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Self-excited oscillation and synchronization of an on-fiber optomechanical cavity
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We study a fully on-fiber optomechanical cavity and characterize its performance as a sensor. The cavity is
formed by patterning a suspended metallic mirror near the tip of an optical fiber and by introducing a static
reflector inside the fiber. Optically induced self-excited oscillation (SEO) is observed above a threshold value of
the injected laser power. The SEO phase can be synchronized by periodically modulating the optical power that
is injected into the cavity. Noise properties of the system in the region of synchronization are investigated. More-
over, the spectrum is measured near different values of the modulation frequency, at which phase locking occurs.
A universal behavior is revealed in the transition between the regions of phase locked and free running SEO.

DOI: 10.1103/PhysRevE.100.032202

I. INTRODUCTION

Resonant detection is a widely employed technique in a
variety of applications. A detector belonging to this class
typically consists of a resonator, which is characterized by an
angular resonance frequency ω0 and a characteristic damp-
ing rate γ0. Detection is achieved by coupling a physical
parameter of interest, denoted here as q, to the resonator in
such a way that ω0 becomes q-dependent. The sensitivity
of the detection scheme that is employed for monitoring the
parameter of interest q can be characterized by the minimum
detectable change in q, denoted as δq. For small changes, δq

is related to the minimum detectable relative change in the
frequency σω = δω0/ω0 by the relation δq = |∂ω0/∂q|−1ω0σω.
The dimensionless parameter σω, in turn, typically depends on
the noises affecting the resonator and on the averaging time ta
of the measurement.

A commonly employed detection scheme is based on ex-
ternally driving the resonator with a monochromatic force at
a frequency close to the resonance frequency and monitoring
the response using homodyne detection of a displacement sen-
sor signal. For this case, the normalized minimum detectable
change in the frequency is found to be given by σω = σω0,
where [1]

σω0 =
(

2γ0kBTeff

U0ω
2
0ta

)1/2

, (1)

where kB is Boltzmann’s constant, Teff is the noise effective
temperature (which is identical to the thermodynamic temper-
ature in the absence of any other sources of noise), and U0 is
the energy stored in the externally driven resonator in steady
state. Note that Eq. (1) is derived by assuming that the re-
sponse of the resonator is linear and by assuming the classical
limit, i.e., kBTeff � h̄ω0, where h̄ is Planck’s constant. The
generalization of Eq. (1) for the case of nonlinear response is
discussed in Ref. [2]. Note that other contributions to σω (e.g.,
instrumental noise) are not analyzed in this paper.

In the just mentioned scheme, the resonator is driven into a
so-called state of forced oscillation (FO) by applying a fixed
periodic external force. Alternatively, in some cases backre-
action effects can be exploited for generating a so-called state
of self-excited oscillation (SEO) [3–6]. In this paper, we study
SEO in an on-fiber optomechanical cavity device (see Fig. 1),
which is formed between a fiber Bragg grating (FBG) mirror,
serving as a static reflector, and a vibrating mirror fabricated
on a mechanical resonator next to the tip of the single-mode
optical fiber. The movable mirror can be driven into the SEO
state by injecting a monochromatic laser light into the fiber.
The SEO occurs via bolometric feedback effects. Further, by
periodically modulating the laser intensity, it is possible to
lock the phase of SEO to a rational fraction of the modulation
frequency.

Driving an on-fiber optomechanical cavity into the state
of SEO is easier in comparison with the case of FO, which
requires the fabrication of additional elements near the tip
of the fiber that need to be electrically wired. In contrast,
SEO can be induced by optical excitation only. In this paper,
we study the performance of the device as a sensor in the
regime of SEO, both with and without synchronization, and
we compare the results to the case of FO [see Eq. (1)]. We
find that synchronization gives rise to a suppression in phase
noise, which in turn allows a sensitivity enhancement.

