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We propose a simple protocol exploiting the thermalization of a storage bipartite system S to extract work
from a resource system R. The protocol is based on a recent work definition involving only a single bath. A
general description of the protocol is provided without specifying the characteristics of S. We quantify both the
extracted work and the ideal efficiency of the process, also giving maximum bounds for them. Then, we apply
the protocol to two cases: two interacting qubits and the Rabi model. In both cases, for very strong couplings, an
extraction of work comparable with the bare energies of the subsystems of S is obtained and its peak is reached
for finite values of the bath temperature, T . We finally show, in the Rabi model at T = 0, how to transfer the
work stored in S to an external device, permitting thus a cyclic implementation of the whole work-extraction
protocol. Our proposal makes use of simple operations not needing fine control.
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I. INTRODUCTION

In recent years, interest in quantum thermodynamics has
been growing (for a review, see [1]). One of the most in-
triguing problems concerns the realization of thermodynamic
processes at a quantum level [2–8]. Other topics range from
typicality [9,10] to maximum entropy production principle
[11–14]. Recently, many results have been obtained inside the
theoretical framework of the thermodynamic resource theory
(TRT). Among them, we cite the thermomajorization require-
ment [15] and the generalized second laws [16–18]. However,
these theorems are derived assuming as admissible also very
complex thermodynamic processes so that the experimental
realization of these protocols could be unfeasible.

Among all the possible quantum processes, work-
extraction protocols play a relevant role [15,19]. However,
most of them are not easy to realize experimentally. For this
reason, various efforts have been made to understand how to
design realizable thermodynamic protocols [20,21]. Neverthe-
less, most proposals require fine control of the system for an
experimental realization. For example, in a process composed
of many steps, it could be required to turn on and off a specific
interaction for an amount of time specific to each step.

In this paper, we conceive a work-extraction protocol ex-
ploiting a single bath and making use of simple operations
which should be easily implementable without need for fine
operations. Indeed, we propose to extract work from a re-
source system R to a bipartite quantum system S exploiting
simple operations such as a thermalization process and turning
on and off the interaction between the two subsystems of S
[22]. We show that this thermalization protocol gives rise to
a quite efficient single-shot work extraction. To quantify the
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work extracted, we make use of a work quantifier recently
introduced in the context of TRT [23]. In order to make the
procedure cyclic, we show in one of the considered models
how to exploit the result of the thermalization protocol to
charge an external device playing the role of a quantum
battery through a quite simple transfer protocol. We stress
that the various parts of the global protocol do not need
fine control. For example, the interaction between the two
subsystems of S does not need to last for a precise amount
of time but only enough to let system S thermalize, while
the procedures of switching on and off have to be just rapid
enough to leave unaltered the state of the system.

To better appreciate the potentialities of our protocol we
apply it to two different physical scenarios (a two-qubit sys-
tem and a spin-boson system) described by different models.
The first model can describe the interaction of two spins in
an Ising chain [24–26], while the second is described by
the ubiquitous Rabi Hamiltonian. The latter model is very
effective, for example, in cavity QED [27] and in circuit QED
[28]. In the past decades this model has been mainly treated
under suitable approximations such as the rotating wave
approximation [27,29] and the Bloch-Siegert approximation
[30], which hold when the interaction is weak. Recently, an
analytical complete solution has been found [31,32] (see also
[33] for a review) and a lot of attention has been devoted, both
theoretically and experimentally [28,31–38], to the study of
the Rabi Hamiltonian beyond the weak coupling regime, also
in view of the recent remarkable experimental realizations
of physical situations characterized by high values of the
interaction strength [28,36,37].

The paper is organized as follows. In Sec. II, we describe
the thermalization protocol for an arbitrary bipartite system.
In Sec. III, we describe a possible realization of our protocol
in a system consisting of two qubits, while in Sec. IV we
consider a spin-boson system the interaction of which is
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described by the Rabi model. We also discuss the possibility
to transfer the extracted work to another physical system,
effectively charging a battery. Finally, in Sec. V we provide
some conclusive remarks on our results. Some details of our
analysis can be found in the Appendices.

II. WORK-EXTRACTION PROTOCOL

A. Work quantifier

In this paper, we choose a work quantifier within the frame-
work of TRT among those described in [23], which is strictly
connected to the von Neumann free energy (see Appendix A
for a brief overview of TRT). Our specific choice of the work
quantifier is motivated by the fact that, differently from other
quantifiers, it can be used even if the resource R (which can
be classical or quantum) and the storage S are correlated at
the end of the process [23]. The quantifiers treated in [23]
are analyzed by considering the set of possible processes
described by TRT for a fixed environmental temperature and,
moreover, they have to respect some axioms built in such a
way that the second law of thermodynamics is automatically
satisfied. These quantifiers assess how much the “usefulness”
of a system has changed after an operation, when dealing with
an environment at a fixed temperature.

In what follows, the work stored in system S during the
process is given by

W = �F (ρ ′
S, H ′

S ) − �F (ρS, HS ), (1)

where

�F (ρ, H ) = F (ρ, H ) − F (ρ th, H ),

F (ρ, H ) = Tr{Hρ} − kBT S(ρ), (2)

S(ρ) = −Tr{ρ ln(ρ)}.
Here, F (ρ, H ) is the free energy of the state ρ when the
system is governed by the Hamiltonian H , ρ th is the thermal
state of the system, corresponding to the Hamiltonian H at
temperature T equal to the temperature of the thermal bath
which is used in the process, kB is the Boltzmann constant,
S(ρ) is the von Neumann entropy of the state ρ, and HS is the
Hamiltonian of system S. The quantities marked with an apex
are related to the end of the process, while those not marked
are related to the start of the process. We remark that this
work definition quantifies how much the “usefulness” amount
of a system, given by �F (ρ, H ), changes after a permitted
operation. If H ′

S = HS , Eq. (1) simplifies to

W = F (ρ ′
S, HS ) − F (ρS, HS ). (3)

Then, at zero temperature and for a nonchanging Hamiltonian,
the chosen definition of work coincides with the average
energy difference of system S between the start and the end
of the protocol, i.e., with the intuitive definition of work done
on a system. Some comments on the possible links between
this work quantifier and other thermodynamic quantities can
be found in Appendix B.

