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Kinetically constrained model for gravity-driven granular flow and clogging
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We add extreme driving to the Kob-Andersen kinetically constrained lattice-gas model in order to mimic the
effect of gravity on dense granular systems. For low particle densities, the current that develops in the system
agrees at arbitrary field intensity with a mean-field theory. At intermediate densities, spatial correlations give rise
to nonmonotonic dependence of the current on field intensity. At higher densities, the current ultimately vanishes
at a finite, field-dependent density. We supplement the study of this bulk behavior with an investigation of the
current through a narrow hole. There, lateral flow decreases the local density in front of the hole. Remarkably,
the current through the hole quantitatively agrees with a theoretical prediction based on the bulk current at the
measured local density.
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I. INTRODUCTION

Jamming is the transition from a flowing state to a rigid
or arrested state as density increases in an assembly of par-
ticles [1,2]. Colloidal suspensions, glass-forming liquids, and
granular materials show heterogeneous dynamics as they ap-
proach jamming [3–10]. Clogging is when the flow of granular
materials through a bottleneck [11–14] or pipe [15] ceases to
exist. Jamming is a bulk phenomenon that occurs throughout
the system, while clogging is identified as the inability to
flow through a specific narrow region in the system where
particles get stuck locally. This eventually causes the flow
to stop also in other regions. There have been studies of the
crossover between jamming and clogging in heterogeneous
environments [16]. Many systems in nature and in industrial
applications exhibit jamming or clogging in very complicated
geometries [17,18], and it is important to understand how con-
finement induces the jamming or clogging of granular matter.
Experiments on granular systems [19] show steady growth
in dynamical heterogeneity as the relaxation time increases
with increasing density. We employ kinetically constrained
models [20–25] to construct a lattice model for describing the
physical mechanisms involved in jamming. These models do
not rely on any type of interaction between the particles other
than excluded volume interaction and are supplemented by
specific kinetic rules that control the movement of particles
depending on the local density around them. These dynamical
restrictions yield glassy behavior in the system. Specifically,
as the density of particles on the lattice increases, relaxation
dynamics become dramatically slow and heterogeneous. In
certain situations this slowing down can even lead to complete
jamming, in which particles will never flow [26–32].

In this paper, we examine the effect of an external field on
jamming in the two-dimensional Kob-Andersen [33] lattice
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gas with kinetically constrained dynamical rules. We imple-
ment the external field in a way that, to our understanding,
better represents gravity-driven flow of granular materials,
compared to previous studies [20,21,34–36]. We measure the
bulk current as a function of density and observe that the
current vanishes at a jamming density which depends on
the applied external field. We also measure the bulk current
as a function of the external field and find an unexplained
nonmonotonicity as a function of field. To understand the
microscopic origin for the dynamically jammed states, we
find that these states exhibit some rare mobility regions along
with other regions of higher mobility due to local relax-
ation. Increasing or decreasing local mobility in some region
sometimes facilitates the overall cooperative dynamics of the
system. Furthermore, we study the effect of confinement on
clogging by investigating the behavior of the system when
particles are allowed to pass through a narrow orifice. We
quantitatively explain the measured current in terms of the
current of an effective bulk system with the local density that
we measure in front of the orifice.

The paper is structured as follows. In Sec. II, we introduce
our model and describe the numerical simulation details. In
Sec. III, we study the bulk current as a function of external
field and show the nonmonotonic behavior of the current. We
measure two-point density correlations, focus on the micro-
scopic structure of the system at different parameter regimes,
and obtain the jamming phase diagram vs density and field. In
Sec. IV, we study our model with confinement, which mimics
the flow of particles through an orifice. Section V summarizes
the work.