Optomechanical cavities [8–14] are widely employed for
various sensing [3–6] and photonics [15–21] applications.
Such systems may allow experimental study of the crossover
between classical to quantum realms [22]. The effect of radi-
ation pressure typically governs the optomechanical coupling
(i.e., the coupling between the electromagnetic cavity and the
mechanical resonator that serves as a movable mirror) when
the finesse of the optical cavity is sufficiently high [10,12,23–
26], whereas bolometric effects can contribute to the optome-
chanical coupling when optical absorption by the vibrating
mirror is significant [11,27–34]. Generally, bolometric effects
are dominant in systems comprised of relatively large mir-
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FIG. 1. Experimental setup. (a) A schematic drawing of the sam-
ple and the experimental setup. An on-fiber optomechanical cavity is
excited by a tunable laser with an external Mach-Zehnder amplitude
optical modulator (OM). The mechanical resonator has quality factor
ω0/2γ0 = 3800 and the cavity has finesse βF = 2.1. The reflected
light intensity is measured using a photodetector (PD), which is
connected to an amplifier. (b) Electron micrograph of the suspended
micromechanical mirror (reproduced from Ref. [7]), whose mass is
m = 1.1 × 10−12 kg.

rors, in which the thermal relaxation rate is comparable to
the mechanical resonance frequency [31–33,35]. These sys-
tems [11,27,29,35–37] exhibit many intriguing phenomena,
including mode cooling [9,29,32,35,38–41], synchronization
[42–44], and sidebands [45].

II. EXPERIMENTAL SETUP

The optomechanical cavity, which is schematically shown
in Fig. 1(a), was fabricated on the flat polished tip of a
single-mode fused silica optical fiber with an outer diameter
of 126 μm (Corning SMF-28 operating at a wavelength
band around 1550 nm) held in a zirconia ferrule [46]. A
10-nm-thick chromium layer and a 200 nm gold layer were
successively deposited by thermal evaporation. The bilayer
was directly patterned by a focused ion beam to the desired
mirror shape (20-μm-wide doubly clamped beam). Finally,
the mirror was released by etching approximately 12 μm of
the underlying silica in 7% HF acid (90 min etch time at room
temperature). The suspended mirror remained supported by
the zirconia ferrule, which is resistant to HF.

The static mirror of the optomechanical cavity was pro-
vided by a FBG mirror [36] (made using a standard phase
mask technique [47], with a grating period of 0.527 μm and
length ≈ 8 mm) having a reflectivity band of 0.4 nm full width
at half-maximum centered at λ0 = 1545 nm. The length of
the optical cavity was l ≈ 10 mm, providing a free spectral
range of 	λ = λ2

0/2neff l ≈ 80 pm (where neff = 1.468 is the
effective refraction index for SMF-28).

Monochromatic light was injected into the fiber bearing the
cavity on its tip from a laser source with an adjustable output

wavelength λ and power level PL. The laser was connected
through an optical circulator, which allowed the measurement
of the reflected light intensity PR by a fast responding photode-
tector [see Fig. 1(a)]. The detected signal was analyzed by an
oscilloscope and a spectrum analyzer. The experiments were
performed in vacuum (at residual pressure below 0.01 Pa) at
a base temperature of 77 K. Thermal contraction gives rise
to cooling-induced enhancement of the quality factor of the
mechanical resonator [48]. In addition, cooling down using
liquid nitrogen greatly improves the stability of temperature
and allows the pressure to be maintained in the experimental
chamber low without continuously applying active pumping.
Further details on the device fabrication and the experimental
setup can be found in Ref. [7].

The optically induced SEO in our device is attributed to
the bolometric optomechanical coupling between the optical
mode and the mechanical resonator [36,37]. While the phase
of SEO randomly diffuses in time when the laser power that
is injected into the cavity is kept constant, phase-locking
[49–54] may occur when the laser power is periodically mod-
ulated in time. Such locking results in entrainment [55], i.e.,
synchronization [56,57] between the SEO and the external
modulation [58].

III. EVOLUTION EQUATION

In the limit of small displacement, the rotating-wave ap-
proximation can be employed in order to derive a first-order
evolution equation given by [37,59]

Ȧ + (
eff + i�eff )A = ξ (t ) + ϑ (t ). (2)

The mechanical displacement is related to the complex am-
plitude A as x(t ) = x0 + 2 ReA(t ), where x0 is an optically
induced static displacement. An overdot denotes a deriva-
tive with respect to time t . To lowest nonvanishing order
in |A|2, the damping rate 
eff and the angular resonance
frequency �eff are given by 
eff = 
0 + 
2|A|2 and �eff =
�0 + �2|A|2. The term ξ (t ) represents the effective force
that is generated due to the laser power modulation. The
fluctuating term ϑ (t ) = ϑx(t ) + iϑy(t ), where both ϑx and ϑy

are real, represents white noise [60,61], and the following is
assumed to hold: 〈ϑx(t )ϑx(t ′)〉 = 〈ϑy(t )ϑy(t ′)〉 = 2�δ(t − t ′)
and 〈ϑx(t )ϑy(t ′)〉 = 0, where � = γ0kBTeff/4mω2

