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Understanding heat transport in one-dimensional systems remains a major challenge in theoretical physics,
both from the quantum as well as from the classical point of view. In fact, steady states of one-dimensional
systems are commonly characterized by macroscopic inhomogeneities, and by long-range correlations, as well
as large fluctuations that are typically absent in standard three-dimensional thermodynamic systems. These
effects violate locality—material properties in the bulk may be strongly affected by the boundaries, leading
to anomalous energy transport—and they make more problematic the interpretation of mechanical microscopic
quantities in terms of thermodynamic observables. Here, we revisit the problem of heat conduction in chains of
classical nonlinear oscillators, following a Lagrangian and a Eulerian approach. The Eulerian definition of the
flux is composed of a convective and a conductive component. The former component tends to prevail at large
temperatures where the system behavior is increasingly gaslike. Finally, we find that the convective component
tends to be negative in the presence of a negative pressure.
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I. INTRODUCTION

A temperature gradient applied to a macroscopic object
produces a heat flow, which in standard conditions is pro-
portional to the gradient itself. This is the content of the
phenomenological law known as the Fourier law of heat
conduction [1]. A great deal of research has been devoted
to the microscopic origin of such a law. In particular, low-
dimensional systems, such as one-dimensional (1D) chains of
classical oscillators, have been targeted both because of their
simplicity and, more recently, also because they approximate
mesoscopic objects that are actually within reach of present-
day technology [2]. Despite such efforts, the derivation of
Fourier law from microscopic dynamics remains one of the
major open problems of theoretical physics [3]. Recently,
various works have suggested that heat conduction in 1D
systems need to be more closely investigated [2,4–7], partic-
ularly because it typically violates the Fourier law. In fact,
establishing meaningful relationships between microscopic
and macroscopic properties, primarily requires accurate def-
initions of the relevant observables. In particular, heat flux
is the crucial quantity when the range of validity of Fourier
law is investigated. Irving and Kirkwood provided a general
definition [8], reported in many books on nonequilibrium
thermodynamics (see, e.g., Ref. [9]). The corresponding ex-
pression was derived in Fourier space, where it is easier to
establish its dependence over relatively long spatial scales,
those where hydrodynamic evolution takes place. Nowadays,
since numerical simulations allow accessing a wide range of
scales, down to the microscopic ones, it is, however, urgent to
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derive expressions whose validity is not limited by the spatial
resolution.

In the context of 1D systems, two formulas have been
proposed and are often used in the literature: definition Eq.
(17) of Ref. [10], derived under the assumption of transversal
fluctuations in a perfectly periodic lattice; definition Eq. (23)
of Ref. [10], a real-space version of the Irving-Kirkwood
formula. While the former one is entirely correct, the more
general latter definition is not as accurate as expected. In fact,
in Ref. [6] it is found that in a stationary regime, the average
value of the flux is not constant along the chain as it should.
Whether or not the deviations are to be attributed to the chain
deformations observed in Ref. [6], Eq. (23) of Ref. [10], needs
to be refined.

In this paper we revisit the problem by proposing two
different approaches: (i) a Lagrangian one, which consists
in measuring the flux as the energy exchanged between two
consecutive particles, irrespective of where they are located;
(ii) an Eulerian one, which consists in determining the energy
flowing through a given (possibly time-dependent) threshold.
The former approach confirms the definition Eq. (17) of
Ref. [10], giving to it a more general interpretation. The
second approach leads to an entirely new expression, which
is naturally composed of two terms: a convective component
due to the particles physically crossing the threshold and a
conductive one, due to the exchange of (potential) energy
between particles sitting on opposite sides of the thresh-
old itself. This distinction is reminiscent of the separation
between the two analogous terms in the Irving-Kirkwood
formula, the difference being that our quantities refer to real
space.

The resulting theoretical formulas are then tested in two
models: a soft-point chain (SPC), which includes a confining
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harmonic interaction and a short-range repulsion, and a hard-
point chain (HPC) [11], characterized by an infinite-square-
well potential. The Lagrangian and Eulerian definition turn
out to agree with one another and overcome the problem
of Eq. (23) in Ref. [10]. Indeed, unlike that expression, the
resulting stationary fluxes in our simulations are constant
along the chain, as they should. Additionally, we explore the
origin of the difference between the Lagrangian flux and the
conductive component of the Eulerian flux, as their definitions
look formally identical, while eventually they are not.

