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Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials
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This paper presents a multiple-scales analysis approach capable of capturing internally resonant wave interac-
tions in weakly nonlinear lattices and metamaterials. Example systems considered include a diatomic chain and
a locally resonant metamaterial-type lattice. At a number of regions in the band structure, both the frequency
and wave number of one nonlinear plane wave may relate to another in a near-commensurate manner (such as
in a 2:1 or 3:1 ratio) resulting in an internal resonance mechanism. As shown herein, nonlinear interactions in
the lattice couple these waves and enable energy exchange. Near such internal resonances, previously derived
higher-order dispersion corrections for single plane wave propagation may break down, leading to singularities
in the predicted nonlinear dispersion relationships. Using the presented multiple-scales approach and the two
example systems, this paper examines internal resonance occurring (i) within the same branch and (ii) between
different branches of the band structure, resolving the aforementioned singularity issue while capturing energy
exchange. The multiple-scales evolution equations, together with a local stability analysis, uncover multiple
stable fixed points associated with periodic energy exchange between internally resonant propagating modes.
Response results generated using direct numerical simulation verify the perturbation-based predictions for
amplitude-dependent dispersion corrections and slow-scale energy exchange; importantly, these comparisons
verify the exchange frequency predicted by the multiple-scales approach.
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I. INTRODUCTION

Nonlinear periodic structures have been an area of increas-
ing focus due to their ability to filter and guide waves as
a function of their amplitude [1–6]. Key to analyzing wave
propagation in these materials is their dispersion relation-
ships, which quantify passbands in which temporal and spatial
frequencies are related in a nontrivial manner, as well as
frequency band gaps in which propagation is forbidden.

Several studies have derived expressions governing the
amplitude-dependent shifting of band diagrams due to
hardening- and softening-type nonlinearities in phononic and
photonic systems. Vakakis and King developed an approach
to studying both the propagation and attenuation zones of
plane waves in nonlinear monocoupled lattices [7]. Propagat-
ing waves were assessed through a multiple-scales analysis
in both space and time whereas attenuating waves in stop
bands were investigated by studying the synchronous motion
of unit cells and seeking the associated nonlinear normal
modes. Chakraborty and Mallik employed small perturbations
of a plane wave’s complex propagation constant to develop
amplitude-dependent bounds on the passband of an infinite
monatomic lattice [8]. They analyzed the finite counterpart
of the system through a phase closure principle. Other tech-
niques for deriving band structures in nonlinear periodic me-
dia include invariant manifold [9], mapping [10], and hybrid
multiple-scales and harmonic balance [11] approaches. Anal-
ogously, the optics community has examined self- and cross
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Kerr shifts of plasma resonances in weakly nonlinear Joseph-
son junction chains [12,13]. Recently, a multiple-timescales
analysis has studied the self-interaction [14] and wave-wave
[15] interaction of plane waves in weakly nonlinear lattices,
developing closed-form, amplitude-dependent corrections to
the underlying linear dispersion curves. When extended to
higher orders, such corrections have been shown to become
singular at frequencies associated with internal resonance,
which causes uncertainty in the actual size of the dispersion
shifting as well as the findings of stability and waveform
invariance at these frequencies [16,17]. Nonlinearities in the
constitutive equations governing phonon thermal transport
have also received attention, notably alterations to their phase
speed [18] and stability [19]. The internal-resonance anal-
ysis reported in this work may inform the design of ther-
mal systems that induce periodic heat exchange between
modes at commensurate frequencies, or the proposed invariant
plane waves may inspire technology capable of scattering-free
phonon heat transfer.

Little attention has been given to internally resonant wave
interactions in nonlinear media. Considering commensurate
wave-wave interaction of bulk waves in continuous solids
with cubic nonlinearities, Rushchitsky et al. employed the
method of slowly varying amplitude to derive spatial evolu-
tion equations for the amplitude exchange and energy con-
servation laws for the interacting waves [20,21]. Manktelow
et al. investigated wave-wave interactions in a nonlinear
monatomic lattice, with the aim of controlling the frequency
shift of a primary wave in the presence of a secondary
wave, each occupying a unique space on the lattice’s band
structure [22]. A special case in which the two waves possess
commensurate frequency content (in the long wavelength
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limit) was examined, and their slow-scale energy exchange
was remarked upon but was not of primary interest for their
dispersion analysis. In [23,24], a series of studies focused on
the harmonic excitation of a precompressed granular chain in
the regime of weak quadratic stiffness with an extension to
continuous layered systems in [25]. Using a perturbation ex-
pansion, the spatiotemporal higher-harmonic generation was
derived, notably possessing a periodic amplitude exchange
between the fundamental and second harmonic for the case
of propagative driving frequencies. By contrast, this study
introduces two waves at the zeroth-order anticipating internal
resonance between them, seeking periodic plane wave solu-
tions rather than the generation of higher harmonics from
forcing, which appeared at higher-order spectral content in
[23–25]. Additionally, this work considers the stability of the
wave interactions and amplitude-dependent dispersion shift-
ing at internally resonant frequencies. Frandsen and Jensen
derived perturbation-based expressions for higher-harmonic
amplitude generation from self-interacting waves in a di-
atomic lattice with weak cubic stiffness nonlinearities [26].
While they documented close agreement between analytical
predictions and numerical simulations of higher-harmonic
generation, they reported an inability to predict the large
energy transfer for waves in the long wavelength limit that ex-
perience internal resonance. Panigrahi et al. explored internal
resonances in the long wavelength limit of monatomic lattices
with quadratic stiffness nonlinearities [27]. Their multiple-
scales approach yielded evolution equations governing the
amplitudes and phases of the interacting waves. A phase
portrait, aided by a local stability analysis, revealed transitions
from oscillatory to emergent evolution of the interacting wave
amplitudes which was validated qualitatively in numerical
simulations. The study in [27] does not discuss the effect
of internal resonance on dispersion relationships, which is
explicitly addressed herein.

