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Three-dimensional Baxter-Wu model
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A classic three-dimensional spin model, based upon the Baxter-Wu scheme, is presented. It is found, by
entropic sampling simulations, that the behavior of the energy and magnetization fourth-order cumulants points
to a first-order phase transition. A finite-size procedure was performed, confirming that the system scales with the
dimensionality d = 3, yielding a high-resolution estimate of the transition temperature as Tc = 11.377485(29).
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I. INTRODUCTION

The study of three-dimensional (3D) spin models in sta-
tistical physics has great importance in materials science,
since it can describe, predict, or even design real systems. We
can cite the well-known Ising model that is used to describe
the Fe-Al magnetic alloy [1–3], once it is arranged in a bcc
structure composed of two interpenetrating cubic lattices. For
the disordered case, the phase diagram has been described
using the site-diluted spin-1 Blume-Capel model in a simple
cubic arrangement via a mean-field renormalization group
approach in the pair approximation [4]. Such a technique and
model were also used to characterize Fe-Ni-Mn and Fe-Al-Mn
alloys [5]. The Ising model is also used to construct meta-
magnets in thin film geometry models. These systems were
studied via Wang-Landau procedure and by importance sam-
pling Monte Carlo (MC) simulations in investigations of their
equilibrium phase diagram [6]. Such a model was extended
to the understanding of nonequilibrium relaxation processes
in Co-Cr superlattices [7]. Metamagnetic compounds FeCl2

and FeBr2 have had their properties simulated by a study of
a 3D spatially anisotropic Ising superantiferromagnet in the
presence of a magnetic field [8], where a rich phase diagram
was constructed. There are in nature hexagonal arrangements,
such as some magnetic systems. Based on MC simulations,
Ma et al. have presented results of a film model that is
described by a 3D layered honeycomb lattice [9]. This kind
of lattice was used by Wang et al. in the characterization of
molecular-based magnetic film AFeII FeIII (C2O4)3 [10]. Most
of the hexagonal magnetic materials are described via the
Ising model in a triangular lattice, as is the case of Ca3CO2O6,
where the steplike magnetization behavior is strongly depen-
dent on the external field and temperature [11–13]. Hexagonal
nanoparticles and nanowires with a core-shell structure, like
CuS-Cu2S with mixed spin (1/2; 1) and spin-1 Zn-Se, have
been successfully predicted and synthesized [14–20].

*lucasnjorge@gmail.com
†lucas.if.ufg@gmail.com
‡caparica@ufg.br

Although there are so many models in hexagonal ar-
rangements in nature or predicted in literature, a 3D model
via Baxter-Wu interactions is lacking. Therefore the present
work aims at modeling a 3D system that obeys a three-
spin interaction like in the two-dimensional (2D) Baxter-Wu
model, and investigating the order of the phase transition and
estimating the subsequent thermodynamic properties, using
entropic sampling simulations.

II. THE 3D BAXTER-WU MODEL

Proposed by Wood and Griffiths [21] in 1972 and exactly
solved by Baxter and Wu [22–24], the Baxter-Wu model is a
spin model that considers terms of triple coupling between
the spins. It consists in a magnetic system defined on a
2D triangular lattice, where, for the spin-1/2 case, the spins
variables can assume the values si = ±1 and are located at the
vertices of the triangles. The three-spin interaction is governed
by the Hamiltonian

HBW = −J
∑
〈i, j,k〉

sis jsk, (1)

where J is the nearest-neighbor coupling parameter between
the spins that fixes the energy scale, and the sum extends over
all triangular faces of the lattice.

To construct the 3D version of the Baxter-Wu model, we
consider a regular hexagon on the horizontal plane, with six
spins in the vertices. In its center, there are three axes crossing
it, in such a way that each one can be associated to a hexagon
forming an angle of 600 with the initial plane, as shown in
Fig. 1(a). In this figure we see that the initial hexagon is
formed by the dots (1,2,3,4,5,6), and in its center is the zero
site. The other three hexagons are formed by (1,9,8,4,12,10),
(2,9,7,5,12,11), and (3,8,7,6,10,11). So a spin, that in the
2D case has six nearest neighbors and is surrounded by six
triangular faces, has in this case 12 nearest neighbors and
counts 24 triangular faces surrounding it.

In this scheme, the three sites that belong to the upper
plane, are located above the center of three alternated triangu-
lar faces, while the other three in the lower plane are located
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FIG. 1. (a) Three-dimensional lattice of the Baxter-Wu model. (b) Three-dimensional lattice of the Baxter-Wu model transposed into a
cubic lattice. (c) The oblique plane.

below the centers of the other three triangular faces, as shown
in Fig. 1(a). This lattice is known as a face-centered cubic
(fcc) [25].

