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We study the behavior of a symmetric exclusion process (SEP) in the presence of stochastic resetting where the
configuration of the system is reset to a steplike profile with a fixed rate r. We show that the presence of resetting
affects both the stationary and dynamical properties of SEPs strongly. We compute the exact time-dependent
density profile and show that the stationary state is characterized by a nontrivial inhomogeneous profile in
contrast to the flat one for r = 0. We also show that for r > 0 the average diffusive current grows linearly with
time t, in stark contrast to the

√
t growth for r = 0. In addition to the underlying diffusive current, we identify

the resetting current in the system which emerges due to the sudden relocation of the particles to the steplike
configuration and is strongly correlated to the diffusive current. We show that the average resetting current
is negative, but its magnitude also grows linearly with time t . We also compute the probability distributions
of the diffusive current, resetting current, and total current (sum of the diffusive and the resetting currents)
using the renewal approach. We demonstrate that while the typical fluctuations of both the diffusive and reset
currents around the mean are typically Gaussian, the distribution of the total current shows a strong non-Gaussian
behavior.
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I. INTRODUCTION

Stochastic resetting, which refers to intermittent interrup-
tion and restart of a dynamical process, has been a subject of
immense interest in recent years. It has found applications in
a wide range of areas starting from search problems [1–4],
population dynamics [5,6], and enzymatic catalysis [7,8] to
computer science [9,10], stock markets [11], and biological
processes [12–14]. Stochastic resetting of a single Brownian
particle is the paradigmatic example where the position of
the particle is reset to a fixed point in space with a certain
rate [15]. This simple act has drastic consequences on the
statistical properties of the particle—it results in a nontrivial
stationary state and anomalous relaxation behavior, as well as
finite mean first passage time.

Several variations and extensions of this simple model
have been explored in recent years [16–23]. Specific exam-
ples include resetting in the presence of an external poten-
tial [24,25], in a confinement [26,27], or to an extended re-
gion [28], and resetting to already excursed positions [29,30].
Stochastic resetting has also been studied in more general
nonequilibrium contexts: in reaction processes [7,8], Lévy
flights [31], coagulation-diffusion processes [32], telegraphic
processes [33], for run-and-tumble particles [34], and to
model nonequilibrium baths [35]. Studies were not only lim-
ited to a constant rate resetting; other protocols have also
been investigated in great detail. These include deterministic
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resetting [36], space- [37] or time-dependent [38,39] reset-
ting rates, resetting followed by a refractory period [40,41],
non-Markovian resetting [42–44], and resetting sensitive to
internal dynamics [45].

An important question that naturally arises is how the
presence of resetting dynamics affects the systems with many

t

FIG. 1. Typical snapshots of time evolution of a system of size
L = 400 for two different values of the resetting rate r = 0.01
(left) and r = 0.1(right). The dark blue points indicate the presence
of particles, and the light gray ones indicate empty sites. For a
small value of r (left) the typical duration between two consecutive
resetting events is longer, and the particles spread deeper into the
empty half of the lattice, whereas for larger r (right) the resetting
occurs more frequently and the density profile remains close to the
steplike initial state.
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interacting degrees of freedom. This issue has not been ex-
plored much so far except for a few handful of models.
These studies include dynamics of KPZ-like fluctuating inter-
faces [46,47], one-dimensional quantum spin chains [48], and
a pair of interacting Brownian particles [45,49]. In all these
cases, resetting leads to nonequilibrium stationary states, char-
acterized by non-Gaussian fluctuations. However, the effect of
resetting on the behavior of current, which plays an important
role in characterizing the nonequilibrium stationary state, has
not been studied yet. This question is of paramount impor-
tance, because presence of stochastic resetting introduces an
additional timescale and is expected to modify the behavior of
current significantly. The exclusion processes [50], which are
simple well-known models of interacting particles, provide a
natural playground for exploring these questions.

In this article we study the effect of stochastic resetting
on the symmetric exclusion process (SEP) [50,51] and ex-
plore how the presence of resetting changes the dynamical
and stationary properties of SEPs. The stochastic resetting is
implemented by interrupting the time evolution at some rate
r and restarting the process from a specific configuration. It
turns out that the incorporation of the resetting mechanism in-
troduces an extra current Jreset in addition to the usual diffusive
particle current Jd. We show that, for r > 0, the average diffu-
sive current increases linearly with time t, in contrast to the

√
t

behavior in the absence of the resetting [52]. Additionally, the
average resetting current also shows a linear temporal growth
in magnitude, although it remains negative. We also compute
the distribution of the diffusive current Jd, resetting current
Jreset, as well as the total current Jr = Jd + Jreset. We observe
that, while the diffusive and resetting currents show Gaussian
behavior, the fluctuations of the total current are characterized
by a strongly non-Gaussian distribution.

The article is organized as follows: In the next section we
define our system and summarize our main results. Section III
is devoted to the computation of the time evolution of the
density profile under resetting. In Sec. IV we investigate the
behavior of the particle current; Secs. IV A and IV B focus on
the diffusive and resetting currents, respectively, whereas the
behavior of the total current Jr is explored in Sec. IV C. We
conclude with some open questions in Sec. V.

II. MODEL AND RESULTS

The symmetric exclusion process (SEP) is a paradigmatic
model for interacting particle systems [50,51] which has been
used to describe a wide range of physical phenomena includ-
ing particle transport in narrow channels, motion of molecular
motors, ion transport through porous medium, etc. This pro-
cess describes unbiased motion of particles on a lattice which
interact via mutual local exclusion. In this section we define
the dynamics of SEPs with stochastic resetting and present a
brief summary of our main results.

Let us consider a periodic lattice of size L where each
lattice site can contain at most one particle. The state of a site,
say, x, is characterized by a variable sx which takes values
1 and 0 depending on whether the site x is occupied or not,
respectively. The configuration of the system is characterized
by C = {sx; x = 0, 1, 2, . . . , L − 1}. We consider the case of

half-filling, i.e., the total number of particles
∑

x sx = L
2 . The

system evolves according to the following two dynamical
moves:

(1) Hopping: A particle randomly hops to one of its near-
est neighboring sites with unit rate, provided the target site is
empty.

(2) Resetting: In addition, the system is “reset” to some
specific configuration C0 with rate r. In the following we
consider C0 to be a steplike state where all the particles are
in the left half of the lattice:

C0 :=
{

sx = 1 for 0 � x � L
2 − 1,

sx = 0 otherwise.
(1)

Both the hopping and resetting dynamics conserve the
total number of particles, so that the half-filling condition is
respected at all times, and the global particle density remains
fixed at 1/2. Between two resetting events the time evolution
of the system is governed by the hopping dynamics only. The
timescale associated with the resetting mechanism is given
by r−1, which also gives a measure of the typical duration
between two consecutive resetting events. Figure 1 shows
typical examples of the time evolution for two different values
of the resetting rate r.

In the absence of resetting, the master equation governing
the time evolution of the probability P0(C, t ) for the system to
be in the configuration C at time t is given by

d

dt
P0(C, t ) = L0P0(C, t ). (2)

Here L0 is the Markov matrix in the absence of the resetting,
i.e., L0P0(C, t ) = ∑

C ′ [WC ′→CP0(C ′, t ) − WC→C ′P0(C, t )]
where WC ′→C denotes the rate for the jump C → C ′ due to
hopping dynamics only. Note that, WC ′→C = 1 only if the two
configurations C and C ′ are connected by a single hop of a
particle to a neighboring site.

Let P (C, t ) denote the probability of finding the system in
the configuration C at time t in the presence of resetting. In
this case, the master equation reads

d

dt
P (C, t ) = L0P (C, t ) + r

∑
C ′ �=C0

P (C ′, t )δC,C0

− rP (C, t )
(
1 − δC,C0

)
= (L0 − r)P (C, t ) + rδC,C0 , (3)

where δC,C0 is the Kronecker δ symbol, which takes the value
unity when C is same as C0, and is zero otherwise. It is
straightforward to write a formal solution of Eq. (3),

P (C, t ) = e(L0−r)tP (C, 0) + r
∫ t

0
dse(L0−r)sδC,C0

= e−rtP0(C, t ) + r
∫ t

0
dse−rsP0(C, s). (4)

Here P0(C, t ) = eL0tP (C, 0) is the probability of finding the
system in configuration C at time t in the absence of resetting
given that the system was initially at C0, i.e., P (C, 0) =
P0(C, 0) = δC,C0 . Equation (4) is nothing but the renewal
equation for the configuration probability, which has been
obtained earlier and used to study resetting phenomena in
various other contexts [15,46]. Note that Eq. (4) holds true
irrespective of the specific choice of C0 given in Eq. (1).
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FIG. 2. Density profile: (a) Time evolution of the density profile
ρ(x, t ), starting from a steplike initial condition, for resetting rate
r = 0.05 and for different values of time t . The symbols correspond
to the data obtained from numerical simulations, and the solid lines
correspond to the analytical result [see Eq. (14)]. (b) The stationary
density profile ρ(x) for different reset rates r. The symbols corre-
spond to the data obtained from numerical simulations, and the solid
lines correspond to the analytical result [see Eq. (15)]. The lattice
size L = 40 for both panels (a) and (b).