This work presents a multiple-scales analysis of internally
resonant wave energy exchange in weakly nonlinear lattices,
with the specific aim of capturing the energy exchange be-
tween propagating modes. This is a multiple-scales analysis
approach that predicts the temporal modulation for inter-
nally resonant plane waves in discrete lattices with multiple
degrees of freedom per unit cell, for both 2:1 and 3:1 in-
ternal resonance. Also, a dispersion analysis is carried out
for internally resonance plane waves in nonlinear lattices,
developing expressions that are valid for frequencies in which
previous higher-order perturbation analyses for a single plane
wave break down. The analysis is carried out for example
nonlinear systems, to include periodic layered systems and
periodic locally resonant systems (i.e., metamaterials). For
these two classes of systems, using comparisons to direct
numerical simulation, very good agreement is documented
in (i) the perturbation-predicted exchange frequency and
(ii) wave envelope amplitudes predicted by the presented
approach.

II. SYSTEM DESCRIPTION

Figure 1 displays a prototypical, weakly nonlinear layered
system whose governing equations may admit internally res-
onant waves. Such a system can model wave propagation

FIG. 1. Nonlinear diatomic chain considered in this work. Bi-
material rod that this system may model (a) and its mass-spring
representation (b).

in three-dimensional NaCl crystals along the (100) direction
[28], for example, and discretized bimaterial rods [29,30]. The
corresponding unit cell contains alternating masses (ma and
mb) coupled with linear (k1), quadratic (k2), and cubic (k3)
stiffness.

A locally resonant lattice is also considered in which a
network of primary masses contains embedded resonators, as
illustrated in Fig. 2. Coupling between the primary mass and
its internal resonator, as well as between different primary
masses, contains linear, quadratic, and cubic stiffness terms.
Such a system is used for the analysis of elastic metamaterials
with negative effective properties and enhanced attenuation
capabilities [31–33].

For both lattices, the equation of motion governing the jth
unit cell can be compactly represented in matrix form,

Mẍ j +
+1∑

p=−1

[K(p)x j+p] + εfNL(x j, x j−1, x j+1) = 0,

j = −∞ · · · ∞, (1)

where x j = [xa( j, t )
xb( j, t )] represents the displacement from equilib-

rium of each degree of freedom and (.) denotes time differ-
entiation. For both cases in Figs. 1 and 2, the mass matrices
simplify to

M =
[

ma 0
0 mb

]
(2)

FIG. 2. Nonlinear locally resonant lattice. Plane wave propaga-
tion may occur perpendicular to the faces of the box-shaped unit
cells containing spherical inclusions (a). Spring-mass representation
for plane wave propagation along a single direction (b).
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Stiffness matrices for the lattice in Fig. 1 are given by

K(0) =
[

2k1 −k1

−k1 2k1

]
, (3)

K(−1) =
[

0 −k1

0 0

]
, (4)

K(1) =
[

0 0
−k1 0

]
. (5)

The associated stiffness matrices for the lattices with resonators in Fig. 2 are given by

K(0) =
[

2k1a −k1b

−k1b k1b

]
, (6)

K(−1) = K(1) =
[

0 −k1a

0 0

]
. (7)

All interactions from nonlinear stiffness terms combine in the fNL vector, which is ordered to be small with the bookkeeping
device ε. For the diatomic lattice, the nonlinear terms are

fNL =
{

−k2
[
xb( j) − xa( j)

]2 + k2
[
xb( j − 1) − xa( j)

]2 − k3
[
xb( j) − xa( j)

]3 − k3
[
xb( j − 1) − xa( j)

]3

−k2
[
xa( j + 1) − xb( j)

]2 + k2
[
xa( j) − xb( j)

]2 − k3
[
xa( j + 1) − xb( j)

]3 − k3
[
xa( j) − xb( j)

]3

}
. (8)

The locally resonant lattice possesses the following nonlinear terms:

fNL =

⎧⎪⎨
⎪⎩

−k2a
[
xa( j + 1) − xa( j)

]2 + k2a
[
xa( j − 1) − xa( j)

]2 − k3a
[
xa( j + 1) − xa( j)

]3 − k3a
[
xa( j − 1) − xa( j)

]3

−k2b
[
xb( j) − xa( j)

]2 − k3b
[
xb( j) − xa( j)

]3

k2b
[
xb( j) − xa( j)

]2 + k3b
[
xb( j) − xa( j)

]3

⎫⎪⎬
⎪⎭. (9)

In general, quadratic (i.e., k2 or k2a, k2b) and cubic (i.e., k3 or k3a, k3b) stiffness may arise from a Taylor series expansion of an
arbitrary nonlinear interaction.

