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We consider the reflectionless transport of solitons in networks. The system is modeled in terms of the
nonlinear Schrödinger equation on metric graphs, for which transparent boundary conditions at the branching
points are imposed. This approach allows to derive simple constraints, which link the equivalent usual Kirchhoff-
type vertex conditions to the transparent ones. Our method is applied to a metric star graph. An extension to more
complicated graph topologies is straightforward.
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I. INTRODUCTION

Modeling of soliton dynamics in branched structures and
networks is relevant to many important tasks in optics, fluid
dynamics, condensed matter, biological physics, and poly-
mers. The motivation for such tasks arises from the fact
that the highly efficient transfer of information, charge, heat,
spin, and optical signals in the form of solitons requires
development of effective models providing tools for tunable
wave transport in given low-dimensional materials. The topic
of soliton transport in branched structures has attracted much
attention [1–18].

An effective model that can be used to model soliton
dynamics in networks is based on the solution of nonlinear
wave equations on metric graphs. These metric graphs are a
set of bonds (each assigned a length) connected to each other
according to a rule, which is called the topology of a graph.
Solving the wave equation in such a domain requires imposing
boundary conditions both at the branching points (vertices)
and at the ends of each branch. During the past decade, differ-
ent nonlinear wave equations on networks have become one
of the rapidly developing topics in both theoretical and mathe-
matical physics. The early study of the nonlinear Schrödinger
equation (NLSE) and soliton dynamics in networks dates back
to Refs. [1,2], where the integrability of the NLSE under
certain constraints was shown. Later such study was extended
to the NLSE on planar graphs [7] and sine-Gordon [10],
nonlinear Dirac [14], and nonlinear heat [16] equations. For
details on the corresponding stationary problem we refer the
reader to [4,9,11,13]. We note that the linear counterparts of
these problems, which are called quantum graphs were studied
earlier in different contexts (see, e.g., Refs. [19,20]). The
extension to the case of nonlinear scattering was discussed
in [21–23].

A very important feature of the wave transport in net-
works is the transmission of solitons through the network
branching points, which is usually accompanied by the reflec-
tion (backscattering) of a wave at these points. If reflection

dominates compared to transmission, then the “resistivity” of
a network with respect to the soliton propagation becomes
large and this makes such network less effective for the use
of signal transfer. Therefore, it is quite important from the
viewpoint of practical applications to reduce such resistivity
by providing a minimum of reflection, or by its absence.
This task leads to the problem of tunable soliton transport in
networks, whose ideal result should be reflectionless trans-
mission of the waves through the branching points of the
structure. For practical applications in condensed matter, such
transmission implies ballistic transport of charge, spin, heat
and other carriers in low-dimensional branched materials. The
latter is essential for the functionalization of low-dimensional
materials having branched structure.

Reflectionless transport of solitons in optical fiber net-
works is another important problem in fiber optics, as many
information-communication devices (e.g., computers, com-
puter networks, telephones, etc.) use solitons for information
(signal) transfer. Such networks are also used in different
optoelectronic devices. High speed and lossless transfer of
information in such devices require minimum backscattering
or its absence. Important areas, where the reflectionless or
ballistic transport of optical solitons in networks is required,
are molecular electronics and conducting polymers [17].

Earlier, the possibility of reflectionless transmission of
solitons in networks was considered in several studies. In
particular, it was found in Refs. [1,2] that the transmission
of solitons through the network branching point can be reflec-
tionless, provided that certain constraints are fulfilled. It was
also shown that these constraints provide the integrability of
the NLSE on networks. Later, a similar effect was observed
for other nonlinear partial differential equations (PDEs), such
as the sine-Gordon equation [10] and the nonlinear Dirac
equation [14]. In other words, the above studies revealed a
conjecture (at least for a few PDEs), which states that if
a nonlinear wave equation on a network is integrable, then
the transmission of solitons through the branching points
becomes reflectionless.
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In this paper we give a proof of the above conjecture
by showing that the constraints providing such reflectionless
transmission and integrability of the NLSE on networks link
equivalent usual Kirchhoff-type vertex boundary conditions to
the so-called transparent boundary conditions (TBCs). These
latter conditions were well studied previously in detail in
Refs. [24–39]. The linear counterpart of the problem, i.e., the
problem of transparent quantum graphs, was considered in the
authors’ recent paper [40]. Here we extend the method used in
Ref. [40] to the case of the nonlinear Schrödinger equation.