In the absence of resetting the ordinary SEP on a ring
relaxes to an equilibrium state with flat density profile and
zero current. The approach to the equilibrium state, starting
from the steplike initial configuration C0, is characterized by
a diffusive current flowing through the system. It has been
shown that, for an infinitely large system, the time-integrated
current measuring the net particle flux through the central
bond up to time t grows as

√
t for large t [52,53]. Presence

of resetting is expected to affect these characteristics of SEPs
which we investigate in detail in this paper. A brief summary
of our results is presented below:

(1) First, we compute an exact expression for the evolution
of the average density profile ρ(x, t ) = 〈sx(t )〉 for any arbi-
trary value of the resetting rate r, which is given in Eq. (10).
We observe that the evolution is nontrivially modified due to
the presence of resetting, which leads to an inhomogeneous
stationary density profile [see Fig. 2(b)] in contrast to the flat
one for r = 0.

(2) This inhomogeneous density profile provides some
characterization of the nonequilibrium state of the system. It
is, however, also important to look at how the particle currents
in the system are affected by the introduction of resetting.
In addition to the usual diffusive current Jd (t ) created due to
the local hopping of the particles, there is also a contribution
Jreset (t ) to the total current due to the global movements of the
particles during the resetting events.

We show that the behavior of the diffusive current changes
drastically in the presence of resetting. In particular, we
compute the average diffusive current 〈Jd(t )〉 exactly, which,
in the long-time limit, shows a linear growth with time t,

〈Jd(t )〉 � t

√
r

r + 4
.

This behavior is in stark contrast to the
√

t growth, which
is seen in the absence of resetting [52]. Similar change in
the dynamical behavior is also observed for the variance of
the diffusive current, which also grows as ∼t in the presence
of resetting, as opposed to

√
t . We explore the behavior of

the resetting current Jreset too and show that its average and
variance also grow linearly with time. We also investigate

the probability distribution of Jd(t ) and demonstrate that, in
the long-time regime, the typical fluctuations of Jd(t ) around
its mean is characterized by a Gaussian distribution. Similar
Gaussian fluctuations are also expected for the resetting cur-
rent Jreset.

(3) Finally, we study the behavior of the total current Jr =
Jd + Jreset and calculate the average 〈Jr (t )〉 and the second
moment 〈J2

r (t )〉 as functions of time t . In the long-time limit
the moments reach stationary values. In particular, we show
that the average stationary current is given by

〈Jr〉 = 1√
r(r + 4)

. (5)

We also compute the stationary probability distribution of
the total current Pst

r (Jr ), for small values of r, using a renewal
approach. Interestingly, it turns out that this distribution is
non-Gaussian and has very asymmetric behavior at the two
tails.

III. DENSITY PROFILE

The presence of repeated resetting to the inhomogeneous
configuration C0 destroys the translational invariance in the
system and a nontrivial density profile can be expected, even
in the stationary state. The average density ρ(x, t ) = 〈sx(t )〉 is
given by the probability that the site x is occupied any time
t . The time-evolution equation for the density profile can be
derived by multiplying Eq. (3) by sx and summing over all
configurations C,

d

dt
ρ(x, t ) = ρ(x + 1, t ) + ρ(x − 1, t ) − 2ρ(x, t )

− rρ(x, t ) + rφ(x). (6)

Here φ(x) is the density profile corresponding to the resetting
configuration C0, which, as mentioned before, is also taken
as the initial profile. The exact time-dependent density profile
ρ(x, t ) can be obtained by solving Eq. (6). To this end we
introduce the discrete Fourier transform

ρ̃(n, t ) =
L−1∑
x=0

ei 2πnx
L ρ(x, t ), with n = 0, 1, 2, . . . , L − 1.

(7)

Substituting Eq. (7) in Eq. (6), we get

d

dt
ρ̃(n, t ) = −(λn + r)ρ̃(n, t ) + rφ̃(n) (8)

with λn = 2(1 − cos 2πn
L ) and φ̃(n) is the Fourier transform

of the resetting (and initial) profile φ(x). Equation (8) can
immediately be solved,

ρ̃(n, t ) = rφ̃(n)

r + λn
+ λnφ̃(n)

r + λn
e−(r+λn )t . (9)

The density profile is then obtained by inverting the Fourier
transform,

ρ(x, t ) = r

L

L−1∑
n=0

φ̃(n)

r + λn
e−i 2πnx

L

+ 1

L

L−1∑
n=0

λnφ̃(n)

r + λn
e−(r+λn )t e−i 2πnx

L . (10)
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In the stationary state, the second term decays exponen-
tially, and the stationary density profile is given by

ρ(x) = r

L

L−1∑
n=0

φ̃(n)

r + λn
e−i 2πnx

L = 1

2
+ r

L

L−1∑
n=1

φ̃(n)

r + λn
e−i 2πnx

L ,

(11)

where we have used the fact that φ̃(0) = ∑
x φ(x) = L/2.

Clearly, in the absence of resetting, i.e., for r = 0, we get
the flat profile which corresponds to the equilibrium scenario.
For nonzero r, however, the stationary profile is nontrivial
and corresponds to a nonequilibrium stationary state, carrying
nonzero current. We will explore that in the next section.

It is worth mentioning that ρ(x, t ) also satisfies a renewal
equation [following directly from Eq. (4)] in terms of the
density profile ρ0(x, t ) in the absence of resetting,

ρ(x, t ) = e−rtρ0(x, t ) + r
∫ t

0
dτe−rτ ρ0(x, τ ). (12)

For the sake of completeness we have added a brief review
of the density profile and its evolution for ordinary SEPs
in Appendix A. Using the explicit form of ρ0(x, t ) given in
Eq. (A4) it is straightforward to check that Eq. (12) leads to
Eq. (10).

We have not used any specific form of φ(x) so far; in fact,
the results above are valid for resetting to any generic profile.
For the specific choice of the steplike configuration given in
Eq. (1) we have φ(x) = 1 − �(x + 1 − L

2 ) and

φ̃(n) = 1 − (−1)n

1 − ei 2πn
L

=
{

1 + i cot πn
L for odd n

0 for even n
. (13)

In that case, the density profile takes the form

ρ(x, t ) = ρ(x) + 1

L

L−1∑
n=1,3

e−i 2πnx
L

λn
(
1 + i cot πn

L

)
r + λn

e−(r+λn )t ,

(14)

where

ρ(x) = 1

2
+ r

L

L−1∑
n=1,3

e−i 2πnx
L

(
1 + icotπn

L

)
r + λn

(15)

is the stationary profile.
Figure 2(a) shows the time evolution of the density profile

ρ(x, t ) for a specific resetting rate r, and Fig. 2(b) shows
stationary profiles ρ(x) for different values of r. In both cases,
the analytical results (solid lines) are compared with the data
obtained from numerical simulations (symbols). An excellent
match confirms our analytical prediction.