III. ANALYSIS APPROACH

A multiple-scales technique is next proposed for investigating internal resonances appearing in Eq. (1). Timescales of
successively slower progression are introduced,

t = T0 + εT1 + . . . εnTn, (10)

with their associated time derivatives,

(.) = D0() + εD1() + . . . + εnDn(), (11)

where Dn() denotes differentiation with respect to Tn. Additionally, the solution is expanded in a power series:

x j = x(0)
j + εx(1)

j + . . . + εnx(n)
j . (12)

Using the expansions in Eqs. (11) and (12), Eq. (1) can be separated into a series of cascading differential equations by collecting
matching orders of ε. The first two equations are

ε0: Mẍ(0)
j +

+1∑
p=−1

[
K(p)x(0)

j+p

] = 0, (13)

ε1 : Mẍ(1)
j +

+1∑
p=−1

[
K(p)x(1)

j+p

] = −2D0D1Mx(0)
j − fNL

(
x(0)

j , x(0)
j−1, x(0)

j+1

)
. (14)

In general, Eq. (13) admits a linear combination of Bloch waves, each of the form

x(0)
j = 1

2�(ω0)Aeiω0T0 e−iμ j + c.c., (15)

where A denotes the complex amplitude and c.c. denotes the complex conjugate of all preceding terms. The temporal frequency
(ω0) and nondimensional wave number (μ) are related by the lattice’s dispersion curve, which is found by substituting Eq. (15)
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into (13) and then solving the resulting eigenvalue problem [16].

ω0 =

√√√√k1(mb + ma)

mamb
∓ k1

2

√
4m2

b + 4m2
a + 8mamb cos μ

m2
am2

b

, (16)

ω0 = 1

2

{
2

mamb

[
(−2k1amb cos μ + 2k1amb + k1bma + k1bmb)

∓(
4k2

1am2
bcos2μ − 8k2

1am2
b cos μ + 4mambk1ak1b cos μ − 4m2

bk1ak1b cos μ + 4k2
1am2

b

−4k1ak1bmamb + 4k1ak1bm2
b + k2

1bm2
a + 2k2

1bmamb + k2
1bm2

b

) 1
2
]} 1

2
. (17)

Equations (16) and (17) provide the zero-order dispersion
relationships for the diatomic and locally resonant chains,
respectively. Additionally, displacements within each unit cell
take on synchronous motion associated with the wave propa-
gation mode shape φ,

� =
[

1
−ω2

0ma+2k1

k1(1+eiμ )

]
, (18)

� =
[

1
−maω

2
0+2k1a (1−cos μ)+k1b

k1b

]
, (19)

which correspond to Eqs. (16) and (17), respectively. Figure 3
displays the zeroth-order dispersion relationships for the ex-
ample systems. Since two degrees of freedom exist per unit
cell, two distinct branches form their band structures: a lower,
or acoustic branch and an upper, or optical branch, separated
by a band gap.

In prior work, the authors noted that higher-order analysis
of single-frequency nonlinear plane waves breaks down for
frequencies associated with internal resonance [16,17]. This
phenomenon occurs when the considered wave, represented
by A, is in a nearly commensurate relationship with another
wave, represented by B. This may occur whenever μB ≈

FIG. 3. Zeroth-order dispersion curves for the diatomic (a,b) and
locally resonant (c,d) lattices. Internal resonance can occur within
the same branch or between different branches and commonly takes
the form of 2:1 or 3:1.

n2
n1

μA and ω0,B ≈ n2
n1

ω0,A, where n1 and n2 are integers. As
established herein, it can occur within the same branch or
between different branches. Common forms of internal res-
onance are 2:1 and 3:1, which are enabled by quadratic and
cubic stiffness interactions, respectively, and such forms are
principally studied in this work. Figure 3 depicts these internal
resonances as they appear in relation to band structure.

In the long wavelength limit, the near-linear slope of the
dispersion curve technically produces many internal reso-
nances. However, higher-order internal resonances, e.g., 5:3:1,
can be expected to exhibit weaker interactions among the mul-
tiple wave propagation modes. Spectral content from weak
stiffness nonlinearities naturally decreases at increasingly
higher harmonics. Thus, the interaction exclusively between
two waves will be considered herein as their amplitudes will
be dominant.

Anticipating internal resonance among two waves, an A
and B wave are introduced at the zeroth order:

x(0)
j = 1

2�(ω0,A)Aeiω0,AT0 e−iμA j

+ 1
2�(ω0,B)Beiω0,BT0 e−iμB j + c.c. (20)

For n : 1 internal resonance, the frequencies of the A wave and
B wave are related by

ω0,B = nω0,A + εσω, (21)

μB = nμA + εσμ, (22)

where small detuning parameters σω and σμ are introduced to
also capture wave interactions in close proximity to the n : 1
relationship. Since both (μA, ω0,A) and (μB, ω0,B) must satisfy
the lattice’s linear dispersion relationship, the detuning param-
eters cannot be set independently of each other. For example,
if the A wave frequency and wave number are known and σμ

is prescribed, then μB can be determined from Eq. (22). The
B wave frequency ω0,B can then be readily identified such that
Eq. (16) or (17) is satisfied and the associated σω can be found
from Eq. (21).

The complex wave amplitudes A and B can be decomposed
into polar form:

A = αAeiβA , (23)

B = αBeiβB . (24)
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By virtue of satisfying Eq. (13), the real quantities αA, αB, βA,

and βB are functions of only the slower timescales: T1, T2, etc.
Once x(0)

j is defined, the right-hand side of Eq. (14) can be
updated,

D2
0Mx(1)

j +
+1∑

p=−1

[
K(p)x(1)

j

] = −MD1(iω0,A�(ω0,A)Aeiω0,AT0

× e−iμA j + iω0,B�(ω0,B)Beiω0,BT0 e−iμB j )

+
3∑

u=0

3∑
w=−3

au,weui(ω0,AT0−μA j)ewi(ω0,BT0−μB j)+c.c., (25)

where au,w denotes the amplitude at each of the multihar-
monic inhomogeneities and can be expected to be functions
of the lattice parameters in addition to the A and B wave
frequencies and amplitudes. All possible first-order frequency
combinations that occur after inserting Eq. (16) into fNL are
included in the double summation. Quadratic nonlinearities
result in even-integer higher harmonics whereas those from
cubic nonlinearities result in odd-integer higher harmonics.
Additionally, cubic nonlinearities produce secular terms at
eiω0,AT0 e−iμA j and eiω0,BT0 e−iμB j .

