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Theoretical analysis and simulation of phase separation in a driven bidirectional two-lane system
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The two-lane driven system is a type of important model to research some transport systems, and also a
powerful tool to investigate properties of nonequilibrium state systems. This paper presents a driven bidirectional
two-lane model. The dynamic characteristics of the model with periodic boundary are investigated by Monte
Carlo simulation, simple mean field, and cluster mean field methods, respectively. By simulations, phase
separations are observed in the system with some values of model parameters. When the phase separation does
not occur, cluster mean field results are in good agreement with simulation results. According to the cluster mean
field analysis and simulations, a conjecture about the condition that the phase separation happens is proposed.
Based on the conjecture, the phase boundary distinguishing phase separation state and homogeneous state is
determined, and a corresponding phase diagram is drawn. The conjecture is validated through observing directly
the spatiotemporal diagram and investigating the coarsening process of the system by simulation, and a possible
mechanism causing the phase separation is also discussed. These outcomes maybe contribute to understand
deeply transport systems including the congestion and efficiency of the transport, and enrich explorations of
nonequilibrium state systems.
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I. INTRODUCTION

As the most prominent paradigm of the driven diffusive
system, the asymmetric exclusion process (ASEP) is widely
applied in various fields [1] since it was proposed originally
by MacDonald and Gibbs in 1968 [2]. Specifically, various
ASEP extended models are developed to model and analyze
biological transport [1,3–8], vehicle traffic, and pedestrian
traffic systems [9–12]. In addition to the practical application
background, these transport systems can also be used as tools
for the study of far from thermal equilibrium systems [13,14].

Most of these models are considered in single-channel
systems [15–18], and there are also many of these models that
are investigated in two-channel [19–21] or multiple-channel
systems [22–25]. The two-channel system is a quasi-one-
dimensional system involving just two “lanes”, in which vari-
ous rules are considered and some nonequilibrium properties
are observed. In these two-channel models, some involve only
one species of particles in systems. Particles move in each lane
unidirectionally without lane change, but the movement of a
particle in one of the lanes is affected by particles in another
lane [26]; or unidirectional movements with lane change
are considered [27–30]. Some of two-channel models focus
on bidirectional movements with two species of particles in
systems. One type of them takes into account that particles
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move unidirectionally in each lane but opposite direction for
two parallel lanes, in which there are interactions between
particles on two lanes but no lane change [31]. Other models
investigate that two species of particles move to opposite
direction in each lane with a lane change [32,33]. Additional
models consider the bottleneck effect, namely, a single lane is
combined in the middle part of the two-channel system [34],
and some models couple with the Langmuir kinetics [35].
These rules or considerations are mainly based on biologi-
cal transport and traffic flow. In addition to simulating real
transport rules and analyzing characteristics of the transport
systems, many properties such as non-equilibrium systems
have been found including phase transition [36,37], shock
[38], phase separation [31,39], spontaneous symmetry break-
ing [21,40], the finite-size effect [33], and so on.

Though many ASEP models with two lanes have been
investigated [31–35], various interactions based on real back-
ground of the transport systems such as molecular motors,
pedestrians and vehicles have not been fully explored in
two-channel systems, and more properties corresponding to
non-equilibrium systems are to be studied further.

In this paper, inspired by vehicle or electric bicycle driving
in opposite directions on a narrow road, a new bidirectional
two-channel ASEP model is proposed. The interactions of
particles between two lanes are considered in the model.
Computer simulation and mean-field analysis are carried out
to calculate the flow rate under periodic boundary conditions.
Phase separation can be observed in the system for specific
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FIG. 1. Schematic illustration of the bidirectional two-lane
TASEP model. Green full circle indicates the particle in upper
lane (lane 1), blue full circle indicates the particle in lower lane
(lane 2). The top and bottom boundaries are closed. The left and
right boundaries are periodic. The arrows show moving direction of
particles.

parameter values. When phase separation does not occur,
the results from the two-vertical-horizontal-cluster mean-field
method (CMF) are in good agreement with the results from
computer simulation. A speculation under which conditions
phase separation happens is given. Based on it, a phase
boundary distinguishing phase separation state and homo-
geneous state is drawn, and the phase boundary is verified
through investigating the coarsening process of the system by
simulation.