II. MODEL

We use the Kob-Andersen kinetically constrained model
[33], in which particles are randomly distributed on the square
lattice with density ρ and they randomly attempt to move in
one of four possible directions. According to this model, the
move is allowed only if the target site is vacant and if there
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FIG. 1. (a) E model: Each particle has a fixed rate to move in
three direction denoted by green arrows, and a reduced rate to move
against the direction of the field, as shown by the shorter blue arrow.
(b) G model: Each particle has a fixed rate to move in the direction
of the field, as shown by the green arrow, and a reduced rate to move
in each of the transverse directions, as shown by the shorter blue
arrows, with no movement against the direction of the field. In both
models, moves succeed only if the Kob-Andersen kinetic constraints
are satisfied.

are at least two vacant nearest neighbors before and after the
move. An external field may be applied in some preferred
direction in a manner which we will refer to as the E model
[20,21]. Then, each particle has a rate R to move along the
field or in each of the transverse directions, whereas there is
a reduced rate Re−E for particles to move against the external
field; see Fig. 1(a).

We suggest that in gravity-driven granular flow, particles
move mainly along the direction of the gravitational field, they
have negligible ability to move against the field, and due to
collisions with other particles they have some limited ability
to move in the transverse directions. The rate of motion along
the field should be substantially higher than in the transverse
directions. Thus we introduce the G model with a constant rate
R to move along the field, together with transverse movement
with a reduced rate Re−G, and no movement against the field,
as shown in Fig. 1(b). Here particles have a constant rate to
attempt moving in the direction of the field G, and particle
current changes by varying the lateral motion, which in turn
influences the acceptance rate of moves along the field. Note
that the extreme driving limit of the E model, E = ∞, is
equivalent to G = 0 in the G model. Thus by increasing G,
we are changing the rate of motion in the transverse direction
and thus extending the E model to even more extreme driving.

Note that the E model allows moves also against the field
and thus satisfies detailed balance, similarly to the asymmetric
simple exclusion process (ASEP) model. In these models,
for any allowed move also the reverse move is allowed at
some finite rate. This implies that in the E model the initial
configuration sets whether the system will eventually jam or
not [10]. The G model on the other hand has finite rate for
some of the motions along the field and zero rate for the time-
reversed moves, against the field. Thus it violates detailed
balance, similarly to the totally asymmetric simple exclusion
process (TASEP) model [37], and in the G model jamming or
clogging is a result of the system being dynamically attracted
to some static absorbing state.

III. BULK CURRENT

In order to understand the behavior of the G model
precisely, we study the dynamics of the system in various
regimes. Here we begin with the bulk behavior and consider
a large system with periodic boundary condition in both
directions. In the low-density regime, we expect correlations
to be weak and therefore we can predict the current of the
particles in the direction of the field. We define the occupancy
index ηi, j for each site (i, j) in the two-dimensional lattice as

ηi, j =
{

1, the site is occupied,

0, the site is vacant.
Now we can write the mean current in the direction of the

field, based on the kinetic constraints. It can be clearly seen
from Fig. 2 that when a particle at (0,0) attempts to move to
the vacant site (0,1), then at least one of the three neighboring
sites denoted by blue must be empty along with at least one of
the three sites denoted by light green that must also be empty
to satisfy the kinetic constraint. Therefore the current reads

J = 〈η0,0(1 − η0,1)(1 − η−1,0η0,−1η1,0)(1 − η−1,1η0,2η1,1)〉.
(1)

Assuming no correlations between the occupancy of neigh-
boring sites, we obtain the mean-field (MF) current,

JMF(ρ) = ρ(1 − ρ)(1 − ρ3)2. (2)
We run kinetic Monte Carlo simulations with a Bortz-

Kalos-Lebowitz rejection-free algorithm [38], which makes
the simulations very efficient, on a periodic lattice of di-
mension L × L and typically use L = 400. We verified con-
vergence by comparing to simulations with L = 800. We
typically average over 100 realizations starting from different
random initial conditions. We first allow the system to relax
for t = 106 time units and then start measuring the current
after the system has reached the steady state. We compare our
numerical result with the MF current, first in the two extreme
limits: G = 0 and G = ∞, having only longitudinal motion in
the latter case.