The paper is organized as follows. In the next section we
briefly recall the concept of TBCs for the NLSE on the real
line. Section III provides an extension of the concept of TBCs
to solitons in networks described by the NLSE on metric
graphs and presents some numerical results. Finally, Sec. IV
presents some concluding remarks.

II. TRANSPARENT BOUNDARY CONDITIONS FOR THE
NONLINEAR SCHRÖDINGER EQUATION ON A LINE

The problem of transparent boundary conditions (TBCs)
for linear partial differential equations (PDEs) is a well de-
veloped topic in mathematical and theoretical physics (see,
e.g., [24–39] for reviews). TBCs allow one to formulate PDE
problems, originally posed on an unbounded domain, on a
bounded domain, making them more accessible to a proper
numerical treatment.

However, despite such progress in recent decades, for
nonlinear PDEs the topic is not well established yet due to the
missing integral transforms (Laplace, Fourier, z transforms)
in the nonlinear case. One of the most effective approaches
for the nonlinear case is considering the nonlinear term as
a potential in a linear PDE; it is called the “potential ap-
proach.” Below we briefly recall this approach by following
Refs. [41,42].

We consider the wave (particle) motion in a one-
dimensional (1D) domain (−∞, + ∞) described by the
following time-dependent nonlinear Schrödinger equation
(NLSE):

i∂tψ + ∂2
x ψ + β|ψ |2ψ = 0, x ∈ R, t > 0, (1)

with the initial condition

ψ (x, 0) = ψ0(x), x ∈ R. (2)

In the pioneering papers [43,44], where explicit forms of TBC
for the linear wave equations were derived, the main physical
condition, to be fulfilled by traveling waves, was the absence
of waves going in the left direction at the right boundary
(x = L) and the absence of right-side going waves at the left
boundary (x = 0). However, the derivation of TBCs for the
nonlinear case is much more complicated than that for the
linear one. One can use the so-called potential approach [30]
and consider formally Eq. (1) as a linear Schrödinger equation
with the potential V = V (x, t ) = β|ψ (x, t )|2. Then, one can
rewrite Eq. (1) in a “linear form” as

i∂tψ + ∂2
x ψ + V ψ = 0, x ∈ R, t > 0, (3)

Let us denote by ψ the solution of Eq. (3) and by v the new
unknown defined by the relation (“gauge change”)

v(x, t ) = e−iν(x,t )ψ (x, t ), (4)

where

ν(x, t ) =
∫ t

0
V (x, s) ds. (5)

We get for the time and space derivatives of ψ in (3)

i∂tψ = eiν (i∂t − V )v, (6)

∂2
x ψ = ieiν

[
∂2

x v + 2i∂xν∂xv + i∂2
x νv − (∂xν)2v

]
, (7)

and thus v satisfies a Schrödinger-type equation,

LSE(x, t, ∂x, ∂t )v := i∂tv + ∂2
x v + A∂xv + Bv = 0, (8)

with A = 2i∂xν and B = i∂2
x ν − (∂xν)2.

Now expanding the factorization (8), we get

LSE = (∂x + i�−)(∂x + i�+)

= ∂2
x + i(�− + �+)∂x + i Op(∂xλ

+) − �−�+, (9)

where �± = �±(x, t, ∂t ) are classical pseudodifferential op-
erators [45] and λ±

1/2 are the principal symbols of the operators
�± given by λ±

1/2 = ∓√−τ with some function τ . The total
symbol λ± = σ (�±) of �± admits an asymptotic expansion
in inhomogeneous symbols as

λ± = σ (�±) ∼
+∞∑
j=0

λ±
1/2− j/2. (10)

From (9) we deduce the system of operators

i(�− + �+) = A, (11)

i Op(∂xλ
+) − �−�+ = i∂t + B, (12)

which yields the following symbolic system of equations:

i(λ+ + λ−) = A, (13)

i∂xλ
+ −

+∞∑
α=0

(−i)α

α!
∂α
τ λ−∂α

t λ+ = −τ + B. (14)

If we identify the terms of order 1/2 in Eq. (13), we obtain
λ−

1/2 = −λ+
1/2. Then from Eq. (14) we get

λ+
1/2 = ±√−τ . (15)