The paper is organized as follows. The model is described
in Sec. II. Simulation results and mean-field analysis are
presented in Sec. III. Finally, conclusions are summarized in
Sec. IV.

II. MODEL

A bidirectional two-lane model is presented as shown in
Fig. 1. with two types of particles in the system: moving to
the right and moving to the left. L sites are in each lane, and
each site can only hold one particle. In lane 1, particles move
from the left to the right, on the contrary, in lane 2, particles
move from the right to the left. And change-lane behavior is
not allowed in this two-lane system. When a site in lane 1
is selected randomly, if the site is occupied by a particle and
the front neighboring site is empty, this two nearest-neighbor
site pair is regarded as a bond; if the site selected is empty
and the behind neighboring site is occupied by a particle, this
two nearest-neighbor site pair is also regarded as a bond. For
ease of expression, the site occupied by a particle in a bond
is labeled i. If a bond in lane 1 is selected according to the
random update rule, the movement of the particle in the bond
is as follows:

(i) if the sites i and i + 1 in lane 2 are both empty, the
particle in the bond will move to the front neighboring
site i + 1 with rate 1 [see Fig. 1(i)].

(ii) if the site i + 1 is occupied in lane 2, the particle in
the bond will move to the front neighboring site i + 1
with rate p [see Fig. 1(ii) and 1(iii)].

(iii) if the site i in lane 2 is occupied and the site i + 1 in
lane 2 is empty, the particle in the bond will move to
the front neighboring site i + 1 with rate q [see Fig.
1(iv)].

The movement rule of a particle in site i of lane 2 is
similar to the above rule exchanging “lane 2” and “lane 1”

and changing “i + 1” to “i − 1”. In case of p = q = 1, the
model in each lane degenerates into the original TASEP model
[15]. The background of this model rule can be from a vehicle
or electric bicycle traffic. Considering safety and speed, on a
narrow road, the driver in lane 1 may slow down in cases (ii)
and (iii) as shown in Fig. 1, because the vehicle or electric
bicycle in lane 1 will get into the front site side by side with a
opposite vehicle or electric bicycle in lane 2. In case (iv), the
driver in lane 1 will maybe move forward faster than in cases
(ii) and (iii), because the vehicle or electric bicycle in lane
1 has kept side by side with an opposite vehicle or electric
bicycle in lane 2, but there is no vehicle or electric bicycle in
lane 2 in front of it. In case (i), the driver can move fast and
freely, so the hopping rates are set to 1 for simplicity.

The periodic boundary condition is employed in the model,
that is to say, the particles conservation system is considered.
The density ρ defined as particle numbers in lane 1 divided by
L is set to be equal to that of lane 2.

In this paper, we only study the case that the densities
of two lanes are equal, i.e., ρ1 = ρ2 = ρ, which corresponds
to the case of the balanced flow in pedestrian counterflow
[41]. Here, ρ1 and ρ2 denote the density on lanes 1 and 2,
respectively.

If considering this model from the thermodynamic view,

the hopping rate p or q can be defined as e
E

kBT , where E is the
energy of an external field, kB is the Boltzmann constant, and
T is thermodynamic temperature [7,18,29]. It is assumed that
particles move under short-range interaction which are driven
by an external field with energy E (E > 0 indicates attraction
interactions and E < 0 describes repulsion interactions). Cre-
ating [configuration (ii) in Fig. 1] and breaking configuration
(iv) in Fig. 1] the pair of particles in one vertical cluster can
be regarded as opposite chemical transitions. The system can

be viewed as abiding detailed balance if p
q = e

E
kBT [7]. But the

values of p and q are not limited by this relationship in the
following discussions.