It is well known that 1D systems are neither perfect crystals
(in the thermodynamic limit, particles exhibit arbitrarily large
fluctuations, unless they are constrained by an external sub-
strate), nor perfect gases (so long as ordering is maintained).
We find that the fraction of convective-flux component is a
clever indicator of the “gassiness” of the underlying system;
in fact, in the limit of very small fluctuations the conductive
component dominates, while the opposite occurs in the limit
of a “gaslike” behavior, such as when the HPC reduces to a
hard-point gas.

Furthermore and somewhat surprisingly, in both systems,
the convective component of the Eulerian flux tends to be
negative in the presence of a negative pressure, thus making
the conductive part larger than the total flux.

Section II is devoted to the introduction of the formalism
and to the derivation of the relevant formulas. Section III
illustrates the properties of the different flux components in
the two above mentioned models. In the context of the SPC,
we verify also the relationship between kinetic temperature
T and density ρ proposed in Ref. [12], clarifying that it does
not correspond to the Boyle law of perfect gases. Moreover,
in Sec. III B, we prove a duality property of the HPC, i.e., a
perfect equivalence between high- and low-density regimes.

Section IV is devoted to a discussion of the relationship
between the sign of pressure and of the conductive component
of the heat flux. The last section contains a summary of the
main results and a brief presentation of the open problems.

Given the complexity of our notation, due to the variety of
quantities we consider, we list here the main variables that the
reader will find in the following sections:

(1) qn: position of particle n
(2) sn = q̄n+1 − q̄n

(3) xn = n/N : normalized label of particle n
(4) θ ∈ [0, L]: fixed threshold in space
(5) k(θ, t ): label of particle to the left of θ

(6) J̄L
k (θ ): time average of jL

k , under the condition Qk =
(qk+1 + qk )/2 ∈ [θ − dθ/2, θ + dθ/2]

(7) J̄D
q (n): time average of jD, conditioned to preassigned

k values such that qk < θ < qk+1

(8) J̃ (m, q): time average of jL
m, conditioned qm < q <

qm+1

II. FLUX DEFINITION

Out of equilibrium, a closed chain of particles in contact
with heat baths develops nonhomogeneous (kinetic) temper-
ature and particle-density profiles, while an energy current
flowing from hot to cold sets in.

In this section we revisit the microscopic definition of
the energy flux, introducing two different approaches that

in analogy with the hydrodynamic description in fluids, we
define as “Lagrangian” and “Eulerian.”

For the sake of simplicity we refer to particle systems
characterized by a kinetic energy and nearest-neighbor inter-
actions, but we are confident that the approach herein dis-
cussed can be easily extended to other setups. In practice, we
assume a one-dimensional system of N interacting particles,
of possibly different masses mn, with Hamiltonian

H (q, p, t ) =
N∑

n=1

[
p2

n

2mn
+ V (qn+1 − qn)

]
+ ζL(TL ) + ζR(TR),

(1)

where q = (q1, . . . , qN ) and p = (p1, . . . , pN ) are the particle
positions and momentum vectors respectively, V denotes the
interaction potential, and the ζ terms take into account the
energy exchange between the system and the left (right) heat
bath at temperature TL (TR) [13]. Moreover, we explicitly
neglect the presence of an on-site potential, since it does not
contribute to the flux. It should, however, be reminded that it
indirectly contributes to the scaling of the flux itself with the
system size, determining whether heat transport is normal or
not [10].

The first question concerns the microscopic definition of
the energy density, to represent the total Hamiltonian as the
sum of distinct local contributions hn, each referring to either
a specific site, or a specific link. Depending on which choice
is made, either the potential, or the kinetic energy must be
(arbitrarily) split into two different contributions, attached
to adjacent sites or links. In spite of such arbitrariness,
no relevant differences are expected to emerge for different
choices over tens of microscopic spatial and temporal scales.
Therefore, for the sake of simplicity and symmetry, we choose
to define the local energy hn as

hn = p2
n

2mn
+ 1

2
[V (qn+1 − qn) + V (qn − qn−1)], (2)

assuming that hn is localized on the position qn(t ) of the
particle of interest.

The total Hamiltonian can then be written as

H (q, p, t ) =
N−1∑
n=2

hn + �1;L + �N,R, (3)

where �1;L and �N ;R represent the dynamics of the first
and last particles of the chain and their coupling with the
respective left and right heat baths.