0,-1

0,0 1,0-1,0

-1,1 0,1 1,1

0,2

FIG. 2. When a particle at position (0,0) attempts to move one
step in the direction of the field, the target site (0,1) should be vacant,
but also at least one of the (blue) sites neighboring the origin site and
at least one of the (light green) sites neighboring the target site should
be vacant to obey the kinetic constraint.
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FIG. 3. Current as a function of density in simulations in two
regimes: G = 0 (black) and G = ∞ (red) along with MF approxima-
tion from Eq. (2) (blue). They agree at low densities, above which
deviations from MF and dependence on G start to appear due to
increasing correlations. Zoomed plot in the inset shows the density
range where current vanishes.

Figure 3 shows good agreement with the MF approxima-
tion, given in Eq. (2), in the low-density regime. As follows
from this MF approximation, there is no dependence on the
field G at all. Above ρ ≈ 0.2, correlations start playing a
substantial role and the observed current is lower than the MF
prediction. As G increases, the rate to move in the direction
transverse to the field is lower, thus creating more constrained
dynamics, leading to stronger deviation from MF behavior.
We also observe that although our MF theory predicts J > 0
for any density ρ < 1, in our simulations the current stops
at some finite density, which is dependent on the field G.
Specifically, for G = 0, jamming occurs at ρ = 0.83 and for
G = ∞, it occurs at ρ = 0.78. This jamming at finite density
has been observed in the E = ∞ limit of the E model [20],
which coincides with our G = 0 limit.

Note that these values of the jamming density are signifi-
cantly lower than what we would expect in the Kob-Andersen
model at such system sizes without driving. Although in the
thermodynamic limit the undriven model jams only at ρ = 1
[26], finite-size effects lead to jamming at ρc = 1 − λ

log L ,
where λ may be approximated by λ = 0.25 [27]. Thus for our
L = 400 system size, this would lead to ρc = 0.96, which is
much higher than the densities at which we observe jamming
in our driven model. Thus we suggest that the phenomenon
we observe here is not a finite-size effect.

To further understand this jamming at finite density, we
consider narrow channels. Namely we simulate rectangular
systems of dimension Lx × Ly, where the system size Ly in
the driving direction is verified to be large enough, and the
system size Lx in the lateral direction takes small values.
We employ periodic boundary conditions in both directions
and concentrate here on the extreme driving limit G = ∞.
Figure 4 shows how even extremely narrow channels (Lx =
2, 3) exhibit the same qualitative behavior as the bulk results.
Note that for narrow systems, at any density there is a finite
probability to have at least two consecutive fully occupied

2

0.9

FIG. 4. Current as a function of density for systems of various
width Lx , as indicated in the legend. Dashed line is the MF result (2).
All simulations are with Ly = 800. Inset shows critical density for
jamming vs channel width.

rows within the system [28]. Due to the kinetic constraint,
these particles will never be able to move. Thus the current
vanishes for such initial conditions, and we exclude them from
the averaging over all random initial conditions. It would be
interesting to consider this simple limit, in which analytical
progress may be obtained. Moreover, this geometry could link
between clogging and jamming, as we discuss in detail when
considering confined geometries below.

A. Current as a function of G

We simulated the steady state current behavior as a func-
tion of the external field G. The results of the simulation for
varying G values can be seen in Fig. 5. For each density,
we normalize the current by the MF prediction according to
Eq. (2). As we have already seen, the substantial deviation

FIG. 5. Normalized current J/JMF as a function of the external
field G. For lower densities, the deviation from the mean-field current
is small. This deviation increases as we increase G. As the density
grows, the current becomes nonmonotonic as a function of G for
0.66 � ρ � 0.76 (solid lines).
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FIG. 6. Phase diagram in the density-field plane showing the
jamming transition. The colored region is the flowing state with
steady state current values depicted in the color bar, and the white
space is the jammed state, in which the current vanishes.

from the MF result, and the significant dependence on G, both
take place at higher densities. This can be understood by the
fact that the rate to move sideways controls the probability to
get stuck in the way. Whenever the rate to move sideways is
large (G is low), there is a higher probability that a particle
will change its trajectory and hence will be less correlated,
causing the current to increase at lower values of G.