III. MEAN-FIELD ANALYSIS AND SIMULATION

The dynamical properties of the model are to be inves-
tigated by mean field analysis [9,26,31] and Monte Carlo
simulations. The periodic boundary condition is employed in
the model, that is to say, the particles conservation system is
considered. The density ρ defined as particle numbers in lane
1 divided by L is set to be equal to that of lane 2.

A. Simple mean-field method

The mean field method has worked as a theoretical analysis
tool for studying multi-body particle systems. Note that the
mean field theory assumes that the particle system is always
homogeneous at all densities. The simple mean field (SMF)
that neglects all correlations between the state variables has
the advantage of low computational cost, and works well in
a system with very weak or no interactions [15,42]. Now,
the current of the system is calculated by simple mean field
method. For this purpose, the four probabilities corresponding
to four vertical cluster configurations “0”, “1”, “2”, “3” as
shown in Fig. 2(a) are denoted as P0, P1, P2, P3, respectively.
Ignoring correlations, the occupation of vertical clusters is
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FIG. 2. Configurations of vertical clusters. (a) All four one-cell
cluster configurations, (b) Two of all 16 two-cell cluster config-
urations, and (c) two of all 64 three-cell cluster configurations.
The number labeled below vertical cluster indicates the type of the
vertical cluster.

assumed to be independent of the site in the lanes, i.e.,
P(τ, γ ) = Pτ · Pγ . Here, {τ, γ } ∈ {0, 1, 2, 3}, and P(τ, γ ) in-
dicates the probability of two adjacent vertical clusters with
configuration τ and γ .

From the definition of probability, one can get easily

P0 + P1 + P2 + P3 = 1 . (1)

The definition of density can indicate

P1 + P3 = ρ (2)

and

P2 + P3 = ρ . (3)

The master equations can describe the evolutions of the four
probabilities. Especially, for P1, the master equation is

dP1

dt
= 2P3P0q − 2P1P2 p − P3P1 p − P1P0, (4)

when the system is in a steady state, dP1
dt = 0. Thus,

pP1P2 = qP0P3. (5)

Substituting Eqs. (1)–(3) into Eq. (5), we obtain

(q − p)P2
1 − qP1 + q(ρ − ρ2) = 0. (6)

Solving Eq. (6), we obtain the solution

P1 =
{

q−
√

q2+4q(q−p)(ρ−ρ)2

2(q−p) , p �= q

ρ(1 − ρ), p = q
. (7)

Substituting Eq. (7) into Eqs. (1)–(3), P0, P1, P2 can be calcu-
lated, respectively. Thus, the currents on lanes 1 and 2 are

J1 = P1P0 + P1P2 p + P3P0q + P3P2 p (8)

lane1

lane2

0,(1, 2) (3, 2, 1)

ii-1 i+1 i i+1 i+2

FIG. 3. Configurations schematics of three-cell cluster (1,0,2)
and (3,2,1). The thick orange box indicates the target two-cell cluster
to be considered.

and

J2 = P0P2 + P1P2 p + P0P3q + P1P3 p . (9)

From Eqs. (2) and (3), we have P1 = P2. So the currents
on lanes 1 and 2 are equal, i.e., J1 = J2. When p �= q, the
expression of the current is

J =
(
p2ρ + qρ

)
(k + q − 2qρ) − pk(q + ρ + qρ − 1) − w

2(p − q)2
,

(10)

where

k =
√

q
(
q(1 − 2ρ)2 − 4p(−1 + ρ)ρ

)
(11)

and

w = pq
(
1 + ρ − 2ρ2

) + pq2
(
1 − ρ + 2ρ2

)
. (12)

When p = q, the expression of flow rate is

J = ρ + (2p − 3)ρ2 + (3 − 3p)ρ3 + (p − 1)ρ4 . (13)