In 1D chains of oscillators, the energy flux is often com-
puted referring to a specific particle (or, better, a pair of
adjacent particles), irrespective of its location, rather than to
a specific spatial location. We start with this quantity that,
analogously to standard hydrodynamics, we call Lagrangian,
keeping in mind that a flow through consecutive particles only
makes sense in 1D systems.

By making use of the equations of motion, the time deriva-
tive of hn can be written as

dhn

dt
= −(

jL
n − jL

n−1

)
, (4)
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where

jL
n = 1

2m
(pn+1 + pn)F (qn+1 − qn), (5)

denotes the Lagrangian flux. Eq. (4) represents the energy
balance for particle n, due to the energy flows coming from
the subsets (1, n) and (n + 1, N ) of particles. It can also be
interpreted as a discrete version of the continuity equation

dh̃(ξ, t )

dt
+ ∂ jL(ξ, t )

∂ξ
= 0, (6)

where we have introduced the pseudo-spatial variable ξ =
na (a being a hypothetical lattice spacing); h̃(ξ, t ) = h/a is
dimensionally equivalent to an energy density. At the same
time, the flux jL is dimensionally equal to a 1D energy
density times a velocity, or, referring to the MKS unit system,
jL = Js−1, perfectly consistent with the flux estimated from
the interaction with the heat bath, as the amount of energy
exchanged per unit time.

This is the only meaningful approach when single oscilla-
tors are truly arranged along a regular lattice and the variable
qn either refers to an internal degree of freedom (such as an
angle in a spin chain) or to a transversal fluctuation. However,
although almost unnoticed in the previous literature, it can be
implemented also in the context of longitudinal fluctuations,
where a does not need to coincide with the physical separation
between consecutive particles (see Sec. III B where we show
how the Lagrangian approach is implemented in the HPC).

Let us now turn to the “Eulerian” definition of the energy
flux through a fixed position θ [14]. In this case, the flux jE

θ is
the sum of two contributions,

jE
θ = jD

θ + jV
θ , (7)

where jD
θ and jV

θ , represent, respectively, the conductive and
convective component of the flux. Here, jD

θ is due to interac-
tions and it accounts for the (instantaneous) energy flux from
the kth to the k + 1st particle, where k = k(θ, t ) is a time-
dependent index, identified by the condition qk < θ � qk+1

[15]. The instantaneous expression of jD
θ ,

jD
θ = 1

2m
(pk+1 + pk )F (qk+1 − qk ), (8)

formally looks like the Lagrangian flux expression Eq. (5),
with the difference that the particles of interest change in time
for jD

θ but not for jL
n .

Additionally, jV
θ accounts for the physical motion of parti-

cles: it represents the energy flux due to particles crossing the
threshold θ . Note that in a closed system there is no macro-
scopic convection, as the average velocity of each particle is
zero. However, when nonequilibrium is imposed the energy
carried by the motion of the particles does not balance to
zero. This contribution to the Eulerian energy flux jE

θ takes
into account the energy variation due to the particles that cross
the threshold θ [16]. Since this flux has a granular structure in
time, it is convenient to refer it to a finite time interval � (after
all, a flux, as a macroscopic concept, takes a finite time to be
measured). Therefore, we define the convective component of

jE
θ as

jV
θ = �−1

∑
t−�/2<t j<t+�/2

hk( j)(t j ) sign[pk( j)(t j )], (9)

where the set {t j} are the discrete times at which the particle
k( j) crosses the threshold θ , and the sign function takes into
account the direction of motion.

III. NUMERICAL ANALYSIS

In this section, we implement the above definitions in a
couple of relatively simple 1D models. We consider chains of
interacting particles coupled to heat baths at their boundaries.
In particular we look at the hard-point chain (HPC) model,
introduced in Ref. [11], that is characterized by hard-core
attractive and repulsive interactions, and a similar chain model
with a soft potential that, in analogy to the HPC, we call the
soft-point chain (SPC). We start discussing the SPC and then
turn our attention to the HPC.

A. Soft-point chain

We consider a one-dimensional chain of length L, com-
posed of N = L − 1 particles with fixed boundary conditions
(i.e., an average particle separation a = 1) The particles have
identical mass m = 1 and interact with their nearest neighbors
through a short-range repulsion and a harmonic attraction. The
Hamiltonian of the system is given by Eq. (1) with potential

V (q) = 1

2

(
1

q2
+ q2

)
. (10)

On the left (right) boundary, an interaction with a heat bath at
temperature TL = 2 (TR = 0.5) is assumed.