0, γ0 and ω0

are, respectively, the intrinsic damping rate and angular fre-
quency of the resonator, m is its mass, kB is Boltzmann’s
constant, and Teff is the effective noise temperature. Expres-
sions for the coefficients x0, 
0, 
2, �0, and �2, which all
depend on the properties of the optical cavity and on the laser
wavelength and power, are given in Appendix A. Both rates
ω0 and γ0 are experimentally extracted from the line shape
of the peak in the spectrum generated by thermal noise (see
Fig. 6 of Ref. [36]).

IV. RESONANCE DETECTION WITH SEO

In the absence of laser modulation, i.e., when ξ (t ) = 0, the
equation of motion (2) describes a van der Pol oscillator [50].
Consider the case in which 
2 > 0, for which a supercritical
Hopf bifurcation occurs when the linear damping coeffi-
cient 
0 vanishes. Above threshold, i.e., when 
0 becomes

032202-2



SELF-EXCITED OSCILLATION AND SYNCHRONIZATION … PHYSICAL REVIEW E 100, 032202 (2019)

negative, the amplitude Ar of SEO is given by r0 = √−
0/
2

and the angular frequency �H of SEO by �H = �eff (r0).
The method of resonance detection can be implemented

in the regime of SEO. The normalized minimum detectable
change in the frequency σω in this regime has been evaluated
in [7], and it was found to be given by

σω = σω0

(
1 + ζ 2

0

4|
0|
2

)1/2

, (3)

where ζ0 = d�eff/d|A|. The above result (3) indicates that for
the same value of the stored energy U0, the smallest detectable
change δq in the measured parameter q is (1 + ζ 2

0 /4|
0|
2)1/2

larger for the current case of SEO in comparison with the case
of FO [see Eq. (1)]. The reduced sensitivity is attributed to
the dependence of �eff on the amplitude |A| of oscillation,
which gives rise to elevated phase noise. Recall that in the
regime of SEO, in which no periodic driving is applied, the
phase of oscillation is not externally dictated, and conse-
quently it becomes more susceptible to noise. For the device
under study in this work, the degradation factor is given by
(1 + ζ 2

0 /4|
0|
2)1/2 � 10.

V. SYNCHRONIZATION

In the regime of SEO, phase noise can be suppressed by
modulating the injected laser power at an angular frequency
ωd close to the angular frequency �eff . When fluctuations
are dominated by phase noise, Eq. (2) can be simplified
by disregarding fluctuations in the amplitude |A| (i.e., by
assuming that |A| = r0). In this approach, one finds that the
relative phase γ between mechanical oscillation and the ap-
plied modulation evolves in time according to [see Eq. (B11)]

dγ

dτ
+ sin γ = ib + in, (4)

where ib = (ωd − �eff )/ωa is a normalized detuning, τ = ωat
is a dimensionless time variable, and ωa is the modulation
amplitude. The term in represents white noise having a
vanishing expectation value 〈in〉 = 0 and autocorrelation
function 〈in(τ )in(τ ′)〉 = 2γgδ(τ − τ ′), where γg = �/(ωar2

0 )
[see Eq. (B13)].

In the region of synchronization, in which |ib| � 1, Eq. (4)
has a stationary solution given by γ = sin−1 ib, whereas γ

becomes time-dependent when |ib| > 1. In that region and
when noise is disregarded, the time evolution of γ (τ ), which
is given by Eq. (B15), is a periodic function of τ with a period
given by TJ = 2π/

√
i2
b − 1 [see Eq. (B16)]. The Fourier series

expansion of dγ /dτ is given by Eqs. (B24) and (B25). The
periodic time evolution of the relative phase γ gives rise to
sidebands in the spectrum at the angular frequencies ωd +
nωs, where n is an integer and the sideband spacing ωs is given
by ωs = 2πωa/TJ =

√
(ωd − �eff )2 − ω2

a .
The equation of motion (4) indicates that the dynamics

of the relative phase γ is governed by a potential Ub(γ ) =
− cos γ − ibγ having the shape of a tilted washboard. The
shape of the barriers separating local minima points of Ub(γ )
(when |ib| < 1) can be controlled by adjusting the frequency
detuning ωd − �eff and modulation amplitude ωa. The highly
nonlinear response of the system near the onset point of syn-