B. Cluster mean-field method

Next, the cluster mean field method, taking into account
the correlation between particles, is employed to calculate
the current of the system. P(σ1, σ2, . . . , σn) is used to de-
note the probability of finding an n-cell cluster in the state
(σ1, σ2, . . . , σn) in the stationary state of the system. Here, the
n-cell cluster is a collection of n successive vertical clusters.
Considering that hop rates in the model depend on the states
of two adjacent vertical clusters, we only involve a two-cell
(two adjacent vertical clusters) cluster mean field analysis. In
this case, the state of the two-cell cluster (σi, σi+1) as shown
in Fig. 2(b) at time t + 1 depends on the state of the three-cell
cluster (σi−1, σi, σi+1) or (σi, σi+1, σi+2) at time t as shown in
Fig. 2(c) or Fig. 3. Here, the σi = 0, 1, 2, 3, corresponds to the
four states shown in Fig. 2(a), respectively. Thus 16 two-cell
cluster probabilities P(σi, σi+1) need to be solved.

Based on the model rules, the master equation of P(1, 0)
can be written as

dP(1, 0)

dt
= P(1, 0) |generation −P(1, 0) |disappearance

=
( ∑

τ∈{1,3}
P(τ, 0, 0)q

τ−1
2 +

∑
τ∈{0,1}

P(τ, 3, 0)(τ p + (1 − τ )q)

+
∑

τ∈{0,2}
P(1, 1, τ )p

τ
2

)
−

(
P(1, 0) +

∑
τ∈{2,3}

P(1, 0, τ )qτ−2
)
. (14)
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Here, a line is added under σi and σi+1 to make a distinc-
tion between (σi−1, σi, σi+1) and (σi, σi+1, σi+2) (see Fig. 3).
According to the general n-cell cluster approximation [9,26],
P(σi−1, σi, σi+1) and P(σi, σi+1, σi+2) in the two-cell cluster
mean field analysis can be expressed mathematically as

P(σi−1, σi, σi+1) = P(σi−1|σi )P(σi, σi+1) (15)

and

P(σi, σi+1, σi+2) = P(σi, σi+1)P(σi+1|σi+2), (16)

respectively, where

P(σi−1|σi ) = P(σi−1, σi )∑
σi−1

P(σi−1, σi )
(17)

and

P(σi+1|σi+2) = P(σi+1, σi+2)∑
σi+2

P(σi+1, σi+2)
(18)

are two-cell cluster conditional probabilities. According to
Eqs. (15) and (16), the three-cell cluster probabilities in the
right-hand side of Eq. (14) can be converted to two-cell cluster
probabilities. Noting dP(1,0)

dt = 0 when the system is in steady
state, Eq. (14) can be simplified as

P(0, 0)
∑

τ∈{1,3}
P(τ, 0)q

τ−1
2

∑
τ∈{0,1,2,3}

P(τ, 0)
+

P(3, 0)
∑

τ∈{0,1}
P(τ, 3)(τ p + (1 − τ )q)

∑
τ∈{0,1,2,3}

P(τ, 3)

+
P(1, 1)

∑
τ∈{0,2}

P(1, τ )p
τ
2

∑
τ∈{0,1,2,3}

P(1, τ )
−

P(1, 0)
∑

τ∈{2,3}
P(0, τ )qτ−2

∑
τ∈{0,1,2,3}

P(0, τ )
− P(1, 0) = 0 . (19)

Due to the symmetry of the two lanes in the model, one can
obtain the following six equations:

P(0, 1) = P(2, 0) , (20)

P(1, 0) = P(0, 2) , (21)

P(3, 0) = P(0, 3) , (22)

P(3, 2) = P(1, 3) , (23)

P(2, 3) = P(3, 1) , (24)

P(1, 1) = P(2, 2) . (25)

The conservation of probability requires that

3∑
i, j=0

P(i, j) = 1 . (26)

Moreover, the definition of density indicates∑
τ∈{0,1,2,3}

(
P(1, τ ) + P(3, τ )

)
= ρ . (27)