IV. PARTICLE CURRENT

The behavior of current plays an important role in char-
acterizing the interacting particle systems like exclusion pro-
cesses. For ordinary SEPs, there is no particle current flow-
ing through the system in the stationary (equilibrium) state.
However, starting from a steplike initial configuration, the
relaxation to equilibrium is characterized by the presence of
a nonvanishing particle current. In particular, the behavior of
the time-integrated current, i.e., the net particle flux through
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FIG. 3. Time evolution of the diffusive current Jd(t ) and the total
current Jr (t ) along a typical trajectory of the system. On an average,
the diffusive current increases with time t . The total current vanishes
after each resetting event—indicated by the vertical lines on the light
green curve—and reaches a stationary state in the long-time limit.

the central bond up to time t, has been studied extensively,
and it was shown that at a long-time limit, the average flux
grows ∼√

t [52,53].
In presence of resetting, there are two different kinds

of particle motions; consequently the total current can be
expressed as

Jr (t ) = Jd(t ) + Jreset (t ). (16)

Here Jd is net diffusive flux, i.e., the net number of particles
which crossed the central bond due to the nearest-neighbor
hopping. Jreset denotes the contribution due to the sudden reset
to the steplike configuration C0. Note that, after a resetting, the
system is brought back to C0, i.e., there are no particles to the
right of the central bond, implying that the total current Jr is
also reset to zero after each resetting event. Figure 3 shows
the time evolution of Jd and Jr for a typical trajectory of the
system. The sudden jumps in Jr indicate the resetting events.

In the absence of resetting, the only source of current is
the diffusive hopping motion. In the following we explore the
behaviors of all these three different currents, in the presence
of resetting.

A. Diffusive current

The diffusive current Jd(t ) measures the total number of
particles which crossed the central bond ( L

2 − 1, L
2 ) during the

time interval [0, t] and can be expressed as a time integral,

Jd(t ) =
∫ t

0
ds j(s). (17)

Here j(t ) denotes the instantaneous diffusive current, i.e., the
number of particles crossing the central bond during the time
interval t and t + dt . The average instantaneous current is
given by

〈 j(t )〉 = 〈
s L

2 −1

(
1 − s L

2

)〉 − 〈(
1 − s L

2 −1

)
s L

2

〉
= ρ

(
L

2
− 1, t

)
− ρ

(
L

2
, t

)
. (18)
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FIG. 4. Behavior of the diffusive current Jd. (a) Plot of 〈Jd(t )〉 as a function of time t for different values of r. The symbols correspond to
the data obtained from numerical simulations, whereas the solid lines correspond to the analytical prediction [see Eq. (25)]. The lowermost
curve corresponds to the smallest value of r. (b) Scaling collapse of

√
r〈Jd(t )〉 for small r according to Eq. (27); the solid line corresponds to

the predicted scaling function. (c) Plot of the variance σ 2
d (t ) vs t for different values of r. The curves corresponding to small values of r (three

lower curves) are compared with the analytical predictions (solid lines). A lattice of size L = 1000 is used here for the numerical simulations.

Using the explicit expression for the density from Eq. (14) one
gets

〈 j(t )〉 = 2

L

L−1∑
n=1,3

[
r

r + λn
+ λn

r + λn
e−(r+λn )t

]
. (19)

In the limit of thermodynamically large system size, i.e.,
L → ∞, the sum in the above expression can be converted
to an integral over the continuous variable q = 2πn/L, and
we get

〈 j(t )〉 =
∫ 2π

0

dq

2π

[
r

r + λq
+ λq

r + λq
e−(r+λq )t

]
(20)

where λq = 2(1 − cos q). In the long-time regime, the second
term decays exponentially and 〈 j(t )〉 reaches a stationary
value,

lim
t→∞〈 j(t )〉 =

∫ 2π

0

dq

2π

r

r + 2(1 − cos q)
=

√
r

r + 4
. (21)

The average net flux 〈Jd(t )〉 up to time t can be found by
integrating the instantaneous current,

〈Jd(t )〉 =
√

r

r + 4
t +

∫ 2π

0

dq

2π

λq

(r + λq)2
(1 − e−(r+λq )t ).

(22)

Clearly, in the long-time regime, the second term goes to a
constant, and the first term dominates the behavior of the
average current which grows linearly with time,

〈Jd(t )〉 �
√

r

r + 4
t . (23)

This equation is one of our main results, which shows that
the behavior of the diffusive current changes drastically by
the presence of resetting; instead of the standard

√
t growth

in a diffusive system, resetting yields a much faster, linear,
temporal growth of the diffusive current. The average current
〈Jd(t )〉 at any time t, i.e., before reaching the ∼t behavior,
can be obtained from Eq. (22) by evaluating the q integral
numerically. In fact, one can also derive an alternative expres-
sion which lends itself more easily to numerical evaluation.
Let us recall that the density profile ρ(x, t ) satisfies a renewal

equation (12) for any x. Then, clearly, 〈 j(t )〉 must also satisfy
the same renewal equation,

〈 j(t )〉 = e−rt 〈 j0(t )〉 + r
∫ t

0
dτe−rτ 〈 j0(τ )〉, (24)

where j0(t ) denotes the instantaneous current through the
central bond in the absence of resetting. The average instanta-
neous current is given by 〈 j0(t )〉 = e−2t I0(2t ) where I0 is the
modified Bessel function of the first kind (see Appendix B
for details). The average diffusive net current is obtained by
integrating the above equation w.r.t. time [see Eq. (17)],

〈Jd(t )〉 =
∫ t

0
dτe−rτ (1 + rt − rτ )〈 j0(τ )〉. (25)

It is straightforward to show that Eq. (25) is equivalent to
Eq. (22). Average current 〈Jd(t )〉 computed from Eq. (25), for
different values of r, is plotted together with the same obtained
from simulation in Fig. 4(a).

An explicit form for 〈Jd(t )〉 can be derived for small r � 1.

Using a variable transformation w = rτ, and using the exact
form for 〈 j0(τ )〉, we get

〈Jd(t )〉 = 1

r

∫ rt

0
dw(1 + rt − w)e−we− 2w

r I0

(
2w

r

)
. (26)

For small r, the argument of I0 is large, and one can use the
asymptotic form for the modified Bessel function given in
Eq. (B5),

〈Jd(t )〉 � 1

r

∫ rt

0
dw(1 + rt − w)e−w 1

2
√

πw/r

= 1

2
√

r

[(
rt + 1

2

)
erf(

√
rt ) +

√
rt

π
e−rt

]
. (27)

In the short time-regime this function grows as
√

t , which
is reminiscent of the free SEP and crosses over to the linear
behavior for t � r−1. Figure 4(b) shows plot of

√
r〈Jd(t )〉 as

a function of rt for different small values of r, which shows a
perfect collapse and matches the scaling function given by the
above equation.

To characterize the fluctuation of the diffusive current we
next calculate the second moment of Jd. The above renewal
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equation method cannot be applied directly to compute higher
order moments. To this end, we now adopt a different ap-
proach. Let us assume that there are n resetting events during
the time interval [0, t]; moreover, let ti denote the interval
between (i − 1)th and ith events, so that

∑n+1
i=1 ti = t . Note

that, tn+1 denotes the time interval between the last reset and
the final time t . Let us also recall that between two consecutive
resetting events the system evolves following ordinary SEP
dynamics. The diffusive current during the interval [0, t] can
then be expressed as

Jd =
n+1∑
i=1

J0(ti ), (28)

where J0(ti ) are independent of each other. For notational
convenience, we denote Ji ≡ J0(ti ). The probability density
that the diffusive current will have a value Jd in time t is then
given by

P(Jd, t ) =
∞∑

n=0

∫ t

0

n+1∏
i=1

dtiPn({ti}; t )

×
∫ n+1∏

i=1

dJiP0(Ji, ti )δ

(
Jd −

∑
i

Ji

)
,

where

Pn({ti}; t ) = rne−r
∑n+1

i=1 tiδ

(
t −

∑
i

ti

)
(29)

denotes the probability of having n resetting events with
duration ti within the interval [0, t]. The distribution of the
individual Ji are denoted by P0(Ji, ti ), which is exactly the
distribution of the diffusive current in SEPs, in the absence
of resetting.