B. Thermalization protocol

Here, we describe the thermalization protocol in the case S
is an arbitrary bipartite system composed of two subsystems

FIG. 1. Schematic illustration of the phases of the thermalization
protocol in the presence of a thermal bath (yellow box). At the
start (t1) the subsystems do not interact. Then, the interaction is
turned on and they thermalize together (from t2 to t3). Once they
have thermalized their interaction can be turned off and the process
of work extraction is completed (t4). If one wants to transfer the
extracted work to iterate the process one does so in the time interval
δT t and, after having finished the process (t5), the experimental setup
might have to be reinitialized, from t5 to t ′

1, where t ′
1 plays the role of

the initial time of the new cycle.

A and B. The protocol can be divided into different phases
(see Fig. 1). For each phase, we compute the free energy using
the notation Fi = F (ρS (ti ), H (ti )). Notice that the presence of
the environment is necessary during the thermalization from
t2 to t3. During the other phases it would be enough to assume
that the environment is at disposal if needed. However, in
the following analysis we always refer to a realistic situation
where the environment and system S are always interacting. In
this case, we must assume that the interaction is so weak that,
overall, whenever we have to take into account the evolution
given by the interaction of S + R with the bath the total energy
〈HS + HR + Hbath〉, where HR and Hbath are, respectively, the
Hamiltonians of the resource R and of the bath, is a conserved
quantity, and results from TRT can be applied.

At the start of the protocol (t = t1) A and B are noninter-
acting, noncorrelated, and spatially separated [39]. They are
both in contact with the same thermal bath at temperature T
so that

H (t1) = HA + HB = H0, ρS (t1) = ρ th
A ⊗ ρ th

B ,

F1 = F
(
ρ th

A , HA
) + F

(
ρ th

B , HB
)
, (4)

where HA(B) is the free Hamiltonian of A(B), ρ th
A(B) =

e−βHA(B)/Tr{e−βHA(B)} is the local thermal state, and β =
1/(kBT ). Then, the interaction between A and B is turned on
by exploiting R, during a time interval δ1t from t1 to t2 =
t1 + δ1t . We suppose that the state of system S does not change
during this time. This can be achieved if the turning on of the
interaction is doable in a time interval much smaller than the
typical evolution time of system S, during the switching on
procedure, coupled to the bath. Defining 〈H〉tn = Tr{ρS (tn)H},
we have

H (t2) = H0 + HI , ρS (t2) = ρS (t1),

F2 = F1 + 〈HI〉t2 , (5)

HI being the interaction Hamiltonian between A and B.
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From time t2 to time t3 (t3 − t2 � τr , where τr is the typical
evolution time of system S in this phase), A and B thermalize
as a whole so that at t3

H (t3) = H (t2), ρS (t3) = ρ th
S ,

F3 = F
(
ρ th

S , H0
) + 〈HI〉t3 , (6)

where ρ th
S = e−β(H0+HI )/Tr{e−β(H0+HI )} is the global thermal

state. Finally, from time t3 to time t4 = t3 + δ2t we use again
system R to turn off the interaction term between subsystems
A and B by spatially separating them [22] and supposing that
the state of S remains unaltered. The situation at time t4 is thus
given by

H (t4) = H0, ρS (t4) = ρS (t3),

ρA(B)(t4) = TrB(A)
{
ρ th

S

} = ρrth
A(B), (7)

F4 = F
(
ρ th

S , H0
)
.

We remark that at t = t4 the reduced states of A and B (we
name them reduced thermal states) are different from the
initial ones, which were the local thermal states.

The turning on and off of the interaction requires work
from system R while, in general, R is not involved during
the thermalization from t2 to t3. In particular, turning on
the interaction costs a quantity WR(t1 → t2), satisfying (more
details in Appendix C)

WR(t1 → t2) � F2 − F3 = 〈HI〉t2 + F1 − F3. (8)

On the other hand, turning it off costs

WR(t3 → t4) � F4 − F1 = −〈HI〉t3 + F3 − F1. (9)

Then, the minimum amount of work required to system R to
make one cycle is 〈HI〉t2 − 〈HI〉t3 = −�〈HI〉. We stress that,
during the switchings, system R could lose a certain quantity
of free energy due to dissipative effects, in addition to the
required variations of usefulness. In the following, we identify
the amount of usefulness lost by R with the variation of its free
energy because we assume that the Hamiltonian of system R
never changes [see Eq. (3)].

From the point of view of single-shot work extraction, the
protocol ends at time t4. In the next section, we quantify the
amount of work extracted and the efficiency of this process.
In order to iterate the process using the same systems A and
B, one has to transfer the extracted work at time t = t4 to an
external storage system C. We provide an example of how to
do this at the end of Sec. IV for a specific model. After the
transfer (t = t5 = t4 + δT ), A and B are still in contact with
the bath and, after a while, they will be again in their thermal
state. Then, the protocol can be done again from the start.

C. Work and efficiency

By definition, the extracted work W is equal to F4 − F1:

W = 〈H0〉t4 − 〈H0〉t1 − kBT
[
S
(
ρ th

S

) − S
(
ρ th

A ⊗ ρ th
B

)]
. (10)

W is thus composed by two parts: one purely energetic
and one of entropic nature. The entropic term appearing
in Eq. (10) comes directly from the adopted definition of
work. Its presence assures the validity of the second law of
thermodynamics. Especially for finite systems, the entropic

part can become much more important than the energetic one
for nonvanishing temperatures. An example of this behavior is
shown in Sec. III. At T = 0, instead, W is a simple difference
of average energies. We stress that the work done on a system
quantifies the change of usefulness of the system, �F (ρ, H ).
Then, �F (ρ, H ) being a function of the state and of the
Hamiltonian of the system, it does not depend on the actual
evolution that took place.

The extracted work can be rewritten as

W = �F
(
ρrth

A , HA
) + �F

(
ρrth

B , HB
) + kBT S(A : B), (11)

where S(A : B) = S(ρrth
A ) + S(ρrth

B ) − S(ρ th
S ) is the mutual in-

formation between A and B for the state ρ th
S , a real non-

negative quantity [29]. In particular, the mutual information
term quantifies the amount of correlations between the two
subsystems and its behavior is strongly model dependent.
In Eq. (11), the only nonlocal entropic term is the mutual
information as opposed to the local terms S(ρrth

A ) and S(ρrth
B ).