FIG. 2. Power spectrum vs detuning. (a) The measured power
spectrum as a function of (ωd − �eff )/�eff , where �eff/2π =
236.4 kHz. In this measurement, the average laser power is set to
PL = 12 mW (the SEO threshold power is 8.5 mW), the wavelength
to λ = 1545.498 nm (10 pm red detuned from a cavity optical
resonance), and the dimensionless laser modulation amplitude to
0.025. (b) Theoretical calculation of the power spectrum based on
the solution of Eq. (4). In both plots, synchronization occurs when
|ib| < 1 and sidebands are observed when |ib| > 1.

chronization can be exploited for some sensing applications.
Note that an equation of motion similar to (4) governs the
dynamics of a current-biased Josephson junction in the so-
called overdamped regime [62]. The effect of the noise term
in on voltage fluctuations across a Josephson junction in the
quantum regime has been investigated in [63,64].

VI. SA MEASUREMENTS

The measured power spectrum of the photodetector signal
is plotted in Fig. 2(a) as a function of (ωd − �eff )/�eff =
ibωa/�eff . In the absence of power laser modulation, the fre-
quency of SEO is given by �eff/2π = 236.4 kHz. As can be
seen from Fig. 2(a), in the region |(ωd − �eff )/�eff | � 2.1 ×
10−4 synchronization occurs, and thus ωa/2π = 49.6 Hz for
this measurement. The above-discussed sidebands are clearly
visible in the region |(ωd − �eff )/�eff | > ωa/�eff , i.e., when
|ib| > 1. The theoretically calculated power spectrum is pre-
sented in Fig. 2(b) for comparison. The amplitudes of the
sidebands are determined using the Fourier series expansion
[see Eqs. (B24) and (B25)]. Good agreement between data
and theory is found.

For the data presented in Fig. 2(a), synchronization
occurs when ωd/�eff � 1. Similar synchronization is ob-
served when the ratio ωd/�eff is tuned close to other ra-
tional values [42,43]. As an example, the measured power
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FIG. 3. Measured power spectrum vs detuning for the case in
which ωd/�eff � 1/2. Other experimental parameters are listed in
the caption of Fig. 2.

spectrum for the case in which ωd/�eff � 1/2 is shown
in Fig. 3. As can be seen from the comparison with
Fig. 2(a), the results are qualitatively similar. Although it
is not shown here, very similar behaviors were also ob-
served experimentally at other ratios, including ωd/�eff �
1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, and 4/5. This highlights
universal aspects of the phase-locking phenomenon when the
drive frequency approximately matches a rational multiple of
the natural self-oscillation frequency.

Phase-locking near rational values of the ratio ωd/�eff

is qualitatively discussed in Appendix C. It is found that
just outside the locking regime, the frequency of oscillation
undergoes a transition from a value dictated by the externally
applied modulation to the value corresponding to free running
SEO. Moreover, this transition is expected to obey a “square-
root law” [65] for both integer and fractional values of the
ratio ωd/�eff . That is, the unlocking occurs continuously, with
the deviation between the oscillator frequency from the (frac-
tion of) drive frequency depending on the control parameter
δ (drive amplitude, or detuning) as ∝ √|δ − δc|, where δc is
the critical—“unlocking”—value of δ. This universality in the
behavior just outside the locking regime is demonstrated by
the similarity of the spectrum measured near different locking
regions (see Figs. 2 and 3).

VII. RESONANCE DETECTION IN THE REGION
OF SYNCHRONIZATION

The effect of noise can be taken into account by linearizing
Eq. (4), which becomes

dγn

dτ
+ γn cos γ = in, (5)

where γ represents a solution in the noiseless case and γn is a
fluctuating term added to γ due to noise. For the case |ib| < 1,
one finds from the stationary solution of Eq. (4) that cos γ =√

1 − i2
b. The power spectrum Sγ (w) of γn as a function of the
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FIG. 4. The variance of the phase γ . (a) Normalized variance
Vγ /γg as a function of ib. The theoretical value is based on the
integrated power spectrum of γ given by Eq. (7). In the numerical
integration, the noise term in in a given time interval of length τs

is represented by a random variable having a vanishing expectation
value and a variance given by 2γg/τs. (b) The measured (crosses) and
calculated (solid line) variance Vγ for the case ib = 0 as a function of
the normalized modulation amplitude γ −1

g .

dimensionless angular frequency w can be found using Eq. (5)
and the autocorrelation function 〈in(τ )in(τ ′)〉