To handle the constraints presented by the δ functions, it is
convenient to calculate the Laplace transform w.r.t. time t of
the moment-generating function 〈eλJd 〉,

Q(s, λ) = Lt→s[〈eλJd 〉] =
∫ ∞

0
dte−st 〈eλJd 〉

=
∫ ∞

0
dte−st

∫
dJdeλJd P(Jd, t ). (30)

Using Eq. (29), and performing the integrals over Jd and t, we
get

Q(s, λ) =
∞∑

n=0

rn
∫ ∞

0

n+1∏
i

dti exp

[
−(r + s)

n+1∑
i=1

ti

]

×
∫ n+1∏

i

dJi exp

[
λ

n+1∑
i=1

Ji

]
P0(Ji, ti )

=
∞∑

n=0

rnh(s, λ)n+1, (31)

where we have denoted

h(s, λ) =
∫ ∞

0
dτe−(r+s)τ

∫
dJ0eλJ0 P0(J0, τ ). (32)

Performing the sum in Eq. (31), we get

Q(s, λ) = h(s, λ)

1 − rh(s, λ)
, (33)

which gives a simple relation between the moment-generating
functions of the current in the presence and absence of re-
setting. To calculate h(s, λ) we need the current distribution
P0(J0, τ ) for the ordinary SEP, which is not known in general
for arbitrary values of τ . However, for small values of r and
s, the τ integral in Eq. (32) is dominated by large values of τ,

and in that case one can use the result of Ref. [52] where the
authors have derived an expression for the moment-generating
function of J0(τ ) in the large time limit. Adapting their result
to our specific case (see Appendix B 1 for details), we have∫

dJ0eλJ0 P0(J0, τ ) = 〈eλJ0〉 � e
√

τF (λ), (34)

with

F (λ) = − 1√
π

Li3/2(1 − eλ). (35)

Here Liα (z) denotes the Poly-Logarithm function [see
Ref. [54], Eq. (25.12.10)]. Substituting Eq. (34) in Eq. (32)
and performing the integral over τ, we get, for small r and s,

h(s, λ) = 1

r + s

[
1 +

√
πF (λ)

2
√

r + s
e

F (λ)2

4(r+s)

(
1 + erf

[
F (λ)

2
√

r + s

])]
.

(36)

One can easily extract the Laplace transforms of the moments
using Eq. (36) along with (33). First, we have

Lt→s[〈Jd(t )〉] = d

dλ
Q(s, λ)

∣∣∣∣
λ=0

=
√

r + s

2s2
. (37)

The average current can be obtained by inverting the Laplace
transform,

μd (t ) ≡ 〈Jd(t )〉 = L−1
s→t

[√
r + s

2s2

]
. (38)

The inversion can be performed exactly using Mathematica
and yields

μd (t ) = 1

2
√

r

[(
rt + 1

2

)
erf(

√
rt ) +

√
rt

π
e−rt

]
. (39)

Note that the above equation is the same as Eq. (27), which
was obtained using a different method.

The Laplace transform of the second moment is obtained
from the second derivative of Q(s, λ),

Lt→s
〈
J2

d (t )
〉 = d2

dλ2
Q(s, λ)

∣∣∣∣
λ=0

= 1

πs2
+ b

√
r + s

2s2
+ r

2s3
,

(40)

where b = (1 − 1/
√

2). Fortunately, the inverse Laplace
transform can be performed exactly in this case also, and it
yields, for small r,

〈
J2

d (t )
〉 = 1

4π

[
t (πrt + 4) + 2b

√
πte−rt

+ bπ√
r

(1 + 2rt )erf(
√

rt )

]
. (41)
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FIG. 5. Distribution of the diffusive current P(Jd , t ) for r =
0.01: (a) Plot of P(Jd , t ) vs Jd for different values of t, the leftmost
curve corresponding to the smallest value of t . The solid lines
correspond to the predicted Gaussian form (43). (b) The same data
are plotted as a function of (Jd − μd )/σd . The solid black line
corresponds to a standard normal distribution N (0, 1).

Note that the above expression is expected to be valid for large
t, as we have assumed s to be small. The variance of the
diffusive current σ 2

d (t ) = 〈J2
d (t )〉 − 〈Jd(t )〉2 can be obtained

using Eqs. (39) and (41). In particular, in the long-time limit,
the variance increases linearly with time t and is given by

σ 2
d (t ) � t

[
4 − π

4π
+

√
r

2

(
1 − 1√

2

)]
. (42)

Figure 4(c) shows a plot of σ 2
d (t ) versus t for different values

of r, obtained from numerical simulations; all the curves show
linear growth in the long-time regime. The curves correspond-
ing to small values of r � 1 are compared with the analytical
result (solid lines), which shows a perfect match for t > 10.

Distribution of Jd: It is interesting to investigate the proba-
bility distribution of the diffusive current Jd (t ). From Eq. (28)
we observe that Jd (t ) is the sum of the hopping currents
J0(ti ) between successive resetting events. Since the time
evolution of the system is Markovian and after each resetting
event the system is brought back to the initial configuration,
the variables J0(ti ) are independent and distributed identi-
cally [55]. As mentioned earlier, the distribution of J0(ti) is
known [52] and has finite moments. Over a large time interval
t , the number n of resetting events, which is also a random
quantity, is typically large and on an average grows linearly
with time t ; in fact, 〈n〉 = rt . For t � r−1, Jd(t ) is a sum of
a large number of independent random variables. Hence, by
the central limit theorem, one can expect that for large t , the
typical distribution of Jd would be a Gaussian:

P(Jd, t ) � 1√
2πσ 2

d (t )
exp

{
− [Jd − μd (t )]2

2σ 2
d (t )

}
, (43)

where the mean μd (t ) and the variance σ 2
d (t ) are given in

Eqs. (39) and (42), respectively. This prediction is verified
in Fig. 5(a) where the Gaussian form of P(Jd, t ) is compared
to the data obtained from numerical simulations for a set of
(large) values of t and fixed r. Clearly, the analytical curves
are indistinguishable from the simulation data, which con-
firms our prediction. Figure 5(b) shows the same data plotted
against the scaled variable [Jd − μd (t )]/σd (t ) and compared
with the standard normal distribution (solid black line).

B. Resetting current

The presence of the resetting dynamics gives rise to a
resetting current Jreset [see Eq. (16)], which measures the flow
of particles due to the sudden change in the configuration of
the system. In this section we investigate the properties of this
resetting current. Let us remember that the number of particles
crossing the central bond (from right to left) at the resetting
event is exactly same as the hopping current (from left to
right) during the period after the previous resetting event. The
net resetting current during a time interval [0, t] then can be
expressed as

Jreset = −
n∑

i=1

J0(ti ), (44)

where, as before, n denotes the number of resetting events in
time t and ti denotes the interval between the (i − 1)th and
ith resetting events. Note that the upper limit of the sum is n
in Eq. (44) as there is no contribution to the resetting current
after the last resetting event.

To calculate the moments of Jreset we follow the same
method as in Sec. IV A and calculate the Laplace transform
of the moment-generating function of Jreset,

K (s, λ) =
∫ ∞

0
dte−st

∫
dJresete

λJreset P (Jreset, t ). (45)

Here P (Jreset, t ) denotes the probability that the resetting
current has a value Jreset at time t and is given by

P (Jreset, t ) =
∞∑

n=0

∫ t

0

n+1∏
i=1

dtiPn({ti}; t )

×
∫ n∏

i=1

dJiP0(Ji, ti )δ

(
Jreset +

n∑
i=1

Ji

)
, (46)

with Pn({ti}; t ) given in Eq. (29). As before, we have used Ji ≡
J0(ti ). Using Eq. (46) in Eq. (45) and performing the integrals
over t and Jreset, we get

K (s, λ) = 1

(r + s)

∞∑
n=0

rnh(s,−λ)n

= 1

(r + s)[1 − rh(s,−λ)]
, (47)

where h(s, λ) is given by Eq. (32). As mentioned already, it
can computed exactly for small values of r, s and is given by
Eq. (36).

Next we calculate the moments of the resetting current
using Eqs. (47) along with Eq. (36). First, we have the Laplace
transform of the average resetting current,

Lt→s[〈Jreset (t )〉] = d

dλ
K (s, λ)

∣∣∣∣
λ=0

= − r

2s2
√

r + s
. (48)

The inverse transform can be performed exactly to obtain

〈Jreset (t )〉 = − 1

2
√

r

[(
rt − 1

2

)
erf(

√
rt ) +

√
rt

π
e−rt

]
. (49)

Note that the above expression is expected to be valid for
small values of r � 1 and large t � 1. Equation (49) is very
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FIG. 6. Behavior of the resetting current Jreset : (a) Plot of
−〈Jreset (t )〉 as a function of time for different values of r obtained
from numerical simulations. The lowermost curve corresponds to the
smallest value of r. The black solid lines correspond to the analytical
prediction (49) for small values of r. (b) Variance of the resetting
current 〈σ 2

reset (t )〉 as a function of time t for different values of r. The
curves corresponding to small values of r (three lower curves) are
compared with the analytical result (black solid lines). A lattice of
size L = 1000 is used for all the numerical simulations.

similar to Eq. (39), which gives the average diffusive current
〈Jd(t )〉, except, of course, the fact that the average resetting
current is negative. In fact, at very long times t � r−1, we see
a linear growth in magnitude,

〈Jreset (t )〉 = −〈Jd(t )〉 � −
√

rt

2
. (50)

At short times, however, a different behavior is seen. From
Eq. (49), for t � r−1, we have

〈Jreset (t )〉 = −2rt3/2

3
√

π
+ O(t5/2). (51)

Clearly, at short times, the resetting current grows much faster
than the diffusive current. Figure 6(a) shows a plot of 〈Jreset (t )〉
as a function of t for different values of r which illustrates
these features.