The Dirichlet-to-Neumann (DtN) operator corresponds to
the choice λ+

1/2 = −√−τ . From the factorization (8) we
have the following TBC applied to the unknown wave func-
tion v at the artificial boundaries at x = 0 and x = L:

(−∂x + i�+)v(0, t ) = 0, (16)

(∂x + i�+)v(L, t ) = 0. (17)

Then using Eq. (4) the formal TBCs for ψ at x = 0 and x = L
can be written as [41]

−∂xψ (0, t ) + e−i π
4 eiν(0,t )∂

1/2
t (e−iν(0,t )ψ (0, t )) = 0, (18)

∂xψ (L, t ) + e−i π
4 eiν(L,t )∂

1/2
t (e−iν(L,t )ψ (L, t )) = 0, (19)
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where the fractional 1/2 derivative is given by

∂
1/2
t f (t ) = 1√

π
∂t

∫ t

0

f (s)√
t − s

ds. (20)

Let us note that in (20) the derivative can be directly per-
formed but this would increase the singularity in the convo-
lution kernel. Also, the formulation (20) is better suited for
later numerical discretizations. A simple calculation shows
that (18) and (19) are equivalent to the so-called impedance
boundary condition, [26,30] that has the form of a Neumann-
to-Dirichlet operator.

Formally, Eqs. (18) and (19) are similar to those for
the linear case. We remark that a detailed treatment of
Eqs. (1), (2), (18), and (19) can be found in Refs. [41,42],
where the discretization scheme and the numerical method for
this problem are also presented. We note that the boundary
conditions (18) and (19) hold for both the focusing (β > 0)
and the defocusing (β < 0) cases. In the next section we will
modify these boundary conditions for the NLSE on metric
graphs.

III. TRANSPARENT BOUNDARY CONDITIONS
FOR NLSE ON METRIC GRAPHS

Soliton dynamics in networks is one of the rapidly evolving
topics of the past decade. The early treatment of the problems
dates back to Ref. [1], where soliton solutions of the NLSE on
metric graphs were obtained and integrability of the problem
under certain constraints was shown by proving the existence
of an infinite number of conserving quantities.

An interesting feature found in [1] was the fact that, for
integrable cases, the transmission of solitons through the
graph vertices is reflectionless, i.e., there is no backscattering
of solitons at the graph branching point. An explanation
of such an effect was given in the recent papers [12,46],
where it was stated that if the parameters of the generalized
Kirchhoff boundary conditions on a star graph are related to
the parameters of the nonlinear evolution equation and satisfy
a single constraint, then the nonlinear evolution equation on
the star graph can be reduced to the homogeneous equation
on the infinite line.

Here we provide a proof of this conjecture, by showing that
vertex boundary conditions in the form of weight continuity
and generalized Kirchhoff rules become equivalent to trans-
parent boundary conditions, if the parameters of the problem
fulfill the integrability condition given in the form of the sum
rule. To do this, we will apply the above method for imposing
TBCs to the NLSE on metric graphs. Before doing this, let us
briefly recall the treatment of the NLSE on metric graphs, cf.
Ref. [1].

Before, this was done for quantum graphs described by the
linear Schrödinger equation on metric graphs. We consider
the star graph with three bonds Bj (see Fig. 1), for which a
coordinate x j is assigned. Choosing the origin of coordinates
at the vertex, 0, for bond B1 we put x1 ∈ (−∞, 0] and for B1,2

we fix x2,3 ∈ [0,+∞). In what follows, we use the shorthand
notation � j (x) for � j (x j ) where x is the coordinate on the
bond j to which the component � j refers. The nonlinear
Schrödinger equation on each bond Bj of such a graph can

0

B1

B2

B3

FIG. 1. Sketch of a star graph with three semi-infinite bonds.

be written as

i ∂tψ j + ∂2
x ψ j + β j |ψ j |2ψ j = 0, x ∈ Bj, t > 0. (21)

Solving Eq. (21) requires imposing initial conditions and
boundary conditions at the branching point. The latter can be
derived from the fundamental physical laws, such as norm and
energy conservation, which are given as

dN

dt
= 0,

dE

dt
= 0, (22)

where

N (t ) =
∫ 0

−∞
|ψ1|2 dx +

∫ ∞

0
|ψ2|2 dx +

∫ ∞

0
|ψ3|2 dx

and

E = E1 + E2 + E3,

with

Ej =
∫

Bj

[∣∣∣∣∂ψ j

∂x

∣∣∣∣
2

− β j

2
|ψ j |4

]
dx.