Sγ (w) = γg

π

1

1 − i2
b + w2

. (6)

Near the synchronization threshold, i.e., when |ib| � 1,
noise may give rise to phase-slip events [i.e., transitions
between neighboring wells of the tilted washboard potential
Ub(γ )]. However, Eq. (6) has been derived by disregarding the
contribution of these events. The validity of this approxima-
tion can be examined by numerically integrating the Langevin
equation (4) and by extracting the variance of the phase γ ,
which is denoted by Vγ , from the result. The theoretical value
is obtained from the integrated power spectrum given by
Eq. (6), ∫ ∞

−∞
dw Sγ (w) = γg√

1 − i2
b

. (7)

The plot in Fig. 4(a) shows a comparison between the numer-
ically calculated value of the normalized variance Vγ /γg and

the theoretically predicted value of 1/

√
1 − i2

b that is obtained
from Eq. (6).

The average rate of noise-induced phase slip events can be
expressed using the Kramers formula in terms of the height Vb

of the potential barrier localizing the metastable state [66,67].
With the help of the expansion Ub = −ibπ/2 + (1 − ib)γd −
γ 3

d /6 + O(γ 4
d ), where γ = π/2 + γd, one finds that near syn-

chronization threshold the barrier height is given by Vb =
(4

√
2/3)(1 − ib)3/2. The escape rate predicted by Kramers is

proportional to the Arrhenius factor given by exp (−Vb/γg).
For the parameters of our experiment, this factor is negligibly
small unless 1 − ib � 10−8.
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A measurement of the variance Vγ as a function of the
modulation amplitude ωa for the case of zero detuning (i.e.,
ib = 0) is shown in Fig. 4(b). The variance is extracted from
the PD signal using the method of zero crossing. The solid
line indicates the theoretical prediction.

The correlation function Cγ (τ ′) = 〈γn(τ + τ ′)γn(τ )〉 can
be determined using the Wiener-Khinchine theorem

Cγ (τ ′) =
∫ ∞

−∞
dw eiwτ ′

Sγ (w) = γge−
√

1−i2
b |τ ′|√

1 − i2
b

, (8)

and thus the following holds: 〈exp{i[γn(τ + τ ′) − γn(τ )]}〉 =
1 − γg|τ ′| + O(|τ ′|2), i.e., the so-called jitter rate is given by
γg. Note that γg is independent of ib. In terms of the energy
U0 stored in the mechanical resonator, the dimensionful jitter
rate is given by ωaγg = (kBTeff/U0)γ0. Note that the same
jitter rate is obtained for the case of FO (provided that U0 is
unchanged).

In the region of synchronization, i.e., when |ib| < 1, the
resonance frequency �eff can be determined by monitoring
the relative phase γ . Consider an estimate of the averaged
value of γ based on a sampling of the signal γ + γn(τ ) over
a sampling time of duration τa. The standard deviation δγ in
this estimate is given by

δγ =
(

2πSγ (0)

τa

)1/2

=
(

2γg

τa
(
1 − i2

b

)
)1/2

. (9)

The corresponding deviation δ� in the estimated value of �eff

is given by δ� = Rδγ , where the responsivity R is given by

R = (|dγ /d�eff |)−1 = ωa

√
1 − i2

b, and thus the normalized
minimum detectable change in the frequency is given by
δ�/�H = σω0, where σω0 is given by Eq. (1). Thus for the
same given stored energy U0 in the mechanical resonator, the
same sensitivity is expected in the regions of synchronization
and FO. In other words, the above-discussed degradation in
sensitivity occurring in the region of SEO [see Eq. (3)] can
be fully eliminated by synchronization-induced suppression
of phase noise. Similarly to the case of FO, in the regime
of synchronization the phase of mechanical oscillation is
externally dictated, and consequently noise is suppressed.