It is also interesting to look at the fluctuations of Jreset.

From Eq. (47) we can find the Laplace transform of the second
moment,

Lt→s
[〈

J2
reset (t )

〉] = d2

dλ2
K (s, λ)

∣∣∣∣
λ=0

= br

2s2
√

r + s
+ r(πr + 2s)

2πs3(r + s)
, (52)

where, as before, we have used b = 1 − 1√
2
. Once again, the

Laplace transform can be inverted exactly and yields, for r �
1 and t � 1,

〈
J2

reset (t )
〉 = 1

4πr
[2e−rt (2 − π + br

√
πt ) + π − r + 4rt

+π (rt − 1)2 + bπ
√

r(2rt − 1)erf(
√

rt )]. (53)

The variance of the resetting current σ 2
reset (t ) = 〈J2

reset (t )〉 −
〈Jreset (t )〉2 can be computed from Eqs. (53) and (49), and it
turns out that the variance also increases linearly at the long-
time limit t � r−1. In fact, it is straightforward to show that,
in this limit, σ 2

reset (t ) = σ 2
d (t ) [see Eq. (42)]. Figure 6(b) shows

σ 2
reset (t ) for different values of r obtained from numerical

simulations together with the analytical prediction for small r.

We conclude the discussion about the resetting current with
a brief comment about the probability distribution P (Jreset, t ).
Since Jreset, similar to Jd, is also a sum of a set of independent
variables J0(ti ), we can use the central limit theorem to predict
the behavior of the corresponding distribution. In fact, for
rt � 1, one can expect that P (Jreset, t ) is similar to P(Jd, t )
and has a Gaussian behavior around the mean value,

P (Jreset, t ) � 1√
2πσ 2

reset (t )
exp

{
− [Jreset − 〈Jreset (t )〉]2

2σ 2
reset (t )

}
.

C. Total current

In this section we investigate the behavior of the total current
Jr, as defined in Eq. (16). Jr (t ) measures the net number of
particles which have crossed the central bond towards the right
(by hopping, or due to resetting) up to time t . As already
mentioned, Jr is set to zero after every resetting event; the
contribution to the total current comes only from the diffusion
of the particles after the last resetting event. Consequently, one
can write a renewal equation for Pr (Jr, t ), the probability that,
at time t, the total current will have a value Jr,

Pr (Jr, t ) = e−rt P0(Jr, t ) + r
∫ t

0
dse−rsP0(Jr, s). (54)

Here P0(Jr, s) denotes the probability that, starting from C0,

in the absence of resetting, Jr number of particles cross the
central bond until time s. We will use the above equation to
explore Pr (Jr, t ), but, first it is useful to investigate the mean
and the variance of the total current.

It is easy to see that all moments of Jr should also satisfy a
renewal equation similar to Eq. (54). In particular, the average
total current must satisfy

〈Jr (t )〉 = e−rt 〈J0(t )〉 + r
∫ t

0
dτe−rτ 〈J0(τ )〉, (55)

where 〈J0(t )〉 is the average current in the absence of resetting
and is given by Eq. (B4). Unfortunately, the above integral
in Eq. (55) cannot be computed analytically. However, it is
possible to numerically evaluate the integral and get 〈Jr (t )〉
for any time t . This is shown in Fig. 7 for different values of
r and compared with numerical simulations (symbols) which
match perfectly at all times.

For small values of r, a more explicit expression for the
average total current 〈Jr (t )〉 can be derived. In that case, it is
convenient to rewrite Eq. (55) as

〈Jr (t )〉 = e−rt 〈J0(t )〉 +
∫ rt

0
due−u

〈
J0

(u

r

)〉
. (56)

The integral is dominated by the contribution from small
u ∼ O(1); consequently, u/r is large for small r, and we can
use the asymptotic expression 〈J0(u/r)〉 � √

u/rπ. Substitut-
ing that in the above equation, and performing the integral, we
get, for large t,

〈Jr (t )〉 = 1

2
√

r
erf(

√
rt ). (57)

Equation (57) provides an explicit expression for the average
total current for small r and in the large time regime. Note that
〈Jr (t )〉 given by the above equation is the same as 〈Jd(t )〉 +
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FIG. 7. Behavior of the total current Jr : (a) Plot of average total current 〈Jr (t )〉 as a function of time for different values of r, with the
uppermost curve corresponding to the smallest value of r. Solid lines and symbols correspond to the analytical result and data from numerical
simulations, respectively. (b) Plot of

√
r〈Jr (t )〉 as a function of the scaled variable rt, for small values of r. The solid line corresponding to

the scaling function erf(
√

rt )/2 [see Eq. (57)]. (c) Second moment of the total current 〈J2
r (t )〉 as a function of time t for different values of r.

The curves corresponding to small values of r (three upper curves) are compared with the analytical result (61) (solid lines). A lattice of size
L = 1000 is used for all the numerical simulations.

〈Jreset (t )〉, as clearly seen from Eqs. (39) and (49). This is
expected as the total current is a sum of the diffusive current
and the resetting current [see Eq. (16)].

We have also measured the total current Jr from numerical
simulations. Figure 7(b) shows a plot of

√
r〈Jr (t )〉 as a func-

tion of rt for different (small) values of r, as obtained from
numerical simulation; the solid line corresponds to erf(

√
rt ).

The perfect collapse of all the curves verifies our analytical
prediction.

From Eq. (57) it can be seen that for t � r−1 the average
total current grows as

√
t, which is a signature of the ordinary

SEP. On the other hand, in the large time limit 〈Jr〉 reaches a
stationary value 1/2

√
r.

In fact, the stationary value of the average total current 〈Jr〉
can be calculated exactly from Eq. (55) for any value of r. As
we have already seen, at large times t, 〈J0(t )〉 ∼ √

t, hence,
the first term in Eq. (55) decays exponentially and the large-
time behavior of the average total current is dominated by the
second integral in the above equation. Recalling Eq. (B4) and
using the series expansion of the modified Bessel functions I0

and I1 [see Ref. [54], Eq. (10.25.2)] we have∫ t

0
dτe−rτ 〈J0(τ )〉

=
∞∑

m=0

1

m!(m + 1)!

1

(r + 2)2m+3
(�2m+3 − �2m+3[(r + 2)t]

+ (r + 2)(m + 1){�2m+2 − �2m+2[(r + 2)t]}), (58)

where �n and �n(x) are the gamma function and the incom-
plete gamma function, respectively. �n(x) decays to zero for
large x for all values of n, and hence, in the long-time limit
we have the contributions only from the t-independent terms,

lim
t→∞〈Jr〉 � r

∞∑
m=0

(2m + 1)!

m!(m + 1)!

(m + 1)(r + 2) + 2m + 2

(r + 2)2m+3

= 1√
r(r + 4)

. (59)

Clearly, in the long-time limit the average total current reaches
a stationary value μr = 1/

√
r(r + 4) which decreases as the

resetting rate r is increased. For small r, μr ≈ 1
2
√

r
which is

same as what we obtained by taking t → ∞ limit in Eq. (57).
On the other hand, for large r � 1, μr approaches 1/r.

Physically, the limiting behaviors of the stationary value
of the average total current can be understood from the
following argument. Since the value of Jr is reset to zero after
each resetting event, the final contribution to Jr comes only
from the diffusion of particles after the last resetting event.
Moreover, the typical duration since the last resetting event
is τr ∼ 1/r. For small r, this typical duration is long, and the
average diffusive current (without resetting) during this period
is ∼√

τr = 1/
√

r. On the other hand, for large r, τr is small,
and the diffusive current is ∼τr = 1/r.