Then, we can also define the local work

Wl = �F
(
ρrth

A , HA
) + �F

(
ρrth

B , HB
)
, (12)

which in some cases could be the only accessible work
after the protocol. The inequality Wl � W holds, an already
known result of information thermodynamics [40], meaning
that the amount of extracted work benefits from the presence
of correlations in the final thermal state. As can be seen in
Secs. III and IV, the difference between local and global work
can be significant.

The quantity �F (ρrth
A(B), HA(B) ) can be written as [41]

�F
(
ρrth

A(B), HA(B)
) = kBT S

(
ρrth

A(B)||ρ th
A(B)

)
, (13)

where S(ρ||σ ) = Tr{ρ ln ρ} − Tr{ρ ln σ } is the relative en-
tropy which, even not having all the properties of a distance
measure, is often used to quantify how much two density
operators are different [29]. Therefore, the more the reduced
thermal states are different from the local ones, the more the
local extracted work should be. One then expects that Wl

should typically increase as the strength of the interaction
between the subsystems of S increases.

Another useful way to express the extracted work is
through the partition functions of the systems. Calling ZA(B)

the partition function of system A(B) with Hamiltonian HA(B)

and ZS the partition function of the total system with interac-
tion on, we can write

W = kBT ln

(
ZAZB

ZS

)
− 〈HI〉t3 . (14)

Through simple algebraic manipulations, we can write

W = F3 − F2 − �〈HI〉, (15)

where we recall that �〈HI〉 = 〈HI〉t3 − 〈HI〉t2 . Then,

0 � Wl � W � −�〈HI〉, (16)

because F3 has to be always lower or equal to F2.
Using Eq. (14), it is easy to show that if both subsystems

are finite the high-temperature limit of the extracted work is
zero (see Appendix D). This also implies, using Eq. (16), that
the correlations between two finite subsystems in a thermal
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state always go to zero faster than 1/T in the high-temperature
limit since W → 0.

Following the theorems of TRT, it is in principle always
possible to transfer, without losses, a certain quantity of free
energy from one system to another one through thermal opera-
tions. Achieving the maximum efficiency for this transfer may
require, for example, the use of catalysts [15,23,41]. Thus, we
define the ideal efficiency of the process as the work stored in
system S divided by the minimum free energy lost by system
R, i.e.,

η = W

−�〈HI〉 = F3 − F2 − �〈HI〉
−�〈HI〉 � 1. (17)

In other words, we compare the work that system S gains with
the work that system R would lose in the best-case scenario.
This comparison makes sense because TRT assures us that
there exists a thermal operation such that all the work lost by
R is gained by S. Of course, considering the local work Wl ,
with the annexed efficiency ηl , instead of W , we get ηl � η.

As can be seen from Eq. (B5), the ideal efficiency of this
process can be thought of depending explicitly on the entropy
production of the thermalization, from time t2 to t3. With
respect to the ideal switching case [Eq. (17)], system R could
spend more work during the process because of dissipative
effects.

It is worth noting that the extraction of work from R to S
may imply the conversion of different forms of energy. Indeed,
R could exploit any kind of possible form of energy to switch
on and off the interaction between A and B, while the form
of energy stored in S would depend on the specific choice of
subsystems A and B.

As an example of protocol implementation, we could think
of a flying atom entering and exiting from a cavity. In this
case, the internal levels of the flying atom are system A,
the cavity is system B, and the wave function spatial part
of the flying atom is the resource R. When the atom enters
or exits, the A-B interaction switches on or off and energy
can come from or go to R. The amount of work paid by
system R may also depend on entropy variations and overall
must be positive [see Eqs. (8) and (9)]. In this specific ex-
ample, mechanical energy is transformed into electromagnetic
energy.

In order to make our analysis more quantitative and better
exemplify the level of efficiency of our work-extraction pro-
tocol, we consider two possible realizations associated to two
different models which can be realized in specific physical
scenarios of experimental interest. In the next two sections
we consider a two-qubit system and a spin-boson system
described by the Rabi model.

III. TWO INTERACTING QUBITS

Here, we consider the case when S consists of two qubits
governed by the Hamiltonian [25]

H = HA + HB + HI , (18)

where

HA = h̄ω

2
σ (A)

z , HB = h̄ω

2
σ (B)

z , HI = h̄gσ (A)
x σ (B)

x , (19)

FIG. 2. Two-qubit model: extracted work W (a) and efficiency
η (b) of the thermalization protocol as a function of the coupling
constant, g/ω, for different values of the temperature of the bath,
kBT/(h̄ω).

ω is the frequency of each qubit, σ A(B)
z and σ A(B)

x are Pauli
matrices, and g is the coupling frequency.

The extracted work and the efficiency for this model can
be computed by using Eqs. (14) and (17) where the partition
functions and the average interaction energy at time t3 (ob-
tained through lengthy but straightforward calculations) are
given by

ZA = ZB = 2 cosh(β h̄ω/2),

ZS = 2[cosh(β h̄
√

ω2 + g2) + cosh(β h̄g)], (20)

and

〈HI〉t3 = h̄g

ZS

[
−2eβ h̄

√
ω2+g2

gN−
(
√

ω2 + g2 + ω) − eβ h̄g

+ e−β h̄g + 2e−β h̄
√

ω2+g2

gN+
(
√

ω2 + g2 − ω)

]
, (21)

where N± = 2(ω2 + g2 ∓ ω
√

ω2 + g2)/g2, while 〈HI〉t2 = 0.
At zero temperature, the extracted work and the efficiency

assume the simple form

W (T = 0) = h̄ω
g2

ω2 + ω
√

ω2 + g2 + g2
,

η(T = 0) = ω

ω +
√

ω2 + g2
. (22)

Another analytical limit worth mentioning is the g → ∞
limit. In this case we obtain

W → kBT ln{1 + cosh[h̄ω/(kBT )]}, η → 0. (23)

The behaviors of W and η as a function of the dimension-
less coupling constant g/ω are plotted in Fig. 2, for different
temperatures of the bath. We notice that for every temperature
increasing g/ω monotonically increases the extracted work.
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FIG. 3. Two-qubit model: extracted work W (a) and efficiency
η (b) of the thermalization protocol as a function of the temper-
ature of the bath, kBT/(h̄ω), for different values of the coupling
constant, g/ω.