VIII. SUMMARY

In summary, the sensitivity of a detector based on a me-
chanical resonator is studied in the SEO regime. It is found
that phase noise can be suppressed by externally applying
a modulation. Moreover, the transition from the regions of
synchronization and free running SEO is explored, and a uni-
versal behavior referred to as the square-root law is revealed.
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APPENDIX A: EVOLUTION EQUATION

The theoretical model [36,37] that is used to derive the
evolution equation (2) is briefly described below. The mi-
cromechanical mirror in the optical cavity is treated as a
mechanical resonator with a single degree of freedom x having
mass m and linear damping rate γ0 (when it is decoupled from
the optical cavity). It is assumed that the angular resonance
frequency of the mechanical resonator depends on the tem-
perature T of the suspended mirror. For a small deviation
of T from the base temperature T0 (i.e., the temperature of
the supporting substrate) it is taken to be given by ω0 − βTR,
where TR = T − T0 and where β is a constant. Furthermore,
to model the effect of thermal deformation [29] it is assumed
that a temperature-dependent force given by mθTR, where θ is
a constant, acts on the mechanical resonator [34]. When noise
is disregarded, the equation of motion governing the dynamics
of the mechanical resonator is taken to be given by

d2x

dt2
+ 2γ0

dx

dt
+ (ω0 − βTR )2x = θTR. (A1)

The intracavity optical power incident on the suspended
mirror is denoted by PLI (x), where PL is the injected laser
power, and the function I (x) depends on the mechanical
displacement x. The time evolution of the relative temperature
TR is governed by the thermal balance equation

dTR

dt
= Q − κTR, (A2)

where Q = ηPLI (x) is proportional to the heating power, η is
the heating coefficient due to optical absorption, and κ is the
thermal decay rate.

The function I (x) depends on the properties of the opti-
cal cavity that is formed between the suspended mechanical
mirror and the on-fiber static reflector. For sufficiently small
x, the expansion I (x) = I0 + I ′

0x + (1/2)I ′′
0 x2 + O(x3) can be

employed, where a prime denotes differentiation with respect
to the displacement x. The coefficients I0, I ′

0, and I ′′
0 are nearly

periodic functions of the optical wavelength (see Fig. 2 of
Ref. [7]).

Consider the case in which the laser power PL is modulated
in time according to PL(t ) = P0 + P1(t ), where P0 is a con-
stant and P1(t ) is assumed to have a vanishing average. When
both P1 and I − I0 are sufficiently small, the problem can be
significantly simplified by employing the approximation Q �
ηP0I + ηP1I0. The displacement x(t ) is expressed in terms
of the complex amplitude A as x(t ) = x0 + 2 ReA, where x0,
which is given by x0 = ηθP0I0/κω2

0, is the averaged optically
induced static displacement. For a small displacement, the
evolution equation for the complex amplitude A is found
to be given by Eq. (2) [37,42], where both the effective
resonance frequency �eff and the effective damping rate 
eff

are real even functions of |A|. To second order in |A| they
are given by 
eff = 
0 + 
2|A|2 and �eff = �0 + �2|A|2,
where 
0 = γ0 + ηθP0I ′

0/2ω2
0, 
2 = γ2 + ηβP0I ′′

0 /4ω0, γ2 is
the intrinsic mechanical nonlinear quadratic damping rate
[68], �0 = ω0 − ηβP0I0/κ , and �2 = −ηβP0I ′′

0 /κ . Note that
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the above expressions for 
eff and �eff are obtained by making
the following assumptions: κ2/ω3

0λ � β/θ � 1/2ω0x0 and
κ � ω0, both of which typically hold experimentally [36].
For our experiment, the heating-induced frequency shift given
by ηβP0I0/κ is typically � 500 Hz. The term ξ (t ) in Eq. (2)
represents the thermal force that is generated due to the
laser power modulation. For the case of a monochromatic
modulation at angular frequency ωd � �eff it is given by
ξ (t ) = ηP1I0θ�−2

0 e−iωdt .

APPENDIX B: MONOCHROMATIC MODULATION
WITH ωd � �eff

In cylindrical coordinates, the complex amplitude of me-
chanical oscillation A is expressed as A = AreiAθ , where Ar =√

A2
x + A2

y is positive, Aθ is real [69], and Eq. (2) is written as

Ȧr + Ar
eff = ξr + ϑr (B1)

and

Ȧθ + �eff (Ar ) = ξθ + ϑθ

Ar
, (B2)

where

ξr = Axξx + Ayξy

Ar
, (B3)

ϑr = Axϑx + Ayϑy

Ar
, (B4)

ξθ = Axξy − Ayξx

Ar
, (B5)

ϑθ = Axϑy − Ayϑx

Ar
, (B6)

A = Ax + iAy, ξ = ξx + iξy, where Ax, Ay, ξx, and ξy are all
real, and the noise terms satisfy the following relations:

〈ϑr (t )ϑr (t ′)〉 = 2�δ(t − t ′), (B7)