Next we calculate the second moment of the total current
〈Jr (t )2〉. As mentioned already, the second moment also satis-
fies a renewal equation of the form

〈Jr (t )2〉 = e−rt
〈
J2

0 (t )
〉 + r

∫ t

0
dτe−rτ

〈
J2

0 (τ )
〉
. (60)

The above equation is valid at all times and for all values of
r. Unfortunately, however, the behavior of 〈J2

0 (τ )〉 is known
only for long-time τ [see Eq. (B7)], so we are not able to
calculate an exact analytical expression for 〈Jr (t )2〉 for any
arbitrary time t . Nevertheless, one can use Eq. (60) along with
Eqs. (B6) and (B7) to calculate 〈Jr (t )2〉 for small values of r,
where the integral in Eq. (60) is dominated by the contribution
from large τ � r−1. This exercise leads to a simple analytical
formula for the second moment for small r (and large time t),

〈
J2

r (t )
〉 � 1

πr
(1 − e−rt ) + 1

2
√

r

(
1 − 1√

2

)
erf(

√
rt ). (61)

Figure 7(c) shows the plot of 〈J2
r (t )〉 as a function of t for

different values of r. The curves for small r are compared
with the analytical result Eq. (61), which show an excellent
match. Similar to the average total current, the second moment
〈J2

r (t )〉 also eventually reaches a stationary value which, for
small values of r, can be obtained by taking lim t → ∞ in
Eq. (61),

〈
J2

r

〉 = 1

πr
+ 1

2
√

r

(
1 − 1√

2

)
. (62)
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One can immediately calculate the stationary value of the
variance σ 2

r = 〈J2
r 〉 − 〈Jr〉2; as r → 0, σ 2

r � (4 − π )/4πr.
On the other hand, for short-time t, we have

〈
J2

r (t )
〉 � t

π
+

√
t

π

(
1 − 1√

2

)
. (63)

At very short times, one expects a
√

t behavior which crosses
over to a linear behavior as t is increased. This is also seen in
Fig. 7(c), where the approach to the stationary value appears
predominantly linear.

Correlation between Jd and Jreset: The computation of the
second moment of the total current Jr provides a way to
estimate the correlation between the diffusive and resetting
components of the current. From the definition of the total
current (16), we get〈

J2
r (t )

〉 = 〈
J2

d (t )
〉 + 〈

J2
reset (t )

〉 + 2〈Jd(t )Jreset (t )〉. (64)

The connected correlation C(t ) = 〈Jd(t )Jreset (t )〉 −
〈Jd(t )〉〈Jreset (t )〉 is then given by

C(t ) = 1
2

[
σ 2

r (t ) − σ 2
d (t ) − σ 2

reset (t )
]
, (65)

where σ 2
r , σ 2

d , and σ 2
reset are the variances of the to-

tal, diffusive, and resetting currents, respectively. Using
Eqs. (61), (41), and (53) along with Eqs. (57), (39), and (49),
we get, for small values of r,

C(t ) = 1

4πr

(
4 − π + rte−2rt

+ e−rt {π − 4 − 2r
√

πt[b − √
rterf(

√
rt )]}

− rt (4 − π + πrt ) − bπ
√

r(2rt − 1)erf(
√

rt )

+π

(
r2t2 − 1

4

)
erf(

√
rt )2

)
. (66)

Clearly, the diffusive and resetting currents are strongly corre-
lated. To understand the nature of this correlation we look at
the limiting behavior of C(t ). At long times t � r−1, we get
a linear temporal growth from Eq. (66),

C(t ) � −σ 2
d (t ) � −t

[
4 − π

4π
+ b

√
r

2

]
. (67)

On the other hand, for short times t � r−1 (but t � 1) we get

C(t ) = − 2br

3
√

π
t3/2 + O(t2). (68)

In fact, the correlation remains negative at all times. Figure 8
shows a plot of −C(t ) versus t for different values of r
obtained from numerical simulations (symbols) along with the
analytical prediction (solid lines) for small values of r.

The presence of a nontrivial correlation between the dif-
fusive and resetting currents suggests that even though the
fluctuations of both these components of current are Gaussian
in nature, the distribution of the total current need not be
so. In the following we investigate this issue and show that,
indeed, the fluctuations of Jr are characterized by a strongly
non-Gaussian distribution.

Probability distribution of Jr: In this section we explore
the behavior of the probability distribution of the total current
Pr (Jr, t ) using the renewal equation (54). In the absence of

100 101 102 103 104t

10-3

100

103

-C
(t)

r=0.001
r=0.01
r=0.1
r=1
r=10

t

FIG. 8. Correlation between diffusive and resetting currents: Plot
of −C(t ) as a function of time t for different values of r; the
lowest curve corresponds to the smallest value of r. The data from
the numerical simulations (symbols) are compared to the analytical
prediction from Eq. (66) (solid lines) for small values of r. Lattice
size L = 1000 is used for the simulations.

resetting, the fluctuations of the total (diffusive) current are
characterized by a Gaussian distribution in the long-time limit
(see Appendix B 1 for more details). Using the Gaussian form
of P0(Jr, t ) one can calculate the total current distribution
Pr (Jr, t ) for small values of r (for small r the integral is domi-
nated by the large t contribution). It is particularly interesting
to look at the stationary distribution,

Pst
r (Jr ) = r

∫ ∞

0
dτ

e−rτ√
2πσ 2

τ

exp

[
− (Jr − μτ )2

2σ 2
τ

]
, (69)

where μτ = √
τ/π and σ 2

τ = √
τ/π (1 − 1/

√
2) are the mean

and the variance of the current in the absence of resetting,
respectively. From the small and large τ asymptotic behavior
of the integrand, it is easy to realize that the above integral is
convergent for any given Jr . We use the series expansion of
e−rτ in Eq. (69) to evaluate Pst

r (Jr ) as a sum of integrals. Each
integral in the sum converges due to the reason mentioned
above, and we get an explicit expression for Pst

r (Jr ) as a series
sum,

Pst
r (Jr ) = 2

√
2r

π1/4
√

b
exp

(
Jr

b

)

×
∞∑

n=0

(−r)n

n!
(
√

πJr )2n+ 3
2 K2n+ 3

2

(
Jr

b

)
. (70)

We here have used b = (1 − 1/
√

2) for brevity, and Kν (z)
is the modified Bessel function of the second kind [54] [see
Eq. (10.31.1) therein]. Using Eq. (70), the stationary distri-
bution Pst

r (Jr ) can be computed to arbitrary accuracy. This is
demonstrated in Fig. 9(a) where the theoretical computation
is plotted together with the simulation results.

The stationary distribution has some interesting features
which are visible from Fig. 9(a). First, it is apparent that
Pst

r (Jr ) is vanishingly small for negative values of Jr . This
can be understood in the following way. Let us recall that,
at any time, the total current is nothing but the net number
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FIG. 9. Stationary probability distribution of the total current
Pst

r (Jr ): (a) Plot of Pst
r (Jr ) for different (small) values of r; symbols

represent the data obtained from numerical simulations, and solid
lines correspond to the analytical result obtained using Eq. (70).
(b) Plot of the same data as in panel (a) as a function of Y =
(Jr − μr )/σr . For simulations we have used L = 1000.

of particles hopping across the central bond since the last
resetting event, i.e., after being brought to the configuration
C0 where the left half of the lattice is filled up. To produce a
negative current, the number of particles crossing the central
bond from left to right should be lower than that from right
to left, i.e., there should be a net flux of the particles to the
left. Since the particles are allowed to hop only to empty
neighboring sites, starting from the configuration C0, this
is an extremely unlikely event and has a vanishingly small
probability.

Second, it also appears that Pst
r (Jr ) is strongly non-

Gaussian, which is manifest in the asymmetric behavior of the
two tails, as seen in Fig. 9(a). To characterize this asymmetry
and the non-Gaussian nature quantitatively we look at the
decay of Pst

r (Jr ) at the two tails, namely, near Jr = 0 and
large Jr . Near Jr = 0, for small values of r, the behavior is
dominated by the n = 0 term in Eq. (70). One can then use
the asymptotic behavior of K 3

2
(z) near z = 0 to get

Pst
r (Jr ) ≈ 2πr

(
Jr + 1 − 1√

2

)
+ O(r2). (71)

Clearly, for small values of r, the probability distribution of
the total current Jr decays linearly near Jr = 0.