This behavior agrees with what was predicted in Sec. II C for
the T = 0 case (W = Wl ). An extraction of work comparable
with the typical energies of the subsystems can be obtained.
However, the efficiency also decreases monotonically. Then,
for a given T , a sweet spot for the coupling constant does not
seem to exist. In contrast, a sweet spot for the temperature
does exist. Indeed, as shown in Fig. 3, the most interesting
feature of this model is that, given a value of g/ω, the maximal
extraction of work is obtained for a value of temperature such
that kBT ∼ h̄ω with a greater efficiency with respect to the
zero-temperature case.

The above result is especially clear for high values of g
such as g = 2 ω. For this reason, we plot in Fig. 4 various
quantities of the protocol as a function of the temperature,

FIG. 4. Two-qubit model: comparison of different quantities
(each in units of h̄ω) as a function of the bath temperature for
g = 2 ω. A gray vertical line is depicted in correspondence of the
peak of the total work W at kBT � 1.51 h̄ω.

for g = 2 ω. The maximal extraction of total work W is
obtained for kBT � 1.51 h̄ω, marked with a gray vertical
line in the figure. Around that temperature, there is a big
difference between the total work W and the local one Wl .
Their difference is exactly the mutual information multiplied
by kBT . So, a great part of the work is stored in the nonlocal
entropic term kBT S(A : B). Regarding the total extraction,
we can notice also how much the global entropic term,
kBT [S(ρ th

S ) − S(ρ th
A ⊗ ρ th

B )], is important in that temperature
region. In contrast, for lower values of T , the global entropic
term reduces the amount of extracted work with respect to the
energy difference 〈H0〉t4 − 〈H0〉t1 . On the local level, the lo-
cal entropic term, kBT [S(ρrth

A ⊗ ρrth
B ) − S(ρ th

A ⊗ ρ th
B )], always

reduces the amount of work extracted, independently of the
temperature. This difference of behavior between the local
and nonlocal parts of the entropy explains the quantitative
difference between the local and total extracted work.

IV. RABI MODEL

Here, we consider the case in which S consists of a
two-level system (subsystem A) interacting with a harmonic
oscillator (subsystem B). The system is governed by the Rabi
Hamiltonian [27]:

HRb = HA + HB + HI , (24)

where

HA = h̄�σz, HB = h̄ωn̂, HI = h̄gσx(a† + a), (25)

h̄� is half of the energy distance between the ground state |g〉
and the excited state |e〉 of A, ω is the frequency of B (typically
ω ∼ 2�), n̂ is the number operator (with the number basis
given by n̂|n〉 = n|n〉), a† and a are the creation and annihila-
tion operators, and σz and σx are the Pauli matrices.

Since the analytical solution of the Rabi model is given
in terms of series that have to be truncated [31–33], from
a numerical point of view, it is easier to directly do all the
computations numerically without using the analytical solu-
tion. In this section, we report the results of these numerical
simulations done with the PYTHON package QUTIP [42,43],
only dealing with the resonant case � = ω/2. For the zero-
temperature case, we use the analytical solution, checking
that it coincides with the numerical simulations at very low
temperatures. A detailed discussion about the ground state
of the system, used for the T = 0 case, can be found in
Appendix E.

Figure 5 shows the extracted work and the efficiency as a
function of the coupling parameter g/ω for different values
of the bath temperature. We notice a dissimilar behavior of
the Rabi model with respect to the two-qubit one. Overall, the
Rabi model attains a higher value of extracted work and higher
efficiency. In contrast to the two-qubit case, here increasing
the interaction may increase the efficiency, which is always
higher than 1/2.

As in the two-qubit case, also in the Rabi model, for a
given value of the coupling constant, an ideal value of the
temperature exists (see Fig. 6). Comparing Figs. 3 and 6 we
notice that the best values of temperature in the Rabi model
case are one order of magnitude lower. In general, given a

032143-5



PICCIONE, MILITELLO, NAPOLI, AND BELLOMO PHYSICAL REVIEW E 100, 032143 (2019)

FIG. 5. Rabi model: extracted work W (a) and efficiency η (b) of
the thermalization protocol as a function of the coupling constant,
g/ω, for different values of the bath temperature, kBT/(h̄ω).

value of the coupling constant g, there exists a temperature
sweet spot where the work is nearly at its maximum and,
close to which, the efficiency has its peak. Among the values
reported in the plot, this does not hold for g = 2 ω. Moreover,
the extracted work does not tend to zero as in the two-qubit
case. This is due to the fact that the Rabi Hamiltonian contains
a nonfinite and nonbounded system (the harmonic oscillator).
This means that a temperature that makes all the levels equally
populated so that the thermal state is practically the identity
state does not exist. We also remark that both the work and
the efficiency reach an asymptotic behavior for kBT ∼ 10 h̄ω.

In Fig. 7 we show the extracted work and other relevant
quantities as a function of the temperature (cf. Fig. 4). Differ-

FIG. 6. Rabi model: extracted work W (a) and efficiency η (b) of
the thermalization protocol as a function of the bath temperature,
kBT/(h̄ω), for different values of the coupling constant, g/ω.

FIG. 7. Rabi model: comparison of different quantities (each in
units of h̄ω) as a function of the bath temperature for g = ω. A gray
vertical line is depicted in correspondence of the peak of the total
work W at kBT � 0.16 h̄ω.

ently from the two-qubit case, here the peak of work extrac-
tion is not due to the entropic term but to the energy term. In-
deed, the peak of work extraction (roughly at kBT � 0.16 h̄ω

and marked with a gray vertical line in the figure) is near the
peak of the energy difference term. As in the two-qubit case,
the local work rapidly goes to zero starting from kBT ∼ h̄ω.
In the present case, however, this is not due to the fact that
the reduced thermal states are very similar to the thermal
ones. In this case, the energy difference remains high and the
local entropic term counterbalances it. Then, even if the global
entropic term does not seem to play a significant role, its non-
local component (the mutual information) does, by balancing
the local entropic terms and thus avoiding that they take the
total work down to zero in the high-temperature region.

Charging a battery

In general, the aim of work-extraction protocols is to
realize something useful, e.g., a process that could be seen as
the charge of a battery. Here, we propose a transfer protocol
(for the zero-temperature case) that allows for storing the
energy gained by system S into an external harmonic oscillator
(system C) which plays the role of a battery, the energy of
which can be increased more and more through suitable cyclic
interactions with system S.