Remarkably, in a finite region of densities, 0.66 � ρ �
0.76, the dependence on G becomes nonmonotonic and there
is a region where the current slightly increases as we increase
G before the current approaches its asymptotic value at higher
values of G. At this point we do not have a theoretical
explanation for how correlations that develop in the system
cause the deviation from MF behavior to be nonmonotonic as
a function of the external field.

B. Jamming phase diagram

According to our MF prediction, the current asymptotically
vanishes only as the density approaches unity. However, from
the numerical observations, one can see that there is some
field-dependent critical density ρc(G) at which the particles
are arrested and the system gets jammed. Specifically, Fig. 3
shows that the current goes to zero at different densities for
G = 0 and G = ∞. This implies that such jamming effect
depends on the field intensity G. In order to investigate the
transition from free flow to a jammed state, we show in Fig. 6
the phase diagram, which describes the numerical results
of the current as a function of the density and field. The
transition to the jammed state happens in the density range
0.78 < ρc(G) < 0.83, where as density increases, a smaller
field is required to get the jammed phase.

C. Correlation analysis

We have performed correlation analysis by defining the
two-point density correlation function as

C2(�x,�y) = 〈ηi, jηi+�x, j+�y〉 − ρ2

ρ − ρ2
. (3)

The normalization in the denominator comes from the fact
that at �x = �y = 0, we get 〈η2〉 = ρ because the occupancy
index satisfies η2 ≡ η, and the density ρ is the dimensionless
fraction of occupied sites out of the total number of sites in
the lattice. As can be seen from Fig. 7, the correlations are
mostly longitudinal as G becomes stronger. This is because
increasing G is equivalent to decreasing the probability to
move in the transverse direction, which corresponds to the
dominant motion being longitudinal.

D. Analysis of microscopic structure

One of the prominent differences between various regimes
of G values are the internal structures that are formed in the
steady state. As the density increases, the homogeneously
distributed particles start to create clusters of particles and
clusters of holes, as can be seen in Fig. 8. At high densities, the

(a) (b) 
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FIG. 7. Two-point density correlation function in the steady state with a system size L = 400 having density ρ = 0.7. Left and right panels
are for G = 5 and G = ∞, respectively.
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FIG. 8. Structures of particles (red) and holes (black) in steady
state for different values of field and density.

typical shapes of the microscopic structures of vacancies are
illustrated in Fig. 9(b). These start with the formation of rows
of holes perpendicular to the applied field, and are referred to
as shear bands [21]. These shear bands basically act as barriers
to the flow, below which there are areas of vacancies, which go
around these barriers and, due to transverse motion, gradually
fill in these areas of vacancies.

As can be seen from Fig. 9(a), for small values of G,
the height of the vacancy region is typically small, as there
is a high transverse motion, and the particles fill the open
space below the shear bands relatively quickly, as opposed
to the typical structure of the hole cluster for high values of

(a) Low G (b) High G

FIG. 9. (a) Typical structure of the hole clusters for small values
of G. The smaller shear band (bright gray), together with a higher
moving rate in the transverse direction, results in a smaller height
of the hole cluster. (b) Typical structure of the hole clusters for high
values of G. Lower transverse rate results in a higher height to fill
in the vacancies below the wider shear band. Red indicates occupied
sites. Black denotes vacant sites.

FIG. 10. Schematic diagram of a narrow opening of width w

within a horizontal wall of immobile particles (yellow).

G, as illustrated in Fig. 9(b). As we further observe, these
hole clusters are not persistent and they dynamically form
and get destructed in the steady state. The evolution of the
configuration at the steady state and the appearance of the
hole clusters can be seen in Fig. 8. This effect starts taking
place at high densities. For G = ∞, there is no motion at all in
the transverse direction and the only motion is in the direction
of the field. In this case, it can be seen that the hole clusters
are the longest, as depicted in Fig. 9(b).

IV. FLOW THROUGH AN ORIFICE

In this section, we study our model with confinement that
mimics the behavior of discharging granular materials through
an opening [39]. The confinement reveals new phenomena,
such as density heterogeneity and clogging of the system near
the opening. In addition, we would like to investigate the
confined flow and to reveal its connection to the jamming of
the bulk current, discussed in Sec. III.