To determine how Pst
r (Jr ) decays for large Jr we use the

asymptotic behavior of Kν (z); for large values of the argument
z, we have [see Ref. [54], (Eq. 10.40.2)]

lim
z→∞ Kν (z) ≈

√
π

2z
e−z. (72)

Using that in Eq. (70) and performing the sum over n, we get

Pst
r (Jr ) ≈ 2πrJre−πrJ2

r + O(r2). (73)

Note that the above expression holds true to the leading
order in r, and higher order corrections can be systematically
calculated by including higher order terms in (72).

We conclude the discussion about Pst
r (Jr ) with one final

remark. From our numerical data, we observe a surprising
collapse of the current distribution when plotted as a function
of the scaled variable Y = (Jr − μr )/σr where μr and σr are,
respectively, the mean and the variance of Jr . The collapse
is shown in Fig. 9(b) where the scaled distribution P̃(Y )
appears to be independent of r as the curves corresponding
to different values of r from Fig. 9(a) fall on top of each other.

To understand this collapse, let us look at P̃(Y ) predicted
from Eqs. (73) and (71). Recalling that for small values of

r, μr � 1
2
√

r
, and σr �

√
(4−π )

4πr , we get from Eq. (73),

P̃(Y ) ≈ 1
2 [

√
π (4 − π ) + (4 − π )Y ]e− 1

4 (
√

π+√
4−πY )2

+ O(r3/2). (74)

Clearly, to the leading order in r, P̃(Y ) calculated from
Eq. (73) (corresponding to large values of Jr) is independent
of r and is consistent with the scaling collapse observed in
Fig. 9(b). On the other hand, it can be easily seen that Eq. (71)
does not lend itself to a similar form; P̃(Y ) derived from
Eq. (71) depends explicitly on r,

P̃(Y ) ≈ 1

2

√
π (4 − π )

[
1 +

√
4 − π

π
Y + (2 −

√
2)

√
r

]

+ O(r3/2). (75)

Hence, while for large positive Jr (�μr + σr), the distribution
P̃(Y ) becomes independent of r, it is not the case in the Jr →
0 limit. Indeed, as seen from Eq. (75), P̃(Y ) explicitly depends
on r. However, notice that the r dependence in Eq. (75) comes
in the form of an additional term proportional to

√
r, which

is vanishingly small for r � 1. This makes the expected
mismatch in the collapse at the left tail in Fig. 9(b) practically
invisible where an apparent collapse is also observed.

V. CONCLUSION

In this article, we explore the effect of stochastic resetting
on interacting many-particle systems. To this end, we study
the dynamical properties of a canonical setup, namely, the
symmetric exclusion process in the presence of stochastic
resetting. The resetting is implemented by interrupting the
dynamical evolution of the exclusion process with some rate
r and restarting it from a steplike configuration where all the
particles are clustered together in the left half of the system.

We find that the presence of resetting strongly affects the
behavior of the system. The key findings are as follows.
First, in a finite-size system, the density profile evolves to an
inhomogeneous stationary profile in contrast to the flat profile
in the absence of resetting. We have exactly calculated the
full time-dependent density profile for arbitrary resetting rate
r. Second, we find that, in a thermodynamically large system
the resetting mechanism drastically changes the

√
t growth

of the diffusive current to linear in t . We have explicitly
computed the mean and variance of the diffusive current, and
the latter is also shown to have a linear growth in the long-time
regime. Apart from the diffusive current, we also identify
the other component of the current which arises due to the
resetting move and show that this resetting current is negative,
with a linear temporal growth in magnitude. The moments of
the total current, i.e., the sum of the diffusive and resetting
current, are also calculated using the renewal approach.

We also have investigated the probability distribution of the
diffusive current Jd, resetting current Jreset, and the total cur-
rent Jr . We have found that that while the typical fluctuations
of Jd and Jreset are Gaussian in nature, the distribution of Jr is
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strictly non-Gaussian. The non-Gaussian nature is manifest in
the asymmetric asymptotic behavior of the distribution at the
two tails, which we also demonstrate.

Our study opens up a new direction in the area of stochastic
resetting and gives rise to a wide range of further questions.
For example, it would be interesting to study the effect of
stochastic resetting in other interacting particle systems, e.g.,
the asymmetric exclusion process, driven and equilibrium lat-
tice gas models, etc. Furthermore, it would also be interesting
to study the behavior of these interacting particle systems
under various other resetting mechanisms like resetting at
power-law times or time-dependent resetting, etc.

Apart from these theoretical questions, the framework of
stochastic resetting in exclusion processes can also be relevant
in the context of certain biophysical systems. For example,
stochastic motion of backtracked RNA polymerases can be
modeled as an interacting many-particle random walk on
the DNA template, with RNA cleavage playing the role of
resetting dynamics [14,56].

Similarly, motion of two-headed molecular motors such as
kinesin and myosin V moving on a polymeric track can be
modeled as an energy-driven hopping process in the presence
of backward jumps (or resetting) [57]. We believe that the
formalism introduced in the present work will be useful in
understanding such systems.
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APPENDIX A: DENSITY PROFILE OF SEPS
IN THE ABSENCE OF RESETTING

In this section we present a brief account of the dynamical
evolution of the density profile and current for ordinary SEPs,
starting from the steplike configuration C0. In the absence of
resetting, the time evolution of the system is governed by the
free Markov matrix L0 which yields, for the density profile,

d

dt
ρ0(x, t ) = ρ0(x + 1, t ) + ρ0(x − 1, t ) − 2ρ0(x, t ). (A1)

The corresponding Fourier components ρ̃0(n, t ) evolve fol-
lowing

d

dt
ρ̃0(n, t ) = −λnρ̃0(n, t ), (A2)

where, as before, λn = 2(1 − cos 2πn
L ), with n =

0, 1, 2, . . . , L − 1. The above equation is immediately
solved to obtain

ρ̃0(n, t ) = e−λnt φ̃(n), (A3)

where φ̃(n) corresponds to the initial profile φ(x). Note that
λ0 = 0, and hence ρ̃0(0, t ) = φ̃(0) = L

2 does not evolve with
time.

The spatial density profile is obtained by taking the inverse
Fourier transform of Eq. (A3). In particular, for the steplike
initial profile φ(x) = 1 − �(x + 1 − L

2 ) we have

ρ0(x, t ) = 1

2
+ 1

L

L−1∑
n=1,3

e−i 2πnx
L

(
1 + i cot

πn

L

)
e−λnt . (A4)

APPENDIX B: BEHAVIOR OF CURRENT IN THE
ABSENCE OF RESETTING

In the absence of resetting the only source of current in
SEPs is the hopping dynamics of the particles. The average
instantaneous current across the initial step, i.e., across the
central bond ( L

2 − 1, L
2 ), is given by

〈 j0(t )〉 = ρ0

(
L

2
− 1, t

)
− ρ0

(
L

2
, t

)
= 2

L

L−1∑
n=1,3

e−λnt , (B1)

where we have used Eq. (A4) to calculate the average densities
at the sites x = L

2 − 1 and x = L
2 . Clearly, in the long-time

limit t → ∞, the instantaneous current vanishes as the den-
sity profile becomes flat.

We are interested in the time-integrated current J0(t ) =∫ t
0 ds j0(s), which measures the net number of particles

crossing the central bond towards right. The average time-
integrated current is obtained by integrating Eq. (B1),

〈J0(t )〉 = 2

L

L−1∑
n=1,3

1

λn
(1 − e−λnt ). (B2)

For any finite L, the average time-integrated current J0(t )
saturates to an L-dependent constant value in the long-time
limit.