The main idea is to imagine that system A is not just a
two-level system but a three-level system the intermediate
level of which does not participate in the interaction with
system B. However, system C is resonant with the transition
from this intermediate level to the excited one and interacts
with system A through a Jaynes-Cummings Hamiltonian. In
this way, whatever is the population of the ground level
of system A, it can only give energy to system C but not
receive it. Moreover, we use, as free resources, a certain
number of systems having the same spectrum of system A,
to transfer energy from B to C. Imagining the role of system
R being played by the wave function spatial part of each
three-level system approaching and then leaving the harmonic
oscillator (one can think of flying atoms and a cavity), we
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can clearly see that we cannot charge system C by using
directly the three-level systems in their initial state at T = 0
(ground state), i.e., without first charging them through their
interaction with system B. We observe that in this specific
case, then, the resource would have a genuine quantum nature.
An extensive description of this transfer protocol is reported in
Appendix F.

In a specific simulation of this transfer protocol (in the
deep-strong coupling regime, g > ω, and for 100 iterations)
we obtain a final energy transferred to system C of the
order 100 h̄ω with a low standard deviation and a reasonable
efficiency (see Table I of Appendix F).

V. CONCLUSIONS

In this paper, we have proposed a protocol of work extrac-
tion from a resource system R to a storage bipartite system
S, based on the thermalization of the latter. We first described
the protocol in the general case without referring to a specific
implementation. This thermalization protocol should be easily
implementable because the only requirement is to turn on and
off the interaction between subsystems of S (A and B) in a
short amount of time without changing the state of system S.
Results from thermodynamic resource theory have been then
used to define the extracted work W and the efficiency η.

Then, we applied this protocol to two models: a sim-
ple two-qubit system and a system described by the Rabi
Hamiltonian. In both cases, we pointed out the important role
that the entropic terms play when the protocol is applied at
temperatures comparable with the energies of the subsystems
and the great difference between local and total extracted
work. In both cases, the extracted work is comparable with
the frequencies of the systems. Moreover, we remark that in
the Rabi model case the efficiency we have obtained is always
higher than one half.

We have thus pointed out that simple processes like
thermalization and the switching on and off of interactions
between quantum systems can be exploited as a potential
resource for thermal machines.

Finally, as a proof of principle, we showed how the en-
ergy extracted after one cycle of the thermalization protocol
(single-shot extraction protocol) can be transferred to an ex-
ternal work storage system through a transfer process which
makes the complete protocol iterable. We stress that the whole
protocol, composed by many iterations of the thermalization
protocol plus the transfer protocol, realizes something like the
charge of a battery in a realistic scenario, not involving fine
operations.

We believe it would be interesting to generalize our study
of the Rabi model to the case of N qubits interacting with
a harmonic oscillator. This would allow one to study if the
correlations that would be built among the qubits allow for a
greater work extraction. Finally, further studies could suggest
how to improve our transfer protocol and pave the way to
proposals in specific physical scenarios.
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APPENDIX A: THERMODYNAMIC RESOURCE THEORY

In general, a resource theory is a theory in which the
possible operations that can be done on a system are restricted
by some constraints and it is supposed that to perform a given
protocol some special states belonging to other systems are
unlimitedly available for free. These external systems in these
particular states are called “free resources” [41]. An operation
T (ρ) permitted by TRT and addressed as a thermal operation
has the following structure:

T (ρ) = Trbath{U (ρ ⊗ ρbath )U †}, [H + Hbath,U ] = 0,

(A1)

where H is the Hamiltonian of the system described by
the density operator ρ, Hbath is the Hamiltonian of the free
resource (usually called the bath), and U is a generic unitary
operator that connects initial and final states of the total
system (free resource included). The free resource (bath) is
a system with an arbitrary Hamiltonian, assumed to be in
a thermal state (ρbath) at a given temperature. In a thermal
operation the bath is used only for the duration of the protocol
so that there is no interaction between system and bath at the
start and at the end of the protocol. Then, the commutator
[H + Hbath,U ] = 0 assures us that the global system has kept
its energy unchanged (not only the mean value but also the
entire distribution). This is needed because the aim of TRT is
to keep track of all the energy terms involved in a possible
thermal process and to find what bounds this constraint gen-
erates.

In Appendix C we also consider an extended class of
permitted operations, called catalytic Gibbs-preserving tran-
sitions (see [23] for their definition), which are used to ana-
lyze the switching on and off of the interaction Hamiltonian
between subsystems A and B. The important property that we
use is that the quantity �F (ρ, H ) cannot increase under such
transitions.

APPENDIX B: WORK DEFINITION, HEAT,
AND ENTROPY PRODUCTION

Here, we make some comments on what could be the
consequences of the adopted work quantifier on the definition
of heat and on its connection with the entropy production. Let
us assume that we can use �U = Tr{H ′ρ ′} − Tr{Hρ} as the
internal energy change in the first law of thermodynamics,
�U = Q + W . It follows that

Q = Tr{H ′ρ ′th} − Tr{Hρ th}
+ kBT [S(ρ th ) − S(ρ ′th ) + S(ρ ′) − S(ρ)], (B1)

where ρ th and ρ ′th are the thermal states corresponding,
respectively, to H and H ′. When only the system state changes
we have

�U = Tr{H (ρ ′ − ρ)}, Q = kBT [S(ρ ′) − S(ρ)], (B2)
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which seems reasonable as the heat is given by the change
of entropy times kBT , T being the temperature at which
the process takes place. On the other hand, when only the
Hamiltonian changes while the state of the system does not,
�U and Q reduce to

�U = Tr{(H ′ − H )ρ},
Q = F (ρ ′th, H ′) − F (ρ th, H ). (B3)

Let us comment now on a possible connection with the
entropy production. During a thermal operation, system and
bath together evolve unitarily so that the total entropy of both
systems does not change and we can apply findings of [44].
There, the system under analysis is unitarily interacting with
one or more thermal baths. To adapt the equations to our case
we will use one single thermal bath. In particular, we focus on
a generic time interval with time-independent Hamiltonians,
as from t2 to t3 in our thermalization protocol.