It was shown in Ref. [1] that the conservation laws (22)
lead to the vertex conditions

α1ψ1(0) = α2ψ2(0) = α3ψ3(0) (23)

and the generalized Kirchhoff rules

1

α1

∂ψ1

∂x

∣∣∣∣
x=0

= 1

α2

∂ψ2

∂x

∣∣∣∣
x=0

+ 1

α3

∂ψ3

∂x

∣∣∣∣
x=0

, (24)

where α j are nonzero real constants. The asymptotic condi-
tions for Eq. (21) are imposed as

lim
|x|→+∞

ψ j = 0. (25)

The single soliton solutions of Eq. (21) fulfilling the vertex
boundary conditions (23) and (24) and the asymptotic condi-
tion (25) can be written as [1]

ψ j (x, t ) = a

√
2

β j

exp
[
i vx

2 − i
(

v2

4 − a2
)
t
]

cosh[a(x − l − vt )]
, (26)

where the parameters β j fulfill the sum rule

1

β1
= 1

β2
+ 1

β3
. (27)

Here v, l , and a are bond-independent parameters characteriz-
ing velocity, initial center of mass, and amplitude of a soliton,
respectively.
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FIG. 2. The profile of the wave function plotted at differ-
ent time moments t = 0 (a), t = 1.6 (b), t = 2.8 (c), and t = 4
(d) for the regime in which the sum rule is fulfilled (no reflection
occurs): α1 = √

β1 = 1/
√

1/2 + 1/4, α2 = √
β2 = √

2, and α3 =√
β3 = √

4. Each column number (from left to right) corresponds
to a bond number.

Equation (27) represents the conditions for integrability of
the problem given by Eqs. (21), (23), (24), and (25), i.e., the
integrability of the NLSE on a metric star graph plotted in
Fig. 1. It was shown in [1] that under the constraint (27) the
problem has an infinite number of constants of motion. Below
we show an additional consequence of Eq. (27), which can
be formulated as follows: If the parameters β j in Eq. (21)
fulfill the condition (constraint) (27), then the vertex boundary
conditions (23) and (24) become equivalent to the TBCs at the
point 0.

Without loss of generality of the approach, we can assume
that α j = √

β j . To impose TBCs for the NLSE on the metric

graph shown in Fig. 1, we split the whole domain (graph) into
two domains called “interior” (−∞ < x < 0) and “exterior”
(0 < x < ∞) ones (see, e.g., Refs. [25–28,40] for details).
Correspondingly, we have interior and exterior problems. The
interior problem is given on B1 by the equations

i ∂ψ1 + ∂2
x ψ1 + β1|ψ1|2ψ1 = 0, x < 0, t > 0,

ψ1|t=0 = �I (x), ∂xψ1|x=0 = (T+ψ1)|x=0.

The exterior problems for B2,3 can be written as

i ∂ψ2,3 + ∂2
x ψ2,3 + β2,3|ψ2,3|2ψ2,3 = 0, ψ2,3|t=0 = 0,

ψ2,3|x=0 = 
2,3(t ), 
2,3(0) = 0,

(T+
2,3)|x=0 = ∂xψ2,3|x=0.

We rewrite the NLSE of exterior problems for B2,3 as

i ∂ψ2,3 + ∂2
x ψ2,3 + V2,3ψ2,3 = 0, (28)

with the potentials V2,3 = β2,3|ψ2,3|2. Furthermore, we intro-
duce the new functions v2,3 given as

v2,3(x, t ) = e−iν2,3(x,t )ψ2,3(x, t ), (29)

where

ν2,3(x, t ) =
∫ t

0
V2,3(x, s) ds. (30)

Then from the factorization in Eq. (9) we have the following
TBCs for the wave functions v2,3:

(−∂x + i�+)v2,3(0, t ) = 0. (31)

Using Eq. (29) we can write the formal TBCs for ψ2,3 at x = 0
as

− ∂xψ2,3(0, t ) + e−i π
4 eiν2,3(0,t )∂

1/2
t (e−iν2,3(0,t )ψ2,3(0, t )) = 0.