The heat baths are modeled as infinite ideal reservoirs of
particles in equilibrium, namely the particle velocities are dis-
tributed according to the appropriate Maxwellian distribution
at a certain temperature T . The interaction of the system with
the baths can then be modeled as if the boundary particles
of the chain collide with same-mass bath particles, thus
exchanging velocities. In practice, we reset the velocity of
particles 1 and N to new velocities randomly drawn from the
corresponding equilibrium distribution, thus ensuring that the
particles are thermalized at the desired temperatures. The time
at which the resetting occurs is randomly and independently
chosen for each of the two particles. Here we choose these
times so that the time intervals between consecutive resettings
are randomly drawn from a uniform distribution within the
interval (1,2).

The resulting temperature-profile of the chain is plotted in
Fig. 1(a) for a chain of length L = 512. There are, in principle,
two ways to plot the profile. The first and most commonly
used consists in adopting the lattice interpretation, i.e., in
setting xn = n/N as the independent variable. The second
approach consists in referring to the true physical position
q, averaging the kinetic energy of the particle closest to q,
irrespective of its label. Here we have adopted the former
approach, but the differences are not crucial for the messages
we want to convey to the reader.

The abrupt temperature changes visible in the vicinity
of the two thermal baths reveal a strong contact resistance
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(a)

(b)

FIG. 1. Nonequilibrium densities of a soft-point chain of length
L = 512 coupled to heat baths at temperatures TL = 2 and TR = 0.5.
(a) Temperature profile (solid curve). (b) particle density profile. The
circles in the upper panel have been obtained from Eq. (12).

for the chosen parameter values. We expect these drops to
progressively diminish when larger systems are considered,
since the number of modes of interaction between baths and
system correspondingly increases.

We have also computed the particle density profile, de-
termining the time averaged positions of particles, qn and
the average inter particle distance s(n) ≡ qn+1 − qn [17]. By
further considering that in our setting the average of s(n)
along the chain is by definition equal to 1, it makes sense
to define the microscopic density as ρ = 1/s(n): this is the
quantity plotted in Fig. 1(b). Density and temperature profiles
are qualitatively similar. This analogy was already noticed
in Ref. [12] for another model, where it was suggested that
T = C1ρ

−1 + C2, or, equivalently,

T (q) = C1s̄(q) + C2. (11)

This intuition is here confirmed: the circles in of Fig. 1(a)
indeed correspond to the curve

T = 5.5 (s − 〈s〉) + 〈T 〉, (12)

where the angular brackets denote an average along the chain.
This relationship may be obtained from the state equation of
the physical system, which can be written as F (P, s, T ) =
0, where P denotes the pressure and the dependence on
the volume is replaced by the equivalent dependence on s.
Since the pressure is constant along the chain, a variation
of the temperature transforms itself into a variation of s
and this variation is, in the limit of small displacements,
linear. So one can write F (P, s, T ) = F (P, 〈s〉 + δs, 〈T 〉 +
δT ) = Fsδs + FT δT = 0, which is nothing but the formula
proposed in Ref. [12]. The numerically determined coefficient
C1 = 5.5 corresponds to the ratio Fs/FT , the two derivatives
being determined in the middle point of the profile. We have
thus identified the constants of that relation, which had not
been done before, and we have confirmed that this relation
does not correspond to Boyle law of perfect gases (since

0.25 0.3 0.35x
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FIG. 2. Position dependence of the energy flux measured with
different procedures in a chain of length 511 (same parameters as
in Fig. 1). Black diamonds refer to the average Lagrangian flux
J

L
145(ξ ) conditioned to be measured at the scaled position x = ξ/L.

Green pluses refer to the Lagrangian flux of the same particle,
under the condition xL ∈ [q145, q146]. Red circles refer to the average
conductive component of the Eulerian flux measured in the location
153/L, under the condition that the label of the contributing particle
is k, for different k values (k is then mapped into an x-like variable via
the stationary profile x = qk/L). The horizontal dashed and dotted
lines correspond to the conductive Eulerian and Lagrangian flux,
respectively.

C2 is not a small constant, cf. [6]), although it implies that
density is lower at higher temperatures. Note that Eq. (11)
has been verified beyond the small displacement limit, which
means that the conclusions of the above calculation can be
generalized by integration of the infinitesimal variations.