The system and the bath are considered to be in the state
ρ(0) = ρS (0) ⊗ ρ th

bath at time t = 0, as we also assume in
our case during the thermalization step (with t2 in place of
t = 0). In particular, the entropy change in the system during
the evolution can be decomposed as follows:

�S(t ) = �iS(t ) + �eS(t ), (B4)

where �iS(t ) is the entropy production and �eS(t ) represents
the reversible contribution to the system entropy due to heat
exchanges. More specifically [44], �eS(t ) = βQbath(t ), where
Qbath(t ) ≡ 〈Hbath〉t=0 − 〈Hbath〉t represents the heat flow from
the reservoir [here β = 1/(kBT )].

We are only interested in what happens at the end of the
thermalization protocol, where TRT imposes the conservation
of the total energy (see Appendix A), therefore in this case
Qbath(t ) is equal to �〈HS〉t = Tr{HSρS (t )} − Tr{HSρS (0)}.
We recall that free energy is a decreasing monotone of thermal
operations, that is, F (ρS (0), HS ) − F (ρS (t ), HS ) � 0. Then,
we can show that �iS(t ) � 0 as follows:

�iS(t ) = −βQbath(t ) + �S(t )

= β

[
−�〈HS〉t + 1

β
�S(t )

]
= β[F (ρS (0), HS ) − F (ρS (t ), HS )] � 0. (B5)

Notice that �iS(t ) = −βW (t ), i.e., the entropy production
exactly matches the loss of “usefulness” of system S times
the inverse temperature of the environment.

In the other steps of the protocol no entropy is produced be-
cause we assume ideal switchings (i.e., reversible processes)
to define the ideal efficiency. Of course, some entropy is
expected to be produced in a realistic implementation even
during these operations.

APPENDIX C: WORK EXPENSE OF SYSTEM R

Here, we show the amount of free energy that system R has
to lose to turn on the interaction of system S. Considering the
whole system S + R, before the action of system R we have

�F
(
ρR ⊗ ρ th

AB, HR + H0
) = �F (ρR, HR), (C1)

where ρ th
AB = ρ th

A ⊗ ρ th
B . After the action of R, we have

�F (ρ ′
RAB, HR + H0 + HI )

� �F (ρ ′
R, HR) + �F

(
ρ th

AB, H0 + HI
)
. (C2)

We consider the operation under consideration to be a cat-
alytic Gibbs-preserving transition so that �F (ρ, H ) has to
decrease or to stay constant [23], therefore

F (ρ ′
R, HR) − F (ρR, HR) � �F

(
ρ th

AB, H0 + HI
)
. (C3)

In the above equation, the equality holds in the best-case
scenario. The work expense of R to perform the switching on
is then given by Eq. (8) while, analogously, one can obtain
Eq. (9) for the switching off.

APPENDIX D: HIGH-TEMPERATURE LIMIT
OF EXTRACTED WORK IN FINITE SYSTEMS

If both A and B are finite, in the high-temperature limit
(β → 0), at first order in β the following expansion holds:

e−βH � I − βH, (D1)

where H is the Hamiltonian of the whole bipartite system and
I is the identity in the whole Hilbert space. We call NA the
dimension of subsystem A and we call NB the dimension of
subsystem B while NS = NANB. We use Eq. (14) written in
the following way:

W = 1

β
ln (ZAZB) − 1

β
ln(ZS ) − 〈HI〉t3 . (D2)

Expanding up to first order in β we get

ZA(B) � NA(B) − βTrA(B){HA(B)},
ZAZB � NS − β(NATrB{HB} + NBTrA{HA}), (D3)

ln(ZAZB) � ln NS − β

NS
(NATrB{HB} + NBTrA{HA}).

Similarly

ZS � [ZAZB](1) − βTrS{HI},
ln(ZS ) � [ln (ZAZB)](1) − β

NS
TrS{HI}, (D4)

where the terms [ZAZB](1) and [ln(ZAZB)](1) are the functions
between brackets computed at first order in β. Lastly, to order
zero in β,

〈HI〉t3 = TrS

{
HI

e−β(HA+HB+HI )

ZS

}
� TrS{HI}

NS
. (D5)

Then, by considering all the contributions we obtain

lim
β→0

W = 0. (D6)

This result also implies

lim
β→0

1

β
S(A : B) = 0, (D7)

because the global work is always higher than or equal to the
local one, but they are both positive and their difference is
given by the correlation term.
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APPENDIX E: RABI HAMILTONIAN GROUND STATE

In this Appendix, all the quantities with the tilde are in units
of ω to lighten the notation (X̃ ≡ X/ω).

At T = 0, the entropy terms do not contribute to the free
energies and, then, we can deal with average energies only. As
a consequence, W = Wl , which, using 〈HI〉t2 = 0 in Eq. (10),
takes the form

W = 〈HA〉t3 + 〈HB〉t3 + h̄� = h̄ν0 − 〈HI〉t3 + h̄�, (E1)

where h̄ν0 is the energy of the ground state of the Rabi model.
The efficiency of Eq. (17) is given by

η = 〈HA〉t3 + 〈HB〉t3 + h̄�

−〈HI〉t3

. (E2)

In order to calculate the quantities in Eqs. (E1) and (E2)
we need to study the ground state and how it is decomposed
in the bare basis. To this end we mainly follow the approach
and the formalism of [33]. These calculations allow us to com-
pute numerically, but starting from the formal and analytical
solutions, the amount of extracted work and the efficiency of
the protocol.

Following [33], the ground energy h̄ν0 of the ground
state of the Rabi Hamiltonian of Eqs. (24) and (25) can be

calculated by searching for the first zero of Braak’s function
G−(x) [31–33], defined by

G±(x) =
∞∑

n=0

(
1 ∓ �̃

x − n

)
fng̃n = 0, (E3)

where x = ν̃ + g̃2. The factors fn are calculated by recurrence
through the following formulas:

fn = 1

n
[�(n − 1) fn−1 − fn−2], f0 = 1, f1 = �(0),

�(n) = 1

2g̃

(
n + 3g̃2 − ν̃ − �̃2

n − g̃2 − ν̃

)
. (E4)

The values of ν for which Braak’s functions are zero are
the eigenvalues of the Rabi Hamiltonian. The lowest of these
eigenvalues is the ground energy of the system.