Due to the n : 1 internal resonance, terms at eniω0,AT0 e−niμA j

can be expressed in terms of eiω0,BT0 e−iμB j (and vice versa).
This result is clear after manipulation of the relationships in
Eqs. (21) and (22):

n(ω0,AT0 − μA j) = ω0,BT0 − μB j − εσωT0 + εσμ j

≡ ω0,BT0 − μB j − σωT1 + σμJ1. (26)

Note that a slow spatial scale, J1 ≡ ε j, has been introduced
analogous to the first slow timescale T1 ≡ εt , both of which
appear with detuning parameters as phase shifts at a slower
spatiotemporal scale.

Next, secular terms are removed from Eq. (21) in order
to assure convergence of the imposed ordering approach.
First, terms containing eiω0,AT0 e−iμA j (as well as their complex
conjugates) are addressed. To identify all of these terms, the
relationships in Eq. (26) must be invoked since, for exam-
ple, ω0,B − ω0,A ≈ ω0,A when n = 2. After premultiplying all
terms with eiω0,AT0 e−iμA j dependence by �H(ω0,A) and sepa-
rating real and imaginary parts, expressions for the slow-time
amplitude and phase evolution for the A wave, D1(αA) and
D1(βA), result. Considering 2:1 internal resonance from solely
quadratic stiffness, these evolution equations can be written as

D1(αA) = αAαBRe(Ḡeiγ ), (27)

D1(βA) = αBIm(Ḡeiγ ), (28)

where Ḡ is a function of frequency and lattice parameters
provided in the Supplemental Material [34] for both material
systems. Additionally, a variable representing the relative
phase between the A and B waves has been introduced,

γ ≡ βB + σωT1 − σμJ1 − nβA, (29)

which results in a set of autonomous evolution equations. The
autonomous evolution equations associated with 3:1 internal

resonance and solely cubic stiffness are similar to Eqs. (23)
and (24),

D1(αA) = Re
(
αBα2

AĪeiγ + α2
BαAL̄ + α3

AN̄
)
, (30)

D1(βA) = Im
(
αBαAĪeiγ + α2

BL̄ + α2
AN̄

)
, (31)

where the Supplemental Material [34] provides expressions
for Ī, L̄, and N̄ for both material systems. Note that the
presence of cubic stiffness will result in the appearance of
additional terms in the evolution equations for 2:1 internal
resonance, while the presence of quadratic stiffness will not
result in additional terms in the evolution equations governing
3:1 internal resonance. The additional terms in the 2:1 evo-
lution equations complicate the procedure (introduced next)
for reducing the state space from (αA, βA, αB, βB) to (αB, γ ).
However, numerical integration of the four-dimensional state
space illustrates that cubic stiffness has a negligible effect on
2:1 energy exchange.

Likewise, terms appearing with eiω0,BT0 e−iμB j are also sec-
ular. To collect all terms at these frequencies requires appli-
cation of Eq. (26) followed by premultiplying with �H(ω0,B).
Expressions for the slow-time amplitude and phase evolution
for the B wave, D1(αB) and D1(βB), result. For a 2:1 internal
resonance, the evolution equations are given by

D1(αB) = α2
ARe(H̄e−iγ ), (32)

D1(βB) = α2
A

αB
Im(H̄e−iγ ), (33)

and for the 3:1 internal resonance by

D1(αB) = Re
(
α2

AαBP̄ + α3
BQ̄ + α3

AR̄e−iγ
)
, (34)

D1(βB) = Im

(
α2

AP̄ + α2
BQ̄ + α3

A

αB
R̄e−iγ

)
, (35)

where the Supplemental Material [34] again provides ex-
pressions for H̄ , P̄, Q̄, and R̄ for each material system. At
this point in the development, the state space of response
quantities is either governed by Eqs. (27) and (28), and (32)
and (33), in the case of a 2:1 internal resonance, or Eqs. (30)
and (31), and (34) and (35), in the case of a 3:1 internal
resonance.

The dimension of the state space can be reduced from four
quantities (αA, αB, βA, βB) to three (αA, αB, γ ) by differenti-
ating Eq. (29) with respect to T1 and substituting in the known
expressions for D1(βA) and D1(βB):

D1(γ ) = D1(βB) + σω − nD1(βA). (36)

Applying this procedure to the case of 2:1 internal reso-
nance yields the following reduced set of evolution equations
quadratic in the wave amplitudes,

D1(αA) = αAαBG cos (ψG + γ ), (37)

D1(αB) = α2
AH cos (ψH + γ ), (38)

D1(γ ) = σω − 2αBG sin (ψG + γ ) − α2
A

αB
H sin (ψH + γ ),

(39)
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where Ḡ = GeiψG and H̄ = He−iψH . The case of 3:1 internal
resonance gives rise to a reduced set of evolution equations
cubic in the wave amplitudes

D1(αA) = αBα2
AI cos (ψI + γ ), (40)

D1(αB) = α3
AR cos (ψR + γ ), (41)

D1(γ ) = α2
AP + α2

BQ − α3
A

αB
R sin (ψR + γ ) + σω

− 3
[
αBαAI sin (ψI + γ ) + α2

BL + α2
AN

]
, (42)

where Ī = IeiψI , L̄ = LeiψL , N̄ = NeiψN , P̄ = PeiψP , Q̄ =
QeiψQ , and R̄ = Re−iψR .