We define a confined geometry imitating the discharge
of grains through an orifice, as shown in Fig. 10. Also in
this geometry, we employ periodic boundary conditions in
both directions. At the center of the lattice we place a rigid
horizontal barrier, with a narrow opening of width w. This
obstacle is achieved by artificially placing one row of occu-
pied sites in the initial condition and not moving them during
the simulation. Due to the periodic boundary conditions, this
geometry is equivalent to infinitely many openings with dis-
tances Lx − w in the transverse direction, and infinitely many
such barriers at a distance Ly in the longitudinal direction.
In order to eliminate finite size effects, we verified that the
ratio Lx/w is large enough. We show results from simulations
with Lx = 180, but found very small changes when increasing
system width to Lx = 600.

The simulation begins with randomly and uniformly dis-
tributed particles throughout the lattice. Due to the presence
of the barrier, there is sedimentation of the particles toward
the barrier. This sedimentation depends on the initial density
and on the strength G of the field. It would be interesting to
relate this to experiments with colloidal suspensions [40]. In
front of the opening there is flow. As a result, heterogeneity
of the density develops. For G < ∞, due to lateral motion,
particles rearrange, such that the density above the barrier
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FIG. 11. Snapshot of particle configuration in a lattice of dimen-
sion 60 × 180 with an orifice of width w = 30, at field G = 1, and
density ρ = 0.5. The system is in steady state that was reached after
106 units of time. Red (dark) particles are stuck (nonmovable in
any direction), white particle can move in the direction of the field,
yellow (bright) particles can move only sideways, and black sites are
empty.

increases, and by mass conservation, the density above the
opening decreases, as shown in Fig. 11. We also observe that
in the steady state, the only contributing part to the current is
the flow above the orifice, denoted by the white particles in
Fig. 11. This is because the system is jammed in other regions
of the lattice, as shown by the red particles.

We are interested in measuring the total current of particles
through the opening, namely the number of particles flowing
through the opening per unit time as given by

Jtot = 〈N〉
tLy

, (4)

where 〈N〉 is the average number of particles that moved along
the direction of the field during the time interval t anywhere
in the lattice, and Ly is the lattice height (see Fig. 10).
Using this definition, we can now estimate the total current
through the orifice using the bulk current, which we studied
in Sec. III. Recalling that the bulk current is defined as the
number of particles flowing in the system per unit time and per
lattice size, we can formally define the bulk current as Jbulk =
〈N〉/(tLxLy). In order to be consistent with the definition of
the total current in Eq. (4), our crudest approximation will be
as follows,

Jtot = Jbulk(ρ, G)w. (5)

Figure 12 shows results of numerical simulation, in which
we calculated the total current through the orifice, in compar-
ison to the crude approximation given in Eq. (5). As we can
see from the plot, there is a considerable discrepancy between
the numerical results (blue points) and this calculation (black
line). To explain this, we recall that the density in the confined
system is heterogeneous, and in particular, the density ρlocal

above the orifice is lower than the average density ρ in
the system. Hence we consider the local density measured
above the orifice, as this is the only region that contributes
to the current in the steady state. This corrects our theoretical
prediction to

Jtot = Jbulk(ρlocal, G)w. (6)

In Sec. III, we have seen that at the low-density regime
in nonconfined systems, the bulk current is higher for lower
densities. Remarkably, the analytical expression (6) that takes
into account the reduced local density above the opening for
the total current coincides with the numerical results, as seen
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G=2 - numerical results
G=2 - bulk behavior with average density
G=2 - bulk behavior with local density

FIG. 12. Total current Jtot vs orifice width w at bulk density
ρ = 0.5 with G = 2 in a (60 × 180) lattice. Analytical expression
Eq. (5) using bulk density (black) does not match with simulation
(red squares), whereas the analytical expression Eq. (6) using local
density (red) shows a very good agreement with simulation. Inset:
Local density above the opening vs opening width.