〈ϑθ (t )ϑθ (t ′)〉 = 2�δ(t − t ′), (B8)

〈ϑr (t )ϑθ (t ′)〉 = 0. (B9)

Consider the case of a monochromatic modulation at angu-
lar frequency ωd, which is assumed to be close to the angular
frequency �eff . When fluctuations in the amplitude Ar of SEO
are disregarded, i.e., when it is assumed that Ar = r0, Eq. (B2)
becomes [see Eq. (B5)]

Ȧθ + �eff = −ωa sin(Aθ + ωdt ) + ϑθ

r0
, (B10)

where �eff is treated as a constant and where ωa, which
is given by ωa = ηP1I0θ/�2

0r0, represents the modulation
amplitude. In terms of the relative phase γ = Aθ + ωdt and
the dimensionless time τ = ωat , Eq. (B10) can be rewritten
as

dγ

dτ
+ sin γ = ib + in, (B11)

where

ib = ωd − �eff

ωa
, (B12)

and where in = ϑθ/(ωar0). With the help of Eq. (B8) one finds
that

〈in(τ )in(τ ′)〉 = 2γgδ(τ − τ ′), (B13)

where γg = �/(ωar2
0 ).

1. The noiseless case

Consider first the noiseless case, for which in = 0. Below
the time evolution of γ in the region |ib| > 1 is derived.
Rewriting Eq. (B11) as dτ = dγ /(ib − sin γ ) leads by inte-
gration to

τ = 2√
i2
b − 1

tan−1 ib tan γ

2 − 1√
i2
b − 1

. (B14)

Inverting this relation yields

γ = 2 tan−1
1 +

√
i2
b − 1 tan πτ

TJ

ib
, (B15)

where the normalized period time TJ is given by

TJ = 2π√
i2
b − 1

, (B16)

and thus

Aθ = 2 tan−1
1 +

√
i2
b − 1 tan

(√
i2
b−1ωa

2ωd
ωdt

)
ib

− ωdt . (B17)

The averaged derivative 〈dγ /dτ 〉 is related to the period time
TJ by 〈

dγ

dτ

〉
= 1

TJ

∫ TJ

0

dγ

dτ
dτ = 2π

TJ
, (B18)

thus [see Eqs. (B12) and (B16)]〈
dγ

dτ

〉
=

√
i2
b − 1 (B19)

and

−
〈

dAθ

dt

〉
=

⎧⎨
⎩

ωd, |ib| < 1,

ωd − ωa

√
i2
b − 1, |ib| � 1.

(B20)

Therefore, the signal cos Aθ when |ib| � 1 has a Fourier
spectrum made of peaks at the angular frequencies ωd +
nωs, where n is an integer, and the sideband spacing ωs,
which is given by ωs = 2πωa/TJ =

√
(ωd − �eff )2 − ω2

a [see
Eqs. (B12) and (B16)], depends on both the amplitude ωa and
frequency ωd of the forcing term ξ = r0ωaAre−iωdt .

2. Fourier expansion

With the help of Eqs. (B11), (B15), and (B16) together with
the identity sin [2 tan−1 (s)] = 2s/(1 + s2), one finds that

dγ

dτ
= V

(
2πτ

TJ
+ x0

)
, (B21)
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where the function V (x) is defined by

V (x) = i2
b − 1

ib + sin x
, (B22)

and where

x0 = tan−1 1√
i2
b − 1

. (B23)

The Fourier expansion of the function V (x) is expressed as
[see Eq. (B22)]

V (x) =
∞∑

k=−∞
gkeikx, (B24)

where

gk = ib
|ib|

√
i2
b − 1ik

(
ib − ib

|ib|
√

i2
b − 1

)|k|
. (B25)

Thus, the magnitude of the sideband peaks is relatively large
when |ib| � 1. For |ib| � 1, the sidebands become small and
the relative phase becomes γ � (ωd − �eff )t [see Eq. (B15)],
i.e., the effect of laser modulation becomes weak.

APPENDIX C: SQUARE-ROOT LAW

In each of the regions of phase locking [51,52], the so-
called winding number, which measures the oscillator phase
accumulation relative to the phase of the drive, shows a
plateau [53,70–72]. For concreteness, consider the region
just outside the primary plateau where (for positive ib) 0 <

ib − 1 � 1, where ib is the normalized detuning (recall that
|ib| = 1 at the onset of synchronization). The dimensionless
frequency T −1

J in this region is related to the critical parameter
ib − 1 by T −1

J � 2−1/2π−1
√

ib − 1 [see Eq. (B16)]. As is
shown in [65], a similar “square-root law” can be obtained
for the region just outside any other plateau.