(32)

Using the vertex boundary condition (23) we have

∂xψ2,3|x=0 = 1√
π

e−i π
4 +iβ2,3

∫ t
0 |ψ2,3(0,s)|2ds

× ∂t

∫ t

0

ψ2,3(0, τ )e−iβ2,3
∫ τ

0 |ψ2,3(0,s)|2ds

√
t − τ

dτ

= 1√
π

√
β1

β2,3
e−i π

4 +iβ1
∫ t

0 |ψ1(0,s)|2ds

× ∂t

∫ t

0

ψ1(0, τ )e−iβ1
∫ τ

0 |ψ1(0,s)|2ds

√
t − τ

dτ . (33)

From the vertex boundary condition (24) and (33) we get

∂xψ1|x=0 =
√

β1√
β2

∂xψ2|x=0 +
√

β1√
β3

∂xψ3|x=0

= 1√
π

β1

(
1

β2
+ 1

β3

)
e−i π

4 +iβ1
∫ t

0 |ψ1(0,s)|2ds

× ∂t

∫ t

0

ψ1(0, τ )e−iβ1
∫ t

0 |ψ1(0,s)|2ds

√
t − τ

dτ. (34)
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α
3
=41/2

FIG. 3. Dependence of the vertex reflection coefficient R on the
parameter α1 when time elapses (t = 4).

It is clear that if the sum rule given by Eq. (27) is fulfilled,
i.e.,

β1

(
1

β2
+ 1

β3

)
= 1,

then the boundary condition given by Eq. (34) coincides with
that in Eq. (19). Thus fulfilling the sum rule (27) implies
that the vertex boundary conditions (23) and (24) become
equivalent to the TBCs at the graph vertex. This can be shown
by direct numerical solution of Eq. (21) for the boundary con-
ditions (23) and (24). In Fig. 2 the profile of the soliton |ψ j |2
obtained numerically is plotted at different time moments for
the regime in which the sum rule (27) is fulfilled. Numerical
simulations are performed for the right traveling Gaussian
wave packet given by

�I (x) = (2π )−1/4 exp[2.5ix − (x + 5)2/4]

at four consecutive time steps.
To show that, for the case in which the sum rule is violated

the transmission of soliton is accompanied by reflections, in
Fig. 3 we plotted the reflection coefficient, which is deter-
mined as the ratio of the partial norm for the first bond to the
total norm,

R = N1

N1 + N2 + N3
,

as a function of α1 for the fixed values of α2 and α3. It is
clear from this plot that the reflection coefficient becomes
zero at the value of α1, which fulfills the sum rule (27).
This also can be considered as additional confirmation of the

vertex boundary conditions in Eqs. (23) and (24) becoming
equivalent to the transparent ones. It is clear that such a
conjecture can be derived for a star graph with an arbitrary
number of bonds. Finally, we note that the above constraint
for TBCs given by Eq. (27) is applicable not only for solitons,
but for arbitrary solutions of the NLSE on graphs.

IV. CONCLUSIONS

In this paper we have studied the problem of reflectionless
soliton transport in network branching points by modeling
the soliton dynamics in networks in terms of the nonlin-
ear Schrödinger equation on metric graphs. By combining
the concept of transparent boundary conditions with the
Kirchhoff-type boundary conditions at the vertex, we derived
constraints which make the latter conditions equivalent to
the transparent ones. This gives a clear explanation of the
previously observed [1] conjecture on the absence of soliton
backscattering when the NLSE on metric graphs is integrable
and the integrability is provided in terms of the above con-
straint.

Also, solving the problem numerically, we have shown for
the star graph a reflectionless transmission of solitons through
the vertex in the case in which the parameters fulfill the sum
rule. We note that this approach can be directly extended
to arbitrary graph topologies which contain any subgraph
connected to two or more outgoing, semi-infinite bonds.
Moreover, we believe that our approach can be extended to
other PDEs, where a similar regime of reflectionless vertex
transmission of sine-Gordon [10] and Dirac [14] solitons has
been observed. We remark that our approach can be directly
extended to other graphs topologies, such as tree, loop, trian-
gle, etc., provided the graph consists of finite subgraphs and
two or more semi-infinite outgoing bonds.

The above model for reflectionless soliton transport
through the network branching points may have direct and im-
portant applications for different, practically important prob-
lems of optics, condensed matter, and polymers. Among such
applications one can consider optical fiber networks widely
used in computing and communication technologies, where
the signal transfer is done in the form of soliton transport.
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