For what concerns the fluxes, we find that the time aver-
aged Lagrangian flux, j

L
n , is independent of n and approxi-

mately equal to 0.171, while the time averaged Eulerian flux
is independent of the threshold position θ : j

E
θ = j

D
θ + j

V
θ ≈

0.084 + 0.087 = j
L
n . Therefore, the two definitions agree with

one another, as they should. Moreover, we see that the conduc-
tive and convective contributions are approximately equal to
one another for this choice of heat-bath temperatures. Below,
in this section, we investigate the temperature dependence of
the two contributions.

Now, we discuss the relationship between j
L
n and j

D
θ , as

they follow from different ways of averaging the same quan-
tity [compare Eq. (5) with Eq. (8)]. A noticeable difference
is that j

L
n refers to a fixed label n, irrespective of the position

qn, while j
D
θ refers to a fixed threshold θ , irrespective of the

label k of the adjacent particles sitting across the position θ .
It is therefore suggestive to compute conditional averages to
bring the two definitions closer to one another. More precisely,
we begin computing J

L
k (ξ ) as the (time) average of jL

k , under
the condition that the center of mass Qk = (qk + qk+1)/2 is
located inside the interval [ξ − dξ/2, ξ + dξ/2] for a set of
different fixed positions ξ . The results for k = 145 and a chain
of length 512 are shown in Fig. 2 (black diamonds), as a
function of the scaled position x = ξ/L. We realize that J

L
k
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is independent of the particle position ξ , and equals the total
flux (the fluctuations for relatively small and large x values
are due to poor statistics). One may conclude that this comes
from the fact that the Lagrangian flux is the total flux, and that
it does not depend on the label of the particle. However, the
equality of the time averages is not trivial, as explained below,
since j

L
n and J

L
k (ξ ) can differ at all time instants t .

Correspondingly, we have computed J
D
q (k), as the average

of jD
q , conditioned to a set of preassigned k values (k denoting

the label such that qk < θ < qk+1). The results are shown
in Fig. 2 (red circles) for xk = 153/512. Since J

L
k (t ) is a

function of the position q, while JD
q (k) is a function of the

label, for a meaningful comparison we have converted k into q̄
by exploiting the knowledge of the average profile, i.e., from
the knowledge of qk . From Fig. 2, we see that JD

q (k) too is
constant and still equal to the conductive component of the
heat flux. Therefore, it is not the combined dependence of the
two quantities on n and q to be responsible for the observed
differences between the Lagrangian flux and the conductive
component of the Eulerian flux.

A third kind of conditional average helps to clarify the
origin of the difference. Given an index value m, as normally
done in the Lagrangian approach, we determine the average of
all instantaneous flux values jL

m(t ), counting only those events
when qm < y < qm+1, no matter how close is the center of
mass Qm of the pair (qm, qm+1) to the assigned threshold y (as
it was done in the computation of the diamonds). We call this
observable J̃ (m, q); the results are displayed again in Fig. 2
for m = 145 and different threshold values (see plusses).
Once again this flux is independent of where the threshold
is located. Less trivial is that the outcome of this third type
of protocol now coincides with the conductive component of
the Eulerian flux. We can therefore conclude that the subtle
but important property which is responsible for the difference
between J

L
k (q) and J̃ (k, q) is that in the first case the average

is restricted to those moments when the center of mass is
close to a given threshold, while in the second case, it is the
matter of the threshold to be contained within the interval
[qk, qk+1].

Having verified that the definitions given in the previous
sections are meaningful, it is instructive to look at their
relative size for different temperatures. In Fig. 3, we plot
the fraction f = j

V
/ j

L
versus the average temperature T =

(TL + TR)/2 for three different chain lengths. This way, the
scaling behavior of the flux with the system size does not
matter and we can easily identify which contribution prevails.
By definition, 0 � f � 1, the two extrema corresponding to
a purely conductive ( f = 0) and a purely convective ( f = 1)
flux. From Fig. 3, we see that at small temperatures, the
convective component is relatively negligible in the SPC. In
fact, it is reasonable to conjecture that f (T ) goes to zero
for T → 0, since the fluctuations of the particle around the
equilibrium position decrease and so does the number of
threshold crossings which contribute to the convective flux. A
preliminary analysis suggests that the convective contribution
vanishes linearly with T . However, at larger temperatures,
the convective component becomes dominant, reflecting the
wilder, increasingly gaslike behavior of the particles along the
chain. Moreover, the ratio f slowly grows with L at fixed T .

0 1 T
0

0.5

1

f

FIG. 3. Fraction f = j
V
/ j

L
versus the mean temperature T =

(TL + TR )/2, for three different chain lengths: L = 256 (black dots),
L = 512 (red squares), and L = 1024 (green triangles). In all cases
TL − TR = 0.2. The dashed horizontal line corresponds to an even
distribution between conductive and convective component.