Another seven independent equations can be obtained simi-
larly in the Appendix [Eqs. (A1)–(A7)]. Therefore, we have
16 equations including Eqs. (19)–(27) and (A1)–(A7) about
16 variables P(σi, σi+1). Obviously, the analytical solutions
of the nonlinear equations cannot be obtained. So the Newton
iteration method is used to compute the numerical solutions of
the equations. Then the current of the system can be calculated
as

J = P(1, 0) + P(1, 2)p + P(3, 0)q + P(3, 2)p (28)

or

J = P(0, 2) + P(1, 2)p + P(0, 3)q + P(1, 3)p . (29)

C. Simulations and discussions

Now we carry out the Monte Carlo simulations with L =
2000 and 106 Monte Carlo time steps (MCS). Particles move
in each lane according to same model rule (see Fig. 1), just
in the opposite direction. And simulation results show that
the dynamical properties of the two lanes are the same. So
only one lane of two lanes is represented in the following
discussions, the quantitative or qualitative properties in the
other lane is the same or similar.

The currents of the system with density ρ ∈ [0, 1] for
different values of parameters p and q are calculated by
simulation, simple mean-field method (SMF), and cluster

FIG. 4. Diagrams of current versus density ρ for five sets
of different (p, q) values including (p, q) = (0.3, 0.03), (p, q) =
(0.3, 0.6), (p, q) = (0.6, 0.2), (p, q) = (0.6, 0.6), and (p, q) =
(0.8, 0.9). The simulation results, simple mean-field results, and
cluster mean-field results are compared together.
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FIG. 5. Diagrams of current versus density from simulation and
cluster mean-field analysis(CMF) combining phase separation ap-
proximation (PSA). For the CMF+PSA, the flow rate corresponding
to the platform is calculated according to the CMF result at maximum
point of P(1, 2) + P(3, 2).

mean-field method (CMF), respectively. The corresponding
plots are shown in Fig. 4. It can be seen that the current
becomes large with the increase of p and q values. On the
whole, the CMF result is better than the SMF result in
agreement with the simulation result. However, it is easy to
notice that the CMF result also deviates from the simula-
tion result under some values of parameters p and q, such
as (p, q) = (0.3, 0.6), (p, q) = (0.6, 0.6), (p, q) = (0.8, 0.9).
This is because the phase separation state occurs in the system,

which corresponds to the plateau in the flow rate curve as
shown in Fig. 4. In this case, there are two critical densities
ρca and ρcb, which can also be observed clearly in Fig. 5.
When ρ < ρca, the flow rate increases with the increase of
ρ; when ρ > ρcb, the flow rate decreases with the increase of
ρ. In the intermediate density range ρca < ρ < ρcb, the flow
rate keeps invariant, which brings about a plateau in the curve.
The typical spatiotemporal patterns of this phase separation
state are shown in Fig. 6(a), (b), and (e). “Free flow” phase
and “congested flow” phase coexist in the system, that is to
say, the system is separated into a low density region and high
density region. The density of the low density region equals to
the first critical density ρca, and the density of the high density
region equals to the second critical density ρcb.

In order to explicate what causes the phase separation in
this system, some investigations are carried out. Interestingly,
by cluster mean-field analysis, we find a conclusion: when the
maximum of P(1, 2) + P(3, 2) is larger than that of P(1, 0) +
P(3, 0), the system can appear to have phase separation at
medium density (around the maximum point of the flow
rate from cluster mean field analysis). The simulation results
validate this conclusion as shown in Table I.

The coarsening process of the system based on simulation
is to be investigated to verify deeply the above conclusion
and explore the mechanism causing phase separation. For this
purpose, the normalized residence distribution of a cluster of s
particles interconnected is defined and denoted as p(s). In fact,
the p(s) can be understood as the probability that a selected
random particle is in a cluster of size s [33]. In a homogeneous
state, the mathematical expectation of cluster size s, E (s) =