Consider a general 1D map having the form

θn+1 = θn − α + WaF (θn), (C1)

that describes, e.g., the phase of the oscillator motion observed
every period of the applied drive. The detuning α is approx-
imately (�eff − ωd )2π/ωd. Wa parametrizes the strength of
applied periodic drive (zero in the absence of drive). The
“map function” is a periodic real function, if we assume that
the phase at the sampling step n + 1 only depends on the
phase at step n, and the phases θ and θ + 2π are physically
indistinguishable, F (θ + 2π ) = F (θ ).

If the drive frequency is near the oscillator frequency, then
the detuning is close to zero. The phase locking corresponds to
a stable fixed point of the map, which can be found by solving
the equation θn+1 = θn ≡ θ∗, that is,

α = WaF (θ∗), (C2)

where θ∗ is the stroboscopic value of the oscillator phase at the
fixed point. Since the function F is continuous and periodic,
it is bounded, and the fixed point of this map only exists for a
small enough detuning.

Suppose now that the drive frequency is an integer fraction
of the oscillator frequency, ωd ≈ �eff/p. Then, since the

FIG. 5. Phase locking-unlocking transition. The blue line repre-
sents mapping of Eq. (C1) on the unlocked side of the transition.
The green line is the staircase diagram that bounces between the
map function and the diagonal θn+1 = θn, graphically implementing
the iteration procedure. Note that most of the iterations (longest
time) is spend around the near-touching region. This leads to the
“square-root” law for the splitting between the drive frequency and
the oscillator frequency.

phase is defined modulo 2π , the effective detuning in this case
is still small and the analysis of the locking transition is based
on the same map equation. The locking will occur to �eff =
pωd. On the other hand, if the frequency of the drive is an
integer multiple (ωd ≈ p�eff ) of the oscillator frequency, then
during one period of the drive, the oscillator will only accrue
a fraction ≈2π/p phase, which in general will correspond to
too large of a detuning over a single period of the drive to
allow for a fixed point solution. However, the problem can be
reduced to a formally equivalent one by iterating the map p
times,

θn+p = θn − pα + W̃aF̃ (θn), (C3)

where the effective detuning pα is now close to 2π , and the
original treatment for the simple locking applies, with the re-
sulting locked frequency being �eff = ωd/p. Note, however,
that the amplitude and the form of the map function are now
different, and generically smaller in magnitude that the p = 1
case. This makes locking to high-frequency drives in general
less stable.

Now, let us look more carefully at the transition out of the
locking regime as a function of detuning, α. Let us define αc

as the value of detuning and θc as the value of the fixed point
θ∗ at the transition between the locked and the running phase
(unlocked) regimes, θc = θ∗(αc). At the critical detuning, the
slope of the map function F vanishes (see Fig. 5). We can
expand the map function around this point up to second
order,

F (θ ) = αc

Wa
[1 − z2(θ − θc)2] + O((θ − θc)3), (C4)

where z is a parameter that characterizes the curvature of the
map function near θc. Indeed, as can be seen from Eq. (C1),
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the map has a fixed point (i.e., a solution to the equation
θn+1 = θn) provided that α < αc (the fixed point is given by
θ∗ = θc + √

1 − α/αc/z).
On the unlocked side, it is convenient to treat the discrete

series yn = θn − θc as a continuous function y(n), since near
θc each iteration step changes θ only slightly (“staircase”
diagram in Fig. 5). Then, from (C1) and (C4),

dy

dn
= αc − α − αcz2y2. (C5)

This equation can be easily integrated in order to determine
how long it takes the phase to pass through the bottleneck
(Fig. 4). For that, the limits of integration over y can be
extended to the full real axis (details of the map function away

from θc do not matter in this regime, since it takes a much
shorter time to go through regions other than the bottleneck).

Thus the estimate for the total number of drive periods for
the phase to wind by 2π relative to the drive is

N (α) = 1

α − αc

∫ ∞

−∞

dy

1 + αc
α−αc

z2y2

= π

z
√

αc|α − αc|
.

This translates into the time period TLC = 2πN (α)/ωd per
2π phase slip. Thus, the periodic oscillation of y gives rise
to sideband spectral peaks split from the drive frequency by
integer multiples of 2π/TLC ∝ √|α − αc|.
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