It probably saturates for L → ∞, but more detailed numerical
studies are necessary to test this hypothesis.

Finally, we look at temporal fluctuations. To average out
the irrelevant microscopic fluctuations, it is convenient to look
at the total flux. In the case of the Lagrangian approach, it
is the matter of averaging jL

n over all n values. To have a
statistically equivalent definition of the Eulerian contribution,
we have determined it for a set of equidistant thresholds,
separated by the average inter particle distance.

The results are plotted Fig. 4 for a relatively small and
a large temperature. The peak exhibited by all curves corre-
spond to the time needed by a sound wave to propagate along
the chain. Somehow surprisingly, stronger harmonics compo-
nents are visible at lower temperatures, when the dynamics
should in principle be more sinusoidal. It is also interesting
to see that the spectral weight of the convective component
prevails also at small temperatures (see the upper panel) where
its average value is smaller than the conductive one (this can
be extrapolated from the height of the power spectrum at
extremely low frequencies).

B. Hard-point chain

We now study the energy flux in the HPC. The model,
introduced and studied in Ref. [11], consists of a one-
dimensional chain of N particles of masses {mn}, positions
{qn}, and linear momenta {pn} ordered along a line. Nearest-
neighbor particles interact through elastic collisions when
qn+1 − qn = 0 (type-A collisions) and qn+1 − qn = aM (type-
B collisions) as given by the square-well potential in the
relative distances defined by

V (qn+1 − qn) =
{

0, 0 < qn+1 − qn < aM,

∞, otherwise. (13)

Type-B collisions can be visualized as if the particles were
linked by an inextensible and massless string of length
aM . Both types of collisions are of hard-core type and are
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FIG. 4. Power spectrum of the heat flux for L = 1024 and
(a) TL = 0.3, TR = 0.2, (b) TL = 3.3, TR = 3.2. The different curves
correspond to the Lagrangian (black solid), Euler conductive (red
dashed), and Euler convective (blue dotted) fluxes.

described by the same rule. Referring to the pair (n, n + 1),
the particles’ momenta change as

p′
n = mn − mn+1

mn + mn+1
pn + 2mn

mn + mn+1
pn+1, (14)

p′
n+1 = 2mn+1

mn + mn+1
pn − mn − mn+1

mn + mn+1
pn+1, (15)

where the primed momenta correspond to their values after a
collision. To avoid ballistic energy transport, here we consider
a diatomic chain for which the masses of the particles alternate
between two different values that we chosen as mn = 1 for
even n and mn = √

2 for odd n.
The chain has fixed boundary conditions, meaning that for

a chain of length L, we include two “virtual” particles with
fixed positions q0 = 0 and qN = L. The chain length sets the
specific volume α = L/N , which is constrained to be 0 < α <

aM and determines the prevalence of type-A versus type-B
collisions. The internal pressure P is obtained as the average
change of momentum due to the collisions, namely Pn =
p′

n − pn. It is easy to note from Eq. (14) that the pressure is
independent of the particle index, and thus homogeneous with
respect to the position. The internal pressure P is positive for
α < aM/2 and negative for α > aM/2 [11]. In what follows,
and without loss of generality, we set the maximal particle
distance to aM = 1.

The stationary nonequilibrium state sets in by thermalizing
the particles 1 and N that are next to the heat baths. Thermal-
ization is modeled as for the SPC. However, to test whether
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FIG. 5. Nonequilibrium densities of a hard-point chain consist-
ing of N = 512 particles, with temperature difference TL = 1.5, TR =
0.5, and α = 0.3. (a) Temperature profile T (x); (b) particle density
profile ρ(x) (solid curve). The circles correspond to the particle
density obtained from the temperature profile through the equation of
state Eq. (16), with P = 2.4 numerically computed as the momentum
change due to collisions. (c) Deformation of the chain �(eq) for
different values of α (as indicated by the labels).

crucial differences do not arise due to the specificities of the
coupling with the baths, here we fix the rate at which the
velocity of the boundary particle is reset by randomly drawing
the time between consecutive resettings from an exponential
distribution. We fix the thermalization rate equal to 103. In
between collisions and thermalization, the particles move
according to the HPC rules.