Using the approach outlined in [27], solutions are sought
on a hyperplane, reducing the phase space from (αA, αB, γ )
to (αB, γ ). Key to this step is to seek out-of-phase evolution
of the A and B wave amplitudes. For energy exchange which
conserves total mechanical energy, it can be expected that
the D1(αA) and D1(αB) are out of phase. The first step is to
recognize a relationship between the phase terms from the
secular term removal,

ψG − ψH = π, (43)

ψI − ψR = π. (44)

Although difficult to prove analytically due to the complex-
ity of the expressions, numerical evaluation using multiple
parameter sets has confirmed Eqs. (43) and (44) to machine
precision. The relationships in Eqs. (43) and (44) do not
define out-of-phase amplitude evolution but instead enable a
reduction of the dimension of the state space. Accordingly,

D1αA

D1αB
= −1

r

αB

αA
. (45)

Equation (45) simplifies to

rα2
A + α2

B = E , (46)

where r = H
G for 2:1 internal resonance and r = R

I for 3:1
internal resonance. While Eq. (46) is not a statement of
conservation of energy, the solutions on such a hyperplane
must conserve the energylike integration constant E . Thus,
since the A and B waves are the only wave propagation
modes present, each mode grows and decays at the expense of
exchanging energy with the other when considering solutions
on the ellipse in Eq. (46). Substituting Eq. (46) into the 2:1
expressions in Eqs. (37)–(39) gives

D1(αB) = (
E − α2

B

)
G cos (ψH + γ ), (47)

D1(γ ) = σω + 2αBG sin (ψH + γ )

−
(
E − α2

B

)
αB

G sin (ψH + γ ). (48)

For 3:1 internal resonance, the energy-reduced phase space in
Eqs. (40)–(42) simplifies to

D1αB =
[

1

r

(
E − α2

B

)] 3
2

R cos (ψR + γ ), (49)

D1(γ ) =
[

1

r

(
E − α2

B

)]
P + α2

BQ − 1

αB

[
1

r

(
E − α2

B

)] 3
2

× R sin(ψR + γ ) + σω − 3

{
αB

[
1

r

(
E − α2

B

)] 1
2

× I sin(ψI + γ )+α2
BL +

[
1

r

(
E − α2

B

)]
N

}
. (50)

Local stability analysis. The evolution of the amplitudes
and phases of the A and B waves defines the interaction of
the internally resonant plane waves. The stability of their
evolution must be assessed to predict if a given distribution
of initial amplitudes and phases will persist for long spatial
and temporal measures. To investigate stability, the temporal
evolution of the two-dimensional reduced phase space is
reconstituted to the original timescale:

α̇B = εD1(αB), (51)

γ̇ = εD1(γ ). (52)

The associated fixed points (α∗
B, γ ∗) satisfy α̇B|(α∗

B,γ ∗ ) = 0 and
γ̇ |(α∗

B,γ ∗ ) = 0. Stability can then be determined local to each
fixed point by examining their associated λ value,

λ = det J, (53)

where

J =
{

∂
∂αB

[D1(αB)] ∂
∂γ

[D1(αB)]

∂
∂αB

[D1(γ )] ∂
∂γ

[D1(γ )]

}
(α∗

B,γ ∗ )

. (54)

When λ is purely real, λ > 0 denotes instability, λ < 0 de-
notes stability, and λ = 0 denotes neutral stability. When λ

is purely imaginary (i.e., λ = ±iωJ ), the evolution of αA, αB,

and γ are oscillatory with frequency ωJ . The fixed point equa-
tions arising from 2:1 resonance are quadratic with respect
to αB and consequently the fixed point solutions can readily
be determined in closed form. Table I summarizes the results.
Note the existence of two fixed points associated with periodic
orbits and two unstable fixed points.

Thus, fixed points 1 and 2 are centers, and initial ampli-
tudes and phases in their vicinity should evolve periodically
over time with frequency ωJ . Applying Eq. (53), an expression
can be derived that gives the frequency of the energy exchange
for waves undergoing stable 2:1 internal resonance,

ωJ = G

α∗
B

√(
E2 + 2Eα∗

B
2 − 3α∗

B
4
)
, (55)

where α∗
B must be associated with fixed points 1 and 2 in

Table I. For 3:1 internal resonance, no closed-form solutions
were found for the fixed points and their associated λ values
based on the cubic dependence of their fixed point equations.
However, for a given parameter set, numerical root-finding
techniques can be employed to compute the fixed point so-
lutions and their associated stability. It is important to note
that periodic orbits similar to those observed for 2:1 internal
resonance also arise for the case of 3:1 internal resonance.
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TABLE I. Fixed points for 2:1 internal resonance valid for both lattices considered. The A-wave fixed point is not a direct component of
the two-dimensional phase space of (αB, γ ) but rather determined by the energy ellipse relationship.

Fixed point α∗
B α∗

A γ ∗ λ

FP 1 and 2
−σω∓

√
σ 2
ω+12EG2

6G sin(ψH +γ ∗ )

√
1
r

{
E − [−σω∓

√
σ 2
ω+12EG2

6G sin(ψH +γ ∗ )

]2}
cos(γ ∗ + ψH ) = 0 λ = ±iωJ (Periodic orbit)

FP 3 and 4
√

E 0 sin(γ ∗ + ψH ) = − σω

2
√

EG
λ > 0 (Unstable)