To understand the behavior of a thermodynamically large
system, one has to take the limit L → ∞ first. In this case, the
sum in Eq. (B1) can be converted to an integral by denoting
q = 2πn/L, and we have the mean instantaneous current,

〈 j0(t )〉 =
∫ 2π

0

dq

2π
e−2(1−cos q)t = e−2t I0(2t ). (B3)

Here I0(x) is the modified Bessel function of the first kind [54]
[see Eq. (10.25.2) therein]. In this limit, the average time-
integrated current becomes

〈J0(t )〉 = e−2t t[I0(2t ) + I1(2t )]. (B4)

For large values of the argument x, both I0(x) and I1(x) have
the same asymptotic behavior [see Ref. [54], Eq. (10.40.1)],

lim
x→∞ I0,1(2x) ∼ e2x

2
√

πx
, (B5)

which yields, in the long-time regime,

〈J0(t )〉 �
√

t

π
. (B6)

This result has been obtained in Ref. [52], albeit using a
different method. In fact, it has also been shown [52] that,
in the long-time regime, all the higher moments of J0 show a

032136-12



SYMMETRIC EXCLUSION PROCESS UNDER STOCHASTIC … PHYSICAL REVIEW E 100, 032136 (2019)

similar behavior. In particular, the variance is given by

〈
J2

0 (t )
〉 − 〈J0(t )〉2 �

√
t

π

(
1 − 1√

2

)
. (B7)

The above equation is used in Eq. (60) to calculate 〈J2
r 〉.

1. Probability distribution of J0

For an ordinary SEP, the probability distribution of the
time-integrated current J0 was explored in Ref. [52]. There
the authors considered a scenario where, initially, each site
to the left (respectively, right) of the origin (x � 0 and x > 0
respectively) is occupied with probability ρa (respectively ρb).
It was shown that, for large t, the moment-generating function
of the total particle flux J0(t ) through the origin is given by

〈eλJ0(t )〉 ∼ e
√

tF (ω), (B8)

where ω = ρa(eλ − 1) + ρb(e−λ − 1) + ρaρb(eλ − 1) and

F (ω) = 1√
π

∞∑
n=1

(−1)n+1ωn

n3/2
≡ − 1√

π
PolyLog3/2(−ω).

(B9)

In our case, we have ρa = 1 and ρb = 0 which simplifies ω

and in turn F (ω); we get ω = eλ − 1 and

F (λ) = − 1√
π

PolyLog3/2(1 − eλ), (B10)

which is quoted in Eq. (35).
It has been shown in Ref. [52] that the corresponding

probability distribution P0(J0, t ), in the long-time limit, is of
the form

P0(J0, t ) ∼ e
√

tG(J0/
√

t ). (B11)

The large deviation function G(q = J0/
√

t ) is related to F (λ)
through a Legendre transform,

G(q) = min
λ

[F (λ) − λq] = F (λ∗) − λ∗q, (B12)

where λ∗ corresponds to the minimum of the function F (λ) −
λq and is obtained by solving dF (λ)

dλ
= q. It is easy to see that

for small values of q, λ∗ is also small. Hence, it is convenient
to use the series expansion of F (λ) near λ = 0,

F (λ) = λ√
π

+ λ2

2
√

π

(
1 − 1√

2

)
+ O(λ3), (B13)

to find λ∗ for small values of q. Restricting ourselves to the

quadratic order in λ, we get λ∗ = (q
√

π−1)
√

2
(
√

2−1)
. Substitution of
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FIG. 10. (a) Plot of P0(J0, t ) vs J0 for different (large) values of t .
The symbols indicate the data obtained from numerical simulation of
a system of size L = 1000, whereas the solid black lines correspond
to the Gaussian distribution [see Eq. (B15)]. (b) The same data
plotted as function of [J0 − μ0(t )]/σ0(t ); the solid line indicates the
standard normal distribution.

this λ∗ in Eq. (B12) yields

G(q) =
(
q − 1√

π

)2

2√
π

(
1 − 1√

2

) . (B14)

Using the above G(q) in Eq. (B11) results in a Gaussian form
for the current distribution,

P0(J0, t ) = 1√
2πσ 2

0 (t )
exp

{
− [J0 − μ0(t )]2

2σ 2
0 (t )

}
, (B15)

where the prefactor is just a normalization constant. Here
μ0(t ) =

√
t
π

is nothing but the average hopping cur-
rent 〈J0(t )〉 and σ 2

0 (t ) =
√

t
π

(1 − 1√
2

) is the variance [see
Eq. (B7)]. Note that this Gaussian distribution is expected
only in the long-time limit, as Eq. (B11) holds true in this
limit only.

Figure 10(a) shows a comparison of P0(J0, t ) obtained
from numerical simulations (symbols) with the that predicted
from Eq. (B15) (solid lines) for different (large) values of
t . Figure 10(b) shows the same data but plotted against the
scaled variable y = J0−μ0(t )

σ0(t ) ; the solid line corresponds to the

standard normal distribution 1√
2π

e−y2/2. The numerical data
show a very good match with the predicted Gaussian curve
for typical values of J0; there are deviations only at the regime
|y| � 1, which are visible only at a logarithmic scale. The
large deviation function calculated in Ref. [52] describes the
distribution for these atypical values. However, as shown in
Sec. IV C, for our purposes it suffices to consider the typical
fluctuations, and we use the Gaussian distribution (B15) to
calculate the distribution of the diffusive current Jd in the
presence of resetting.
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[4] A. Pal, Ł. Kuśmierz, and S. Reuveni, arXiv:1906.06987.

[5] S. C. Manrubia and D. H. Zanette, Phys. Rev. E 59, 4945 (1999).
[6] P. Visco, R. J. Allen, S. N. Majundar, and M. R. Evans, Biophys.

J. 98, 1099 (2010).
[7] T. Rotbart, S. Reuveni, and M. Urbakh, Phys. Rev. E 92,

060101(R) (2015).
[8] S. Reuveni, M. Urbakh, and J. Klafter, Proc. Natl. Acad. Sci.

USA 111, 4391 (2014).

032136-13

https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
http://arxiv.org/abs/arXiv:1906.06987
https://doi.org/10.1103/PhysRevE.59.4945
https://doi.org/10.1103/PhysRevE.59.4945
https://doi.org/10.1103/PhysRevE.59.4945
https://doi.org/10.1103/PhysRevE.59.4945
https://doi.org/10.1016/j.bpj.2009.11.049
https://doi.org/10.1016/j.bpj.2009.11.049
https://doi.org/10.1016/j.bpj.2009.11.049
https://doi.org/10.1016/j.bpj.2009.11.049
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111


URNA BASU, ANUPAM KUNDU, AND ARNAB PAL PHYSICAL REVIEW E 100, 032136 (2019)

[9] A. Montanari and R. Zecchina, Phys. Rev. Lett. 88, 178701
(2002).

[10] L. Lovasz, in Combinatronics, Vol. 2 (Bolyai Society for Math-
ematical Studies, Budapest, 1996), p. 1.

[11] D. Sornette, Phys. Rep. 378, 1 (2003); Why Stock Markets Crash
(Princeton University Press, Princeton, NJ, 2017).

[12] E. Kussell and S. Leiber, Science 309, 2075 (2005).
[13] E. Kussell, R. Kishony, N. Q. Balaban, and S. Leiber, Genetics

169, 1807 (2005).
[14] E. Roldán, A. Lisica, D. Sánchez-Taltavull, and S. W. Grill,

Phys. Rev. E 93, 062411 (2016).
[15] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601

(2011).
[16] M. R. Evans and S. N. Majumdar, J. Phys. A 44, 435001

(2011).
[17] M. R. Evans, S. N. Majumdar, and K. Mallick, J. Phys. A 46,

185001 (2013).
[18] J. Whitehouse, M. R. Evans, and S. N. Majumdar, Phys. Rev. E

87, 022118 (2013).
[19] M. R. Evans and S. N. Majumdar, J. Phys. A 47, 285001 (2014).
[20] V. Méndez and D. Campos, Phys. Rev. E 93, 022106 (2016).
[21] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys. Rev.

E 99, 012141 (2019).
[22] D. Gupta, J. Stat. Mech. (2019) 033212.
[23] A. Pal, R. Chatterjee, S. Reuveni, and A. Kundu, J. Phys. A 52,

264002 (2019).
[24] A. Pal, Phys. Rev. E 91, 012113 (2015).
[25] S. Ahmad, I. Nayak, A. Bansal, A. Nandi, and D. Das,

Phys. Rev. E 99, 022130 (2019).
[26] A. Chatterjee, C. Christou, and A. Schadschneider, Phys. Rev.

E 97, 062106 (2018).
[27] A. Pal and V. V. Prasad, Phys. Rev. E 99, 032123 (2019).
[28] M. Basu, P. K. Mohanty, Europhys. Lett. 90, 50005

(2010).
[29] D. Boyer and C. Solis-Salas, Phys. Rev. Lett. 112, 240601

(2014).
[30] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Phys. Rev. E

92, 052126 (2015).
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