Temperature and particle density profiles are shown in
Figs. 5(a) and 5(b) for α = 0.3. The temperature profile (upper
panel) is similar to the one obtained for the SPC, though
here we do not observe temperature discontinuities at the
contacts with the heat baths. This is just a consequence of
the stronger interaction assumed herein. However, given that
the properties of the nonequilibrium state are determined by
the bulk dynamics, the existence of a contact resistance is
irrelevant. We also show the particle density (Fig. 5, middle
panel), computed as the inverse of the average inter particle
distance ρ, which is equivalent to the number of particles per
unit length.

The equation of state for the HPC was derived in Ref. [11]
and is given by

ρ(q) = T (q)

P
− 1

eP/T (q) − 1
, (16)

where P is the internal pressure. The circles in Fig. 5(b),
obtained through Eq. (16), show an excellent agreement. It
is worthwhile noting that the equation of state governing
the HPC local state differs from that of the SPC Eq. (11),
except at small deviations from the mean density and kinetic
temperature.

For TL �= TR, the chain deforms inhomogeneously. We
measure this deformation as the deviation of the average
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FIG. 6. Different fluxes for the HPC, as functions of the specific
volume α: total flux (black solid curve), Euler conductive flux
(red dashed curve), Euler convective flux (green knots), and the
contribution of type-A collisions to the flux (magenta triangles). All
simulations are performed for a chain of length 1024, TL = 1.5, and
TR = 0.5. The ratio between the two masses is 1.5. The distribution
of interaction times with the heat bath is uniform between 0 and 2 in
all cases.

particle positions with respect to their equilibrium positions
q(eq)

n : �(eq)(n) = qn − q(eq)
n . In Fig. 5(c) we show �(eq) for

different values of α. The deformation vanishes at the border
due to the fixed boundary conditions; moreover, it is either
positive or negative depending on the sign of the internal
pressure. For α = 1/2, i.e., for zero pressure, �(eq) = 0 along
the chain. Finally, it looks like the maximal deformation
exhibits a peak for intermediate specific volumes: this is an
“artifact” of the interaction scheme with the heat baths. In
fact, for both α → 0 and α → 1, the average time between
consecutive collisions goes to zero, i.e., the time scale of
the HPC dynamics becomes arbitrarily short. However, the
interaction with the heat bath being ruled by a fixed time scale,
becomes increasingly weak.

A similar implication is found with reference to the energy
flux that we are now going to discuss. We have implemented
both the “Euler” and the “Lagrange” description as defined
in section II. Once again, both currents have the same value,
jL = jE , and do neither depend on the particle index nor on
the physical position, as it must be. The dependence of the
conductive and convective components of the heat flux on the
specific volume α is illustrated in Fig. 6.

There, we observe that the total flux is symmetric as
a function of the parameter α, about its value 1/2. This
is due to a duality linking the HPC models with specific
volumes α and α̂, when α̂ = 1 − α. In fact, given the con-
figuration I = {q1, q2, q3, . . . , qL} with q0 = 0 and qL = αL,
let us build the sister configuration II = {r0, r1, r2, . . . , rL},
starting from r0 = (1 − α)L, and recursively defining rm+1 =
rm − 1 + (qL−m+1 − qL−m). Since the original length is αL,
the length of the new configuration is equal to (1 − α)L. Let
us finally assume that the velocities of the configuration II are
left unchanged: ṙm = q̇L−m.

Consider now two consecutive particles with positions qn

and qn+1 in the configuration I and assume that they are
moving against one another. They will undergo a type-A col-
lision after a time τ = d/(q̇n+1 − q̇n), where d = qn+1 − qn

is the initial mutual distance. Within the sister configuration
II, the corresponding particles of coordinate rm, rm+1 sit by
construction at distance 1 − d and move away from one
another, as the ordering has been exchanged. Therefore, they
will undergo a type-B collision after the same time τ as in the
configuration I. Moreover, since the velocities are the same in
the two configurations they remain equal after the collision.
Analogously a collision of type-B in the first configuration
is fully equivalent to a collision of type-A in the second one.
We can therefore conclude that the initial relationship between
the two configurations is maintained at all future times. In
particular, one must expect that the energy flux is the same
in both setups, as observed in Fig. 6.

As a second observation, we notice that the flux diverges
for α → 0 (and then also for α → 1). Qualitatively, this is
because the density increases and the time interval between
consecutive collisions correspondingly decreases, tending to
vanish. One may thus expect the flux to diverge as 1/α.
However, the previously noticed decrease of the interaction
strength, hence of the rate of thermalization, slows down such
divergence.