FIG. 6. Spatiotemporal diagram in one lane of two lanes. (a), (b), and (e) are phase separation states corresponding to the platform region;
(c), (d), and (f) are macroscopic homogeneous states. The parameters are p = 0.3, q = 0.6, ρ = 0.3 in (a), p = 0.3, q = 0.6, ρ = 0.5 in (b),
p = 0.3, q = 0.6, ρ = 0.65 in (c), p = 0.6, q = 0.6, ρ = 0.3 in (d), p = 0.6, q = 0.6, ρ = 0.5 in (e), and p = 0.6, q = 0.6, ρ = 0.65 in (f).
500 snapshots of the system are shown every 20 MC time steps after 5 × 104 time steps are discarded.
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TABLE I. Maximum of P(1, 2) + P(1, 3) and P(1, 0) + P(3, 0) from CMF with different values of p and q.

(p, q) Maximum of P(1, 2) + P(1, 3) Maximum of P(1, 0) + P(3, 0) Is phase separation?

p = 0.3, q = 0.03 0.085 0.179 No
p = 0.3, q = 0.6 0.177 0.109 Yes
p = 0.6, q = 0.2 0.117 0.160 No
p = 0.6, q = 0.6 0.153 0.137 Yes
p = 0.8, q = 0.9 0.154 0.141 Yes

∑
s

s · p(s) is small. Conversely, the mathematical expectation

E (s) is large in a phase separation state.
In (p, q) space, we can calculate the mathematical expec-

tation E (s) with given density ρ by simulation. For ρ = 0.5,
the E (s) in (p, q) space is shown in Fig. 7. One can note that
the boundary line corresponding to E (s) = 7 is close to the
boundary line corresponding to the maximum of P(1, 2) +
P(3, 2) being larger than that of P(1, 0) + P(3, 0). This can
also verify the above conclusion presented, when E (s) > 7,
it indicates particles form some larger clusters, so the system
appears at phase separation. Of course, the mean length of
clusters E (s) = 7 is only approximate at the phase boundary.
In fact, phase boundary should be in an interval.

Now we investigate P(1, 2) + P(3, 2) and P(1, 0) +
P(3, 0). First, we focus on the case of the maximum of
P(1, 2) + P(3, 2) being larger than that of P(1, 0) + P(3, 0).
For P(1, 0) + P(3, 0), it rises with the increase of density
ρ. When ρ = ρca, the value of P(1, 0) + P(3, 0) reaches the
maximum. Then the system transitions into phase separation,
in which the value of P(1, 0) + P(3, 0) maintains the max-
imum in the low density region. When ρ > ρcb, the system
turns into homogeneous again, and the value of P(1, 0) +
P(3, 0) continues to decrease with the increase of ρ. When
ρ ∈ [ρca, ρcb], the system is separated into a low density

FIG. 7. Phase diagram. Boundary separating phase separa-
tion from homogeneous state in (p, q) space. The boundary
lines are obtained from CMF with the relation max(P(1, 2) +
P(3, 2)) >max(P(1, 0) + P(3, 0)), from a simulation with ρ = 0.5,
respectively. Here, the different colors denote different mathematical
expectation of cluster size E (s), i.e., the mean length of clusters.
The boundary from simulation is corresponding to the mean length
E (s) = 7 of a cluster.

region with ρ = ρca and a high density region with ρ = ρcb.
With the increase of ρ, the low density region shrinks and
the high density region expands. As a result, the mean value
of P(1, 0) + P(3, 0) decreases linearly with the increase of
ρ due to P(1, 0) + P(3, 0) maintaining the maximum value
in the low density region and taking a small value in the
high density region, as shown in Fig. 8(a). On the contrary,
for P(1, 2) + P(3, 2), it rises with the decrease of density
from ρ = 1. When ρ = ρcb, the value of P(1, 2) + P(3, 2)
reaches the maximum. After that the phase separation emerges
in the system. In this state, the value of P(1, 2) + P(3, 2)
holds the maximum in the high density region. When ρ <