IV. ENERGY EXCHANGE RESULTS

To numerically validate the periodic energy exchange
predicted by the presented multiple-scales approach, direct
numerical simulation of the equations of motion in Eq. (1)
is carried out. Plane waves of the form in Eq. (20) with
internally resonant frequency and wave number combina-
tions are injected into the lattice as initial conditions. Initial
amplitudes and phases of the A and B waves are selected
to be sufficiently near centers. To replicate plane waves in
infinite media, long chains are simulated (e.g., approximately
800–1000 wavelengths of the A wave). Viscous dampers are
added near the chain’s boundaries with coefficients increasing
towards the ends of the structure to absorb reflections during
the simulation. Such damping profile also dissipates initial
displacements and velocities near the lattice’s boundaries at
the start of the simulation. Analysis is then restricted to the
central region of the chain (e.g., the middle 100–200 wave-

lengths of the A wave). To track the energy exchange of
the injected waves, spatial fast Fourier transforms (FFTs)
are taken of the mb masses in this central region. Thus, the
magnitudes of the frequency content at μA and μB can be
interpreted as αA and αB, respectively, which can, in turn, be
compared to the predictions of the multiple-scales evolution
equations in Eqs. (47) and (48), or (49) and (50), for 2:1 and
3:1 internal resonances, respectively. For a given value of E ,
fixed points associated with periodic orbits can be determined,
either analytically, for the case of 2:1 internal resonance, or
computationally, for the case of 3:1 internal resonance. The
initial amplitudes and phases of the simulated A and B waves
can then be selected to be sufficiently close to these fixed point
predictions such that the simulated waves will be expected to
exchange energy over time. Values of E are sufficiently small
so as to eliminate or minimize the generation of still higher
harmonics out of the A and B waves. Lastly, it is important
to note that this study focuses on validating the orbits around

FIG. 4. Frequency of energy exchange and strength of the nonlinearity associated with fixed points 1 and 2 for 2:1 internal resonance
within the acoustic branch (a,b) and between the acoustic and optical branches (c,d) of the diatomic lattice: (a,b) ma = 1, mb = 1.5, k1 =
1, k2 = 1, k3 = 0, ε = 0.1, μA = 0.5, σμ = 0, J1 = 0; (c,d) ma = 1, mb = 1.5, k1 = 1, k2 = 1, k3 = 0, ε = 0.1, μA = π

1.91 , σμ = 0, J1 = 0.
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FIG. 5. Phase portrait for 2:1 internal resonance within the
acoustic branch of the diatomic lattice. Centers are plot-
ted in red. ma = 1, mb = 1.5, k1 = 1, k2 = 1, k3 = 0, ε = 0.1, μA =
0.5, σμ = 0, J1 = 0, E = 0.5.

lower fixed values as they are more likely to satisfy the weak
nonlinearity criterion required for multiple-scales validity.

A. Diatomic system

Figure 4 depicts the relationships between the frequency
of the energy exchange, ωJ , and energy level, E , for an
example diatomic lattice (parameters provided in the caption),
considering 2:1 internal resonance within the acoustic branch
and between the acoustic and optical branches. For both cases,
a higher energy level produces a higher frequency energy

exchange. Additionally, the strength of the quadratic nonlin-
earity at each fixed point, as measured by the dimensionless
parameter 2 ≡ k2α

∗
k1

, is evaluated as a function of E . To
satisfy a conservative weak nonlinearity criterion, 2 should
be roughly � 0.1. Note that as E transitions beyond 0.1 for
interactions within the acoustic branch, a bifurcation occurs
in fixed point 2 such that α∗

B becomes real and nonzero. This
result can be physically understood to be the minimum energy
barrier needed to activate a periodic energy exchange for 2:1
internal resonance within the acoustic branch.

Long wavelengths are considered for investigating internal
resonance within the acoustic branch of the diatomic lattice.
Figure 5 displays a sample phase portrait for 2:1 internal res-
onance within the acoustic branch. As documented in Table I,
there are two centers and two unstable fixed points. Validation
of the lower amplitude center is of primary importance as it
satisfies the weak nonlinearity criterion.

Figure 6 presents the results of simulating waves with 2:1
internally resonant frequency combinations within the acous-
tic branch of the diatomic lattice. Note the close agreement
between the multiple-scales predictions and results from di-
rect numerical simulation when viewing the energy exchange
in the time domain. As expected, the A and B wave ampli-
tudes oscillate out of phase. This energy exchange occurs
at a single frequency and amplitude that matches well with
the multiple-scales prediction. Their agreement is especially
evident after taking an FFT of the time histories of the energy
exchange signals and filtering out each of their zero frequency
(dc) terms. The dc terms can be expected to be similar in
magnitude to the fixed points, especially for the nearly circular
trajectories close to the centers in the phase plane.

FIG. 6. Direct numerical simulation of the lattice equations of motion compared to the multiple-scales predictions of the periodic energy
exchange in the diatomic lattice. 2:1 internal resonance within the acoustic branch is considered. (a,b) Time histories of the amplitude
modulation. (c,d) Dominant, slow-scale frequency content of the energy exchange, filtering out the dc component. ma = 1, mb = 1.5, k1 =
1, k2 = 1, k3 = 0, ε = 0.1, μA = 0.5, σμ = 0, J1 = 0, E = 0.0106.
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FIG. 7. Phase portrait for 3:1 internal resonance between the
acoustic and optical branches of the diatomic lattice. Centers are plot-
ted in red. ma = 1, mb = 1.1, k1 = 1, k2 = 0, k3 = 1, ε = 0.1, μA =

π

3.16 , σμ = 0, J1 = 0, E = 1.

Next, wave interactions associated with internal resonance
between the acoustic and optical branches are simulated.
Figure 7 presents a sample phase portrait for 3:1 interactions

between the two branches. Note that there are three fixed
points: two associated with periodic orbits and one associated
with instability. It is desired to validate periodic orbits about
sufficiently low amplitude fixed points.