According to [33], after some easy but lengthy calculations
the ground state can be written as follows:

|ψg〉 = 1

2
√
N

[|e〉(|φ1〉 + |φ2〉) + |g〉(|φ1〉 − |φ2〉)], (E5)

where N is a normalization constant,

〈n|φ1〉 = e−g̃2/2
√

n!
∞∑

m=0

m! em

⎡
⎣ n∑

k=max(0,n−m)

(−1)k

[m − (n − k)]!(n − k)!k!
g̃m−(n−2k)

⎤
⎦, em = − �̃

m − g̃2 − ν̃0
fm, (E6)

and 〈n|φ2〉 is equal to 〈n|φ1〉 if one replaces in its expression em with fm. We notice that both 〈n|φ1〉 and 〈n|φ2〉 are real.
The parity operator � = − σz(−1)n̂ commutes with HRb. Thus, it is easy to show that the ground state of the Rabi

Hamiltonian has to be of the form

|ψg〉 =
∞∑

n=0

c2n|g, 2n〉 +
∞∑

n=0

c2n+1|e, 2n + 1〉. (E7)

Indeed, for low values of g̃ the ground state has to contain the component |g, 0〉 so that all the other components have to be of
the same parity. Moreover, for every value of g̃ the ground eigenvalue does not cross with the others eigenvalues, therefore the
ground state has the same parity for each value of g̃. By taking the scalar product of both sides of (E5) with |n〉, odd or even, and
checking (E7) one can easily infer the following equalities:

√
N cn = 〈n|φ1〉 = (−1)n+1〈n|φ2〉, ∀n. (E8)

Now we can easily calculate the reduced states and write down the quantities of interest. First of all, let us observe that

ρrth
B = TrA{|ψg〉〈ψg|} = 1

2N (|φ1〉〈φ1| + |φ2〉〈φ2|). (E9)

Then, exploiting Eq. (E8), the average energy of the harmonic oscillator can be written as follows:

〈HB〉t3 = h̄ω

N

∞∑
n=0

n|〈n|φ1〉|2. (E10)

Similarly, the reduced state of the two-level system is found to be

ρrth
A = TrB{|ψg〉〈ψg|} = 1

N

[( ∞∑
n=0

|〈2n + 1|φ1〉|2
)

|e〉〈e| +
( ∞∑

n=0

|〈2n|φ1〉|2
)

|g〉〈g|
]

=
( ∞∑

n=0

|c2n+1|2
)

|e〉〈e| +
( ∞∑

n=0

|c2n|2
)

|g〉〈g|, (E11)
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and the average energy is

〈HA〉t3 = h̄�

(
2

∞∑
n=0

|c2n+1|2 − 1

)
. (E12)

Concerning the average of the interaction energy 〈HI〉t3 , it
can be directly calculated with the formula

〈HI〉t3 = 2h̄g

N

∞∑
n=0

√
n + 1〈n + 1|φ1〉〈n|φ1〉, (E13)

or, alternatively, it can be inferred from Eq. (E1) as we already
know 〈HA〉t3 and 〈HB〉t3 which we calculated through the
knowledge of ν0.

For very low values of g/ω the Jaynes-Cummings approx-
imation can be used [29]. In this case Eq. (E5) becomes
|ψg〉 � |g, 0〉. The Bloch-Siegert approximation holds well for
higher values of g/ω (still g/ω � 1) [30]. In this case, at
resonance, 2� = ω, Eq. (E5) becomes

|ψg〉 �
(

1 − �2

2

)
|g, 0〉 − �|e, 1〉 + �2

√
2|g, 2〉, (E14)

where � = g/(2ω).

APPENDIX F: AN EXAMPLE OF TRANSFER PROTOCOL

Here, we provide more details on the transfer protocol
briefly described at the end of Sec. IV, concerning the Rabi
model in the case when the environment is at zero tempera-
ture. First, we suppose that system A, which we previously
treated as a two-level system, is a three-level system the
intermediate third level |u〉 of which did not participate in the
interaction with system B during the thermalization process.
Then, the Hamiltonian of system A has to be written as
follows:

HA = h̄ω

2
|e〉〈e| − h̄γ |u〉〈u| − h̄ω

2
|g〉〈g|, (F1)

where |γ | < ω/2. We also suppose to have at our disposal a
number Nc of systems Di, with the same spectrum of system A,
in the ground state |g〉 (these copies are free resources because
they are, initially, in the thermal state at T = 0).

The main idea is to use system A and systems Di to charge
system C through interactions modeled with the Jaynes-
Cummings Hamiltonian. The external harmonic oscillator is
chosen to be resonant with the transition connecting states |e〉
and |u〉. The interaction with C will be assumed to involve
only these states. By doing this and taking |γ | < ω/2, we
assure that |u〉 is never the ground state in each part of the
thermalization protocol and that the interactions with system
C are one-way energy transfers from systems A and Di to
system C.

The Nc systems Di interact with system B through the
Jaynes-Cummings Hamiltonian:

HJC = h̄gB(aσ+ + a†σ−). (F2)

To analyze the simplest situation, each copy interacts with
the harmonic oscillator for the same time tB. Turning on this
interaction does not require energy because the initial state
of the three-level systems is the ground state and no energy

FIG. 8. Graph of the efficiency (η1) of the extraction part of the
transfer protocol as a function of the interaction time tB for different
values of Nc.

is required also for turning off the interaction because HJC

commutes with the total Hamiltonian. By suitably choosing
the time tB, system B will be nearly depleted and the energy
will be stored in the three-level systems.

Using Eqs. (E5), (E7), and (E8), the reduced density matrix
of system B after the thermalization protocol can be rewritten
as follows:

ρrth
B =

∑
n,m

cncm

2
[1 + (−1)n+m]|n〉〈m|, (F3)

where we have used the fact that the coefficients cn are real.
Under the Jaynes-Cummings evolution, a two-level system
and a harmonic oscillator in the state |n + 1〉 undergo the
following transformation [27]:

|g, n + 1〉 → −i sin αn|e, n〉 + cos αn|g, n + 1〉, (F4)

where αn = gBtB
√

n + 1. A simple calculation shows that,
after the interaction, the three-level system is in a mixed state
without coherences:

ρDi =
∑

n

c2
n(sin2 αn−1|e〉〈e| + cos2 αn−1|g〉〈g|). (F5)

Moreover, the new state of the cavity is of the same form of
Eq. (F3), therefore none of the three-level systems acquires
coherences in the energy basis.