Therefore, the 3D Baxter-Wu model is defined in a
3D lattice with triangular interactions, with the energy
given by

HBW3D = −J
∑
〈i, j,k〉

sis jsk, (2)

where the sum extends over all possible triangular faces of the
lattice and the spin variables are located at the vertices of
the triangles and can assume the integer values si = ±1. J is
the constant that scales the energy of the lattice, being the
same in all directions. Unlike the 2D version of the model,
which displays four ground-state configurations—one ferro-
magnetic and three ferrimagnetic—the 3D Baxter-Wu model
has a single ground-state configuration, namely, the ferromag-
netic one. When we try to construct a 3D ferrimagnetic con-
figuration, the triangular faces are satisfied for two planes, but
for the third and fourth planes, frustrations appear, showing
that it is impossible to obtain such ferrimagnetic constructions
in three dimensions with the ground-state energy. Notwith-
standing one can stack up ferrimagnetic planes constructing

an ordered configuration, but its energy will be higher than
that of the ground state due to the frustrations in the triangular
faces between the planes. The minimum energy of such a
construction will occur when one follows the sequence a, b,
c, a, b, c,..., where a, b, and c are each one of the three 2D
ferrimagnetic ground-state configurations.

The configurations on the structure described above may be
transposed to isomorphic configurations on a cubic lattice as
shown in Figs. 1(b) and 1(c), where we see that three hexagons
lie on the Cartesian planes, and the last one lies on a oblique
plane. The Hamiltonian may then be decomposed in sums
over four planes:

H = − J

⎡
⎣ ∑

〈i, j,k〉
sis jsk

⎤
⎦

XY

, −J

⎡
⎣ ∑

〈i, j,k〉
sis jsk

⎤
⎦

XZ

,

− J

⎡
⎣ ∑

〈i, j,k〉
sis jsk

⎤
⎦

Y Z

, −J

⎡
⎣ ∑

〈i, j,k〉
sis jsk

⎤
⎦

Obl.

, (3)

which extend over all triangles of the lattice in each plane
XY , XZ , Y Z [Fig. 1(b)], and the oblique plane [Fig. 1(c)],
respectively.

In the cubic scheme, the energy of a particular configura-
tion is given by (see Fig. 2)

E = J

3

⎡
⎣

L∑
i=1

L∑
j=1

L∑
k=1

si, j,k (si+1, j,ksi, j−1,k+si, j−1,ksi−1, j−1,k+si−1, j−1,ksi−1, j,k + si−1, j,ksi, j+1,k+si, j+1,ksi+1, j+1,k+si+1, j+1,ksi+1, j,k )

+
L∑

i=1

L∑
j=1

L∑
k=1

si, j,k (si+1, j,ksi, j,k+1+si, j,k+1si−1, j,k+1+si−1, j,k+1si−1, j,k + si−1, j,ksi, j,k−1 + si, j,k−1si+1, j,k−1+si+1, j,k−1si+1, j,k )

+
L∑

i=1

L∑
j=1

L∑
k=1

si, j,k (si, j,k+1si, j−1,k+si, j−1,ksi, j−1,k−1+si, j−1,k−1si, j,k−1 + si, j,k−1si, j+1,k + si, j+1,ksi, j+1,k+1+si, j+1,k+1si, j,k+1)

+
L∑

i=1

L∑
j=1

L∑
k=1

si, j,k (si−1, j−1,ksi−1, j,k+1 + si−1, j,k+1si, j+1,k+1 + si, j+1,k+1si+1, j+1,k + si+1, j+1,ksi+1, j,k−1 + si+1, j,k−1si, j−1,k−1

+ si, j−1,k−1si−1, j−1,k )

⎤
⎦,
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FIG. 2. Indexed spins with the spin i, j, k in the center for
guiding the understanding of the Hamiltonian in the cubic lattice.

where the division by three is because in this sum each
triangular face is counted three times.

In this work we adopted the order parameter as the to-
tal magnetization of the system, M = ∑L

i, j,k=1 si, j,k [26–28];
thus, in the simulations we picked only nonmultiples of three
lattice sizes.

III. ENTROPIC SAMPLING SIMULATIONS

The entropic simulations applied to our model are based
on the Wang-Landau method [29], which by means of a
random walk in energy space allows the construction of the
density of states g(E ), generating a flat histogram for the
energy distribution, and then the estimation of the canonical
averages of any thermodynamic quantities. In our simulations
we include some improvements that enhance the accuracy and
lead to substantial savings in CPU time. Namely, (1) we adopt
the Monte Carlo sweep before updating the density of states,
avoiding taking into account highly correlated configurations,
(2) we begin to accumulate the microcanonical averages only
from the eighth Wang-Landau level ( f7), such that we discard
the initial configurations that do not match with those of
maximum entropy [30], (3) we use a checking parameter ε

for halting the simulation [31] (the computational process
is halted if the integral of the specific heat over a range
of temperature calculated with the current density of states
during the simulations varies less then 10−4 during a whole
Wang-Landau level), and (4) we begin all simulations, for all
lattice sizes, beginning from the outputs of a single run up to
the Wang-Landau level f6, because up to this point the current
density of states is not biased yet and can proceed to any
final result that would be obtained beginning from the first
Wang-Landau level f0 [32], a procedure that allows saving
about 60% of CPU time.
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FIG. 3. Logarithm of the density of states for the L = 14 lattice.