Figure 8 compares the results from direct numerical
simulation of the diatomic lattice to the multiple-scales
predictions for 3:1 interactions between the acoustic and
optical branches. An FFT of the time histories of αA and
αB reveals that multiple scales again accurately predict the
dominant frequency of the energy exchange. Their mean
values are subtracted so as to determine the frequency content
of the oscillations. High frequencies in the results from direct
numerical simulation suggest that there is at least one addi-
tional wave with which the A and B waves may be exchanging
energy. Clearly, the slow timescales introduced in Eq. (10)
cannot be expected to predict amplitude modulation faster
than the A wave’s fundamental frequency. Reformulating
the multiple-scales analysis to include both fast and slow
timescales poses challenges that are left for future work.
However, as evidenced in the figures, the dominant frequency
of exchange and the exchange amplitudes are accurately
predicted by the presented multiple-scales approach.

FIG. 8. Direct numerical simulation of the lattice equations of motion compared to the multiple-scales predictions of the periodic energy
exchange in the diatomic lattice. 3:1 internal resonance between the acoustic and optical branches is considered. (a,b) Time histories of the
amplitude modulation. (c,d) Dominant, slow-scale frequency content of the energy exchange, filtering-out the dc component. (e,f) Frequency
content of the energy exchange, presenting the small high frequency components identified in numerical simulations. ma = 1, mb = 1.1, k1 =
1, k2 = 0, k3 = 1, ε = 0.1, μA = π

3.16 , σμ = 0, J1 = 0, E = 0.05.
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FIG. 9. Frequency of energy exchange and strength of the nonlinearity associated with fixed points 1 and 2 for 2:1 internal res-
onance within the acoustic branch (a,b) and between the acoustic and optical branches (c,d) of the locally resonant lattice: (a,b)
ma = 1, mb = 0.1, k1a = 10, k1b = 2, k2a = 1, k2b = 1, k3a = 0, k3b = 0, ε = 0.1, μA = 0.1, σμ = 0; (c,d) ma = 1, mb = 0.1, k1a = 10, k1b =
2, k2a = 1, k2b = 1, k3a = 0, k3b = 0, ε = 0.1, μA = π

2.93 , σμ = 0.

B. Locally resonant metamaterial system

The expressions governing internal resonance in the lo-
cally resonant metamaterial-type lattice are considered next.
Figure 9 documents the frequency of energy exchange and
strength of the quadratic nonlinearity for 2:1 internal reso-
nance within the acoustic branch, and between the acoustic
and optical branches. For 2, the primary chain’s quadratic
stiffness is referenced: 2a ≡ k2aα

∗
k1

. Informed by the rela-
tionships in Fig. 9, lattice parameters and initial conditions
are selected such that a slow energy exchange (i.e., εωJ

ω0A
�

0.1) with weak nonlinearities (i.e.,2a � 0.1) is numerically
simulated.

Considering large wavelengths, Fig. 10 illustrates a sample
phase portrait for 3:1 internal resonance between two waves
within the acoustic branch. Both periodic orbits and unstable
trajectories can be observed as well as a high degree of
symmetry between positive and negative γ values.

Comparing the results from direct numerical simulation
to the perturbation-based evolution equations for a locally
resonant lattice with 3:1 internal resonance within the acoustic
branch, Fig. 11 illustrates close agreement between theory
and simulation for the dominant frequency and amplitude
of the energy exchange. Additionally, the energy exchange
of the waves consists of high frequency components, which

can be expected to take place with waves not considered
in the zeroth-order solution of the perturbation framework.
Nonetheless, as with the diatomic system, multiple-scales
accurately predict the dominant frequency of the energy ex-

FIG. 10. Phase portrait for 3:1 internal resonance within the
acoustic branch of the locally resonant lattice. Centers are plotted
in red. ma = 1, mb = 0.4, k1a = 1, k1b = 1, k2a = 0, k2b = 0, k3a =
1, k3b = 1, ε = 0.1, μA = π

12 , σμ = 0, E = 5.
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FIG. 11. Direct numerical simulation of the lattice equations of motion compared to the multiple-scales predictions of the periodic energy
exchange in the locally resonant lattice. 3:1 internal resonance within the acoustic branch is considered. (a,b) Time histories of the amplitude
modulation. (c,d) Dominant, slow-scale frequency content of the energy exchange, filtering-out the dc component. (e,f) Frequency content of
the energy exchange, presenting the small high frequency components identified in numerical simulations. ma = 1, mb = 0.4, k1a = 1, k1b =
1, k2a = 0, k2b = 0, k3a = 1, k3b = 1, ε = 0.1, μA = π

12 , σμ = 0, E = 0.5.

change, and overall exchange behavior, between the A and
B waves.

Lastly, internal resonance between the acoustic and op-
tical branches in the locally resonant lattice is investigated.
Figure 12 displays a sample phase portrait and Fig. 13

FIG. 12. Phase portrait for 2:1 internal resonance between the
acoustic and optical branches of the locally resonant lattice. Centers
are plotted in red. ma = 1, mb = 0.1, k1a = 10, k1b = 2, k2a =
1, k2b = 1, k3a = 0, k3b = 0, c = 0, ε = 0.1, μA = π

2.93 , σμ =
0, E = 0.1.

summarizes the results comparing simulations to analyti-
cal predictions for 2:1 internal resonance, again showing
good agreement in the primary exchange frequency and
amplitudes.

V. DISPERSION ANALYSIS

As documented in [16,17], higher-order multiple-scales
analysis of a single-frequency plane wave does not provide
valid dispersion shifts for frequencies near internal reso-
nances. This stems from unaccounted-for secular terms aris-
ing from [nμ, nω0(μ)], that are instead treated as nonsecular
with associated particular solutions. These first-order partic-
ular solutions become unbounded at frequencies associated
with internal resonance, and consequently violate the asymp-
totic series expansion. Thus, singularities in dispersion correc-
tions due to internal resonance for self-interacting cannot be
seen until advancing to the second order. Note that first-order
dispersion corrections do not exhibit singularities, and the nat-
ural question arises as to whether these lower-order approxi-
mations can be satisfactorily used near internal resonance.