In Fig. 8, we plot the efficiency of this energy transfer
against the interaction time tB, for g = 1.6 ω and different
values of Nc. This efficiency is defined as the ratio between
the energy acquired by Di and the energy, WB, that was stored
in system B, i.e., η1 = (h̄ω

∑Nc
i=1 pi )/WB. Figure 8 shows

that a great part of WB (WB � 2.49 h̄ω) can be extracted in
this way by properly choosing the interaction time tB. For
comparison, for a Rabi oscillation we have gBtB = 2π . This
figure also suggests considering Nc = 8 in view of the fact
that increasing this number raises the extracted energy by a
very small amount. Moreover, the quantity of energy extracted
in this way seems to be robust to little variations of tB.
We observe that in general the efficiency η1 could be raised
(and/or smaller values of Nc could be used) by choosing
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different interaction times for each of the three-level systems.
The remaining energy of system B will be dissipated in the
thermal bath.

In order to charge system C, we have then Nc + 1 three-
level systems (the system A and the Nc systems Di) with
different excited populations. The system A and the systems
Di interact with system C through

H ′
JC = h̄gC (cσ ′

+ + c†σ ′
−), (F6)

where c(c†) is the annihilation (creation) operator for C,
which has Hamiltonian HC = h̄ω′n̂c, with n̂c = c†c and ω′ =
ω/2 + γ . We recall that this interaction with a system Di

can take place while another three-level system interacts with
system B.

For every interaction with system C, the initial state of any
Di is of the kind

pe|e〉〈e| + 0|u〉〈u| + pg|g〉〈g|. (F7)

To compute the Jaynes-Cummings evolution under a time tC ,
we can make use of the following transformation, concerning
a two-level system in the excited state |e〉 and a harmonic
oscillator in the state |n〉 [27]:

|e, n〉 → cos(gCtC
√

n + 1)|e, n〉
− i sin(gCtC

√
n + 1)|u, n + 1〉. (F8)

It is then easy to show that each number state of the harmonic
oscillator transforms as follows:

|n〉〈n| → γn|n〉〈n| + (1 − γn)|n + 1〉〈n + 1|, (F9)

where γn = pe cos2(gCtC
√

n + 1) + pg.
Then, if the initial state of system C is a state with no

coherences in its energy basis, it will never gain coherences
from this interaction. In this case, the initial state of system C
is the ground state |0〉〈0|.

Again, to analyze the simplest situation, each three-level
system will interact with the harmonic oscillator for the same
time tC . Cycle after cycle, each three-level system meets
system C in a different state, in general, so that the efficiency
of this part of the whole protocol depends on the number of
cycles. After having interacted with system C, the three-level
systems are reinitialized through thermalization and ready
to start another cycle of the global protocol. The average
efficiency per cycle of this energy transfer to system C is equal
to the ratio of the energy stored in it after N cycles divided by
N and the total transferable energy of the three-level systems
before the interaction:

η2 = EC/N

h̄ω
( ∑Nc

i=1 pi + pa
) = ω′

ω

〈n̂C〉/N( ∑Nc
i=1 pi + pa

) , (F10)

where pa is the excited population of system A at the end of the
thermalization protocol [see Eq. (E11) for our specific model].

In Fig. 9, we plot the efficiency of this part of the transfer
protocol using the three-level systems of the previous part and
100 iterations of the whole process as a function of tC . The
plot also shows the behavior of the standard deviation. As
one can see, a maximum efficiency of the order of 50% can

FIG. 9. Graph of the efficiency (η2) of the charging part of
the transfer protocol, for N = 100 iterations, as a function of the
interaction time tC for Nc = 8, gBtB = 0.84, and γ = 0.4 ω, which
implies ω′ = 0.9 ω. The solid line represents the efficiency obtained
using the average energy, while the dotted lines represent the efficien-
cies obtained using the average energy plus or minus the standard
deviation.

be achieved for gCtC � 0.18. However, by choosing a larger
value for tC we can obtain smaller values for the standard
deviation, thus improving the analogy between system C
and an ordinary battery, since C is in a mixed state with
a relatively high energy and small standard deviation, e.g.,
EC � (104.60 ± 3.29)h̄ω for gCtC = 0.26.

We think that N = 100 is a suitable compromise to show
the iterability of the process while keeping reasonable (at least
in principle) the assumption that the dissipation of system
C is negligible. We have also considered other values of N
(for example N = 25 and 1000), observing that the results
for the efficiency and the standard deviation do not change
qualitatively. We finally observe, from Fig. 9, that the optimal
interaction time is much lower than the time of a Rabi os-
cillation (gCtC = 2π ) and that the protocol is robust to small
variations of tC .

An interesting feature emerging from numerical simula-
tions is that if we vary the populations pi by keeping fixed
their sum the plot in Fig. 9 almost does not change, for N
sufficiently high. This means that this result is solid with
respect to the number of copies Nc and to variations of the
populations.

TABLE I. All relevant values of the transfer protocol for a
specific choice of the parameters.

Parameters

WA = pa h̄ω � 0.44 h̄ω WB � 2.49 h̄ω

N = 100 Nc = 8
g = 1.6 ω γ = 0.4 ω

Optimal interaction times and results

gBtB = 0.84 gCtC = 0.26
η1 � 0.985 η2 � 0.361
ηT � 0.357 EC � (104.60 ± 3.29)h̄ω
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The total efficiency of the complete transfer protocol can
be calculated as follows:

ηT = WA + η1WB

WA + WB
× η2. (F11)

In Table I we report the efficiencies η1, η2, and ηT for some
specific values of the relevant parameters, as well as the
optimal interaction times (up to the second decimal digit)
found through numerical simulations.

One can also estimate the minimum amount of time a cycle
of the complete protocol takes when considering both the
thermalization and the transfer protocol. By neglecting the

A-B interaction switches, we get

T = (t3 − t2) + Nc max{tB, tC}. (F12)

If tB > tC , this result is obtained by considering that when
the last three-level system of a cycle ends its interaction with
system B system A can already be ready to start another
thermalization process, i.e., the next cycle of the complete
protocol. If tC > tB, the last of the copies has to wait Nc

interactions of other three-level systems with system C. When
its interaction begins, system A can already start the ther-
malization protocol. It follows that for Nc and N not too
large, depending on the actual physical implementation, the
dissipative processes of system C during its charge could be
effectively negligible, as we assumed here.
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