IV. RESULTS

We carried out entropic simulations for L × L × L lattices,
picking L = 8, 10, 14, 16, and 20, with 24, 20, 20, 16, and
16 independent runs, respectively. In Fig. 3 we show the
logarithm of the density of states of the lattice size L = 14.

The behavior of the fourth-order energy and magnetization
cumulants

UX (L) = 1 − 〈X 4〉
3〈X 2〉2

, X ≡ E , M (4)

shown in Figs. 4 and 5 give us solid evidence that our model
undergoes a first-order phase transition. The energy cumulants
intersect at a point close to the transition temperature, while
the magnetization cumulants exhibit sharp negative minima,
as expected in a discontinuous phase transition. In addition,
the energy probability distribution

P(E , T ) = g(E )e− E
kBT (5)

displays double peaks with a null probability valley between
them, as we see in Fig. 6. Usually these peaks are symmetric,
and then it is common to determine the transition temperature
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FIG. 4. Fourth-order energy cumulants as functions of
temperature.
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FIG. 5. Fourth-order magnetization cumulants as functions of
temperature.

as that when the peaks reach the same hight. Nonetheless
in our case they are asymmetric, and we find the transition
temperature as that of the same weight, that is, when the areas
below the maxima are the same [33].

A quantity which is intrinsically related to a first-order
phase transition is the latent heat, which can be measured
as the difference of the energies of the two peaks in the
energy probability distribution and scales with Ld−1 [34,35].
In Fig. 7 we show the finite-size scaling behavior yielding
�E = 5.3865(35).

In a system that suffers a discontinuous phase transition
it is expected that the maxima of the specific heat and the
susceptibility should scale with the dimensionality. Another
quantity that displays the dimensionality of the system in a
discontinuous phase transition is 1/ν in [26,36–38]

Vj ≈ 1

ν
ln L + V j (tL

1
ν ). (6)

In Fig. 8 we present the finite-size scaling behavior of
these quantities, yielding dCv

= 2.9812(46), dχ = 3.016(12),
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FIG. 6. Energy probability distributions as functions of the en-
ergy per particle at the temperatures where the areas below the
maxima are the same.
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FIG. 7. Energy variation between the peaks of energy probability
against 1/L2.

and dVj = 3.0148(23). In order to get our final result for d ,
the dimensionality, we take an average of these values with
unequal error bars, obtaining dCv ,χ,Vj = 3.0083(20).

According to Fisher and Berker [34], in first-order tran-
sitions all finite-size scaling procedures are made in terms of
powers of the lattice size, L−d . Once confirmed that the system
scales with the dimensionality, we can proceed with the deter-
mination of the transition temperature as the extrapolation for
L → ∞ (L−d = 0) of the best linear fits of the temperatures of
the maxima of the specific heat and the susceptibility, the min-
ima of the energy and magnetization fourth-order cumulants,
and the temperatures where the energy probability distribution
displays double peaks of the same weight. In Fig. 9 we depict
these best fits of these quantities for our simulations. The final
estimate for the transition temperature was taken as the mean
with unequal error bars of the five values obtained from fits for
each thermodynamic function and was Tc = 11.377485(29).

Many years after the publication of the 2D Baxter-Wu
model, a system of adsorbed atoms or molecules in single
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FIG. 8. Log-log plot of the maxima of the specific heat, suscep-
tibility, and cumulants Vj with lattice size. The linear coefficients are
close to the dimensionality of the system. The error bars are less than
the symbols.
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FIG. 9. Dependence on temperature of the minima of the energy
and magnetization cumulants, maxima of specific heat and suscep-
tibility, and double peaks of the same weight of energy density of
probability, against 1/L3.The error bars are less than the symbols.

crystals and their universality class has been experimen-
tally determined. We can site the compounds chemisorbed
overlayer p(2 × 2) oxygen on Ni(111) [39], the adsorp-
tion system O-Ru(0001) [40] at the 1/4 monolayer, and
the (2 × 2)-2H structure on Ni(111) [41]. They are 2D

triangular systems that belong to same universality class
of the 2D Baxter-Wu model. In the work of Barkema et al.
[42], they have studied the Cu adsorbed on a Cu (111) surface.
They considered an Ising model in a triangular lattice and,
in addition to the nearest-neighbor spins interactions, they
have taken into account triple interactions as in the Baxter-
Wu model. We hope this 3D model may also consist of an
useful platform for the simulation of existing compounds in
nature.

V. CONCLUSIONS

In this work we proposed a 3D model inspired by the
2D Baxter-Wu model. The structure of the model corre-
sponds to a FCC lattice. We studied its properties through
extensive entropic sampling simulations and found that the
system undergoes a first-order order-disorder transition, since
the thermodynamic properties scale with the dimensionality
of the system d = 3. We also carried out a high-precision
estimation of the transition temperature and the latent
heat.
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