From the definition of the fluxes in section II, one could
naively expect that type-A and type-B collisions of the HPC
are responsible for the convective and conductive flux, re-
spectively. In fact, for α → 0, type-B collisions become in-
creasingly rare, the dynamics is gaslike and the conductive
flux vanishes. Analogously, for α → 1, type-A collisions
disappear, the dynamics is crystal type and the convective
component vanishes. However, Fig. 6, where the contribution
of type-A collisions is reported (see the triangles), reveals that
the agreement with the convective component only holds for
α < 1/2.

For α > 1/2, the disagreement is not only quantitative, but
even qualitative, since the contribution of type-A collisions
stays positive, while the true convective component becomes
even negative. This somehow surprising behavior is further
investigated in the following section.

IV. ROLE OF PRESSURE

From Fig. 6, we see that for α > 1/2, the convective com-
ponent of the flux is negative, while the conductive component
is consistently larger than the total flux to compensate for the
negative convective contribution. It is plausible to conjecture
that in the HPC the sign of the convective component of
the flux is related to the sign of the pressure, since this
latter observable changes sign precisely for α = 1/2. To test
whether this is the general case, we have run some simulations
with the SPC by varying the specific volume.

In the case of the SPC, when the specific volume α = 1
(equivalently the average particle distance) the repulsive and
attractive force balance each other, and thus the chain at zero
temperature is at equilibrium with zero pressure. Upon switch-
ing on the temperature, we expect the pressure to increase and
this is what we see in Fig. 7, where the solid curve corresponds
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FIG. 7. Dependence of pressure (black curve, left labels) in the
SPC on the specific volume α. The blue dotted-dashed and red
dashed curves refer to the convective and conductive components
of the flux (see the right labels). Simulations have been performed
in a chain of N = 255 particles, with TL = 1.5, and TR = 0.5; the
collision times are uniformly distributed in the interval [0.2,0.4].

to the pressure as a function of the specific volume (see
the left axis). Upon increasing α we expect at some point
the pressure to change sign and this is what happens for
α ≈ 1.29. In parallel to the computation of the pressure, we
have determined also jV and jD, finding that the convective
component decreases and eventually changes sign as in the
HPC. However, the change of sign does not occur at the same
point ( jv = 0 for α ≈ 1.77).

Therefore, although these simulations qualitatively con-
firm that decreasing the pressure contributes to decrease the
convective component of the energy flux, which eventually
becomes negative, a quantitative connection between the two
observables is yet to be determined.

V. CONCLUDING REMARKS

In this paper we have investigated different microscopic
definitions of energy flux in 1D oscillators systems. In par-
ticular, we have considered two models (SPC and HPC)
characterized by a repulsive potential, which preserves the
particles order and a confining potential.

In both models, we have found that the Eulerian and
Lagrangian fluxes are equal to one another as it should be.
Concerning the conductive part jD

θ , we have observed that the

conditional Lagrangian flux J
L
k equals the total flux, rather

than jD
θ , despite the formal similarity of the two definitions.

The reason has been found in the fact that the average J
L
k (y)

is restricted to the instants of time in which the center of mass
is close to a given threshold, while J̃ (k, y) is computed when
the threshold is within the interval [qk, qk+1].

At small temperatures, the convective component jV
θ is

small, as one expects, but it becomes dominant at large
temperatures. This confirms an increasing similarity with a
gaslike behavior, which cannot be perfect if Eq. (12) extends
to very high temperatures. We have also observed a small
increase with the system size, which is probably a finite-size
effect, but should be more thoroughly investigated.

The power spectra of the total flux show a peak in cor-
respondence of the inverse of the time needed by a sound
wave to propagate along the chain. Interestingly, stronger har-
monic components appear at small temperatures, apparently
contradicting the idea that the dynamics should then resemble
that of harmonic oscillators. However, this peculiarity might
be an instance of the long-range correlations produced by
nonequilibrium boundary conditions (see, e.g., Ref. [12]).
An additional peculiarity is the relatively large amplitude
of the spectrum of the covariant component even at small
temperatures, when the average of jV is relatively small.

Rather surprisingly, in both the SPC and the HPC, we
found that the convective component of the Eulerian flux tends
to be negative in the presence of a negative pressure, thus
making the conductive part larger than the total flux. At the
moment, however, we have no indication of a quantitative
relationship between negative conductive fluxes and negative
pressures.

Finally, we have have shown that the symmetry of the heat
flux (invariance under the transformation α → 1 − α) in the
HPC, is a consequence of a duality of the model itself.
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