Since quadratic stiffness interactions do not cause disper-
sion shifting until higher orders [i.e., O(ε2)], cubic stiffness
interactions are considered for this dispersion study. Addi-
tionally, internal resonance between the acoustic and optical
branches is explored since there are negligible dispersion
shifts at the long wavelengths at which internal resonance
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FIG. 13. Direct numerical simulation of the lattice equations of motion compared to the multiple-scales predictions of the periodic energy
exchange in the locally resonant lattice. 2:1 internal resonance between the acoustic and optical branches is considered. (a,b) Time histories
of the amplitude modulation. (c,d) Dominant, slow-scale frequency content of the energy exchange, filtering-out the dc component. (e,f)
Frequency content of the energy exchange, presenting the small high frequency components identified in numerical simulations. ma = 1, mb =
0.4, k1a = 1, k1b = 1, k2a = 1, k2b = 1, k3a = 0, k3b = 0, ε = 0.1, σμ = 0, J1 = 0, μA = π

1.68 , E = 0.1.

takes place solely within the acoustic branch. Recalling from
[16,17,22] that evolution equations for phases directly provide
the amplitude-dependent corrections to the band structure,
Eqs. (31) and (35) are evaluated at the fixed points,

ω1,A = Iα∗
Aα∗

B sin(ψI + γ ∗) + Lα∗2
B + Nα∗2

A , (56)

ω1,B = Pα∗2
A + Qα∗2

B − R
α∗3

A

α∗
B

sin(ψR + γ ∗), (57)

where ω1,A and ω1,B denote the amplitude-dependent disper-
sion shifts for the A and B waves, respectively, for 3:1 internal
resonance. The corrections in Eqs. (56) and (57) can be
evaluated at any fixed point (α∗

A, α∗
B, γ ). To determine whether

these expressions from internally resonant interactions are
comparable to the first-order predictions from a single plane
wave analysis, Eq. (56) is evaluated with E = rα2, where α

is the amplitude of the single-frequency plane wave to which
results are compared.

Figure 14 compares the results for the internally resonant
dispersion predictions to those from the first-order perturba-

tion predictions for a single plane wave in the diatomic chain.
The frequency ω and wave number μ correspond to those of
the single-frequency plane wave. The A-wave frequency and
wave number are used for the comparison. When evaluated
at fixed point 6, the internally resonant analysis gives results
that would arise should the single plane wave analysis be
interpolated through its singularities. Fixed point 5 converges
to the single plane wave corrections as the wave number
increases to values well above the frequency at which the
singularity occurs. Fixed point 7 exists for a narrow range of
frequencies about the singularity and slowly approaches the
single plane wave results. The results evaluated at fixed point 6
give confidence that higher-order singularities can be avoided
when studying a single plane wave by instead employing the
first-order expressions.

Using the framework detailed in Sec. III A, the stability of
fixed points 5–7 in Fig. 14 is analyzed as the wave number
μ is varied to ensure the stability of the solutions. Figure 15
presents the results. Since fixed point 6 is a center, it provides
justification for employing its value to interpolate through
single plane wave singularities. Fixed point 5 is also a center,
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FIG. 14. Comparison of multiple-scales expressions for dispersion shifts in the diatomic chain. A single plane wave has singularities in its
higher-order dispersion corrections at frequencies associated with internal resonance between branches (a). Dispersion corrections based on
3:1 energy exchange (b,c,d) exist at specific ranges of frequencies and the results evaluated at fixed point 6 pass through the singularity found
in the single plane wave results. ma = 1, mb = 1.3, k1 = 1, k2 = 0, k3 = 1, ε = 0.1, σμ = 0, J1 = 0, α = 0.7.

which also can be used to approximate the dispersion shifts of
a single plane wave at frequencies beyond the 3:1 singularity.
Note that α∗

B for fixed points 6 and 7 coalesce and subse-

quently vanish as the control parameter μ is varied just above
the value giving a singularity. This behavior is indicative of a
saddle-node bifurcation.

FIG. 15. Bifurcation analysis of the multiple-scales fixed point expressions in the vicinity of the singularity due to 3:1 internal resonance
in the diatomic chain. The wave number of the A wave μA serves as the control parameter and the fixed points α∗

B (a) and γ ∗ (b) are evaluated.
Fixed points 5 and 6 are both centers giving confidence they can be used to interpolate through or approximate the singularity in the higher-
order single plane wave dispersion correction. The vertical line represents the location of the singularity in the single plane wave dispersion
correction.
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VI. CONCLUSIONS

A multiple-scales approach has been presented to analyze
internally resonant energy exchange in weakly nonlinear lat-
tices with multiple degrees of freedom per unit cell. Both
2:1 and 3:1 internal resonances within the same branch, and
between different branches, is considered for diatomic and
locally resonant example systems. A local stability analysis
reveals distributions of amplitudes and phases associated with
a slow periodic exchange of energy between the internally
resonant plane waves. These predictions are validated by
direct numerical simulation of the lattices’ equations of mo-
tion. A dispersion study reveals that first-order corrections

from perturbation analysis of internally resonant interactions
accurately characterize regions of the band structure at which
dispersion corrections of a single-frequency plane wave break
down. The results presented herein may inform technology
capable of long-range coherent signal transmission and detec-
tion in nonlinear periodic media.
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