region
to an unlimited one in terms of values of κ that guarantee
synchronization with the dynamic coupling. By changing the
parameters we can find new ranges of synchronization and
Eq. (21) gives a useful indication that can be applied when α

is sufficiently large, as in the previously reported cases.
From this analysis it is possible to deduce that using

the strategy of selecting α sufficiently large, given that the
dynamic coupling system presents a zero-pole simplification,
it is possible to reduce the order of the coupling system. This
possibility, as analyzed in [23], leads to a possible reduction
of the admissible κ range if the unique parameter γ of the
first-order dynamic coupling system is set to a constant value.
But, as demonstrated above, setting γ = κ/κc all the consid-
erations previously discussed are verified and the master-slave
systems will synchronize in the same interval of κ as shown
in Fig. 10.

V. APPLICATIONS IN WEIGHTED NETWORKS

The application of a dynamical coupling between hyper-
chaotic systems introduces important advantages if compared
with a static one with a limited effort in terms of cost and
complexity, due to the introduction of two linear dynamic
equations to the master-slave system. This approach can be
further appreciated when it becomes an instrument useful

System A System B System C

-

+

-

+

FIG. 11. Chain of three systems connected using a static gain κ

weighted by parameters w that are associated to the each link.
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FIG. 12. Trend of the synchronization error evaluated in a di-
rected chain of three hyperchaotic Saito systems with static and
dynamic coupling. The parameters adopted for the dynamic cou-
pling are αAB = αBC = 100 and γ1AB = γ2AB = 5κ γ1BC = γ2BC =
κ/2. The synchronization error Ex is evaluated on the last 20 s of
a simulation of 1000 s mediated over 10 trials for each case.

in systems that cannot be synchronized adopting a static
coupling mechanism. An interesting case study is to consider
extending the master-slave mechanism to a simple directed
weighted network. Therefore, we can consider a simple case
in which three identical hyperchaotic systems are connected,
creating an open chain as reported in Fig. 11 where the static
connection is considered. Besides the static coupling gain, the
network is characterized by a weighted graph in which each
connection contains a different additional weight (i.e., wAB

and wBC).
The Laplacian matrix of the network directed weighted

network can be easily evaluated:

L = κ

⎡
⎣ 0 0 0

−wAB wAB 0
0 −wBC wBC

⎤
⎦. (22)

To guarantee synchronization in the developed network, it
is necessary that the eigenvalues of the Laplacian matrix
different from the null ones have to be confined to the sta-
ble region associated with the κ gain as evaluated with the
MSF [20].

Considering for each node the equation of the hyperchaotic
Saito circuit, and choosing as link weights the values wAB = 1
and wBC = 10, it can be verified that the eigenvalues of L
are λ1 = 10κ and λ2 = κ that needs to behave in the region
]0.9,5.6[ as evaluated with the MSF with the static coupling
case and previously reported in Fig. 6. It can be easily verified
that this condition cannot be satisfied because there is no value
of κ that guarantees both Laplacian eigenvalues inside the
synchronization range. On the contrary, applying the dynamic
coupling, the synchronization range is extended to ]3.6,+∞[
and both Laplacian eigenvalues can behave in this region
choosing κ > 3.6.

These results have been verified through extensive simu-
lations, as reported in Fig. 12, analyzing the synchronization
error (Ex) of the network for different values of κ with both
static and dynamic coupling. Ex is evaluated as the mean-
square error among the first state variable of the first chain
node, used as reference, and the other two nodes, mediated
on a time window and on multiple simulations with different
initial conditions. The obtained results demonstrate that the
static coupling is not able to solve the problem whereas the
dynamic coupling guarantees a solution for a wide range of
coupling gain.

This approach can be further extended to more complex
networks where the dynamic coupling mechanism becomes a
relevant tool for dealing with the synchronization problem.

VI. CONCLUSIONS

The problem of synchronization can be addressed using
different techniques depending on the connection scheme and
control mechanisms. Hyperchaotic systems introduce further
complexity to the synchronization problem, which can be
solved by increasing the number of coupled variables used to
control the slave system. In this work we presented a compar-
ison in terms of synchronization domain, between identical
hyperchaotic systems coupled in a master-slave configuration
through either a static gain or a linear dynamical system. The
advantages of the dynamic coupling, already highlighted for
chaotic systems, are here verified in the presence of systems
with multiple positive Lyapunov exponents. The assessment
of the approach was concentrated on two specific systems: the
hyperchaotic Chua and Saito circuits. The analysis of synchro-
nization was carried out using a linear simplification based on
the perturbation analysis for acquiring local information and
a global method based on the MSF to compare the results.

The application to hyperchaotic systems, due to the in-
crease in the number of equations with respect to chaotic sys-
tems, leads to a more complex symbolic analysis for the ver-
ification of the local stability of the synchronization manifold
and, therefore, it is important to set the value of some param-
eters of the coupling system before being able to proceed to
an analytical calculation of the synchronization performances.
This aspect has been addressed by proposing a strategy to
extend the allowable range of the coupling strength, obtained
with the static coupling, eliminating the presence of an upper
bound adopting a second-order linear coupling system that,
under specific conditions, can be reduced to a first-order one.
Finally, the importance of the dynamic coupling mechanism
was demonstrated with an application to weighted networks.
We reported a paradigmatic case showing how the synchro-
nization of weighted networks takes advantage of the open
region of admissible coupling gains introduced with dynamic
coupling, solving a synchronization problem in a case where
the standard coupling scheme is not able to find a suitable
solution.
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