in Fig. 12. Thus, using the behavior studied for the bulk
system, we can predict the dynamics in confined systems.
We perform a similar comparison also for different values
of G. As the field increases, the transverse motion becomes
less probable due to a lower rate to move in that direction.
This leads to a longer time needed to reach the steady state in
confined systems. In Fig. 13 we show the numerical results
for two different values of G with remarkable agreement
with the same analytical prediction, described by Eq. (6).
As w becomes smaller, the current decreases linearly with
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G=1 - numerical results
G=2 - numerical results
G=1 - bulk behavior with local density
G=2 - bulk behavior with local density

FIG. 13. Total current Jtot vs orifice width w for G = 1 (black)
and G = 2 (red) at bulk density ρ = 0.5. Data points from numerical
simulation and solid lines from analytical expression Eq. (6) using
the local density measured in the simulations.
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FIG. 14. Clogged configuration achieved with bulk density ρ =
0.5, opening width w = 4, and field G = 1. Lattice size 60 × 60.

w, as Eq. (6) predicts. Note that our analytical estimation
of the current (6) seems to be systematically lower than the
numerical observation. It would be interesting to understand
the reason for this difference.

For very small values of w, we obtain clogging of the
particles near the opening and the overall current ceases for
some realizations. The numerical results shown in Figs. 12
and 13 are obtained by averaging over the current from many
realization that were not clogged. This clogging state becomes
more and more probable as w becomes smaller, and it would
be interesting to study it further. When clogging appears near
the opening, the particles form a rectangular structure, as can
be seen in Fig. 14. This particular structure is the result of
the kinetic constraints, for which neither of the surrounding
particles near the opening can move.

V. CONCLUSIONS

We studied the behavior of granular materials subjected
to a gravitational field in a confined geometry. To that end,
we used the kinetically constrained Kob-Andersen model,
which implements simple dynamics of a lattice gas, with no
interactions between neighboring particles, but with kinetic
rules that depend on the occupancy of neighboring sites.
Such a description allows us to employ efficient numerical
simulations. In order to simulate the gravitational field, we
modified the rates of the moves in the direction perpendicular
to the field, controlled by the parameter G, and did not allow
moves against the direction of the field. We first studied
the bulk behavior of the model, eliminating confinement by
creating a large system with periodic boundary conditions.
We built a MF theory and performed numerical simulations

in order to understand the range of validity of the MF theory
and the role of correlations. For that purpose, we constructed
an efficient rejection-free algorithm, in which we skip all the
unsuccessful moves. We observed that at the range of densities
0.66 � ρ � 0.76 the current exhibits nonmonotonic behavior
as a function of the driving field G. From the microscopic
point of view we see that at the high-density regime, close
to jamming, the spatial distribution of the particles is very
heterogeneous; namely, there are spatial structures of holes
that are dynamically formed and destructed as a result of the
development of shear bands.

To study discharge through a narrow opening, we defined a
confined geometry in our 2D lattice by introducing a horizon-
tal barrier with an opening of some size that we could change.
We conducted numerical simulations, measuring the total
current through the opening, and revealed two phenomena:
clogging close to the opening and highly reduced density of
the flowing particles. We measured the spatial distribution of
the particles in the steady state with confinement, measuring
only the current above the opening, as this is the only con-
tributing part to the current in the whole system. We were able
to analytically predict the current as a function of the opening
width by using the bulk current corresponding to the reduced
local density, as measured from numerical simulations with
confinement. We obtained excellent agreement between the
total current through the opening from numerical simulation
and the analytical calculation based on the current measured
in the bulk case, corresponding to the reduced local density
above the opening.

One of our most remarkable observations for bulk behavior
is the nonmonotonicity of the current as a function of field
intensity at intermediate densities. Further structural analysis
could identify the reason for this behavior.

Similar studies of discharge through an opening and re-
lated phenomena such as spatial density heterogeneity and
bottleneck clogging have already been seen in granular matter,
whether in experiments or simulations. Our model reveals
qualitatively the same phenomena, whereas thanks to its sim-
plicity the simulations are fast and can be done on very large
systems. The model can also be extended to three dimensions
where, instead of looking on the square lattice, one may
consider the cubic lattice. This case may perhaps be more
suitable for comparison with actual granular experiments.
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