ρca, the system returns to the homogeneous state, and the
value of P(1, 2) + P(3, 2) continues to decrease with the
decrease of ρ. Similarly, in ρ ∈ [ρca, ρcb], the mean value
of P(1, 2) + P(3, 2) decreases linearly with the decrease of
ρ due to P(1, 2) + P(3, 2) holding the maximum value in
the high density region and taking a small value in the low
density region, as shown in Fig. 8(b). Based on these results
and cluster mean field results, the flow rate corresponding
to the plateau can be calculated approximately according to
the CMF result at a maximum point of P(1, 2) + P(3, 2)
(see Fig. 5). Next, we discuss the case of the maximum of
P(1, 2) + P(3, 2) being less than that of P(1, 0) + P(3, 0). In
this case, it is inferred that the system cannot satisfy syn-
chronously P(1, 2) + P(3, 2) and P(1, 0) + P(3, 0) to keep
their maximum at any density. That is to say, for a given
arbitrary ρ, the system cannot be divided spontaneously into
a low density region in which P(1, 0) + P(3, 0) maintains
the maximum and a high density region in which P(1, 2) +
P(3, 2) keeps the maximum. Therefore, the system does not
appear phase separated in this case.

According to the above investigation, one can argue that
the phase separation is as a result of the system always trying
to maximize P(1, 2) + P(3, 2) and P(1, 0) + P(3, 0) in the
whole system and if not possible, in part of the system. More-
over, the range of the density at which the phase separation
occurs can be calculated approximately according to the CMF
result, that is from ρca to ρcb. Here, ρca is the maximum point
of P(1, 0) + P(3, 0) from CMF and ρcb is the maximum point
of P(1, 2) + P(3, 2) from CMF. By simulations, one can note
that, when the value of q is fixed, the range of the density
corresponding to the phase separation becomes narrow with
the increase of p, but when the value of p is fixed, the range
of the density corresponding to the phase separation does not
nearly change (see Fig. 9). About the mechanism causing
the phase separation, we guess that the phase separation is
driven by the entropy of the system from thermodynamic
viewpoints. According to different configurations of the two-
cell vertical cluster, the system has similarly the so-called
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FIG. 8. Plots of (a) P(1, 0) + P(3, 0) and (b) P(1, 2) + P(3, 2) versus density from simulation and cluster mean-field analysis with p =
0.3, q = 0.6 and p = 0.6, q = 0.6. The dashed line is a guide for the eyes to see critical density value entering the phase separation state.

configuration entropy [43]. The entropy production leads to
the phase separation. Presently we could only provide the
possible and crude explanation about the mechanism, and the
exact or clear mechanism of the phase separation is needed to
explore under further investigations.

In real traffic systems [41,44], this phase separation phe-
nomenon does exist, which corresponds to the “free flow” and
“congested flow”, or “synchronized flow” and “wide-moving
jams” [45]. If the hopping rate p and q can be adjusted or
induced to be in a certain range, the phase separation does not
occur, and the real traffic system can only be in “free flow” or
“synchronized flow” to improve the traffic efficiency.

Various traffic systems and related self-driven many-
particle systems have been concerned [9,10]. Especially, the
phase behavior or phase separation in a driven two-lane
system has always been focused on. The nucleation or phase
separation process was investigated in the two-lane system
with two species of particles driven in opposite directions
[33]. A possible phase separation mechanism was proposed
in a bidirectional two-lane asymmetric exclusion process [31].
The steady-state phase diagrams for symmetrically split inter-
action strength were given in an open two-lane symmetrically
coupled interacting TASEP model [29]. In addition, the phase

FIG. 9. Diagrams of current versus density by simulations
with p = 0.3, q = 0.4; p = 0.3, q = 0.6; p = 0.3, q = 0.9; and p =
0.6, q = 0.6. The dashed line is a guide for the eyes to see critical
density values ρca, ρcb, ρ ′

ca, ρ ′
cb entering the phase separation state.

separation driven by the entropy has attracted the interest of
researchers in related fields [46,47]. Our research may provide
some new perspectives for these theoretical and applied fields.

IV. CONCLUSION

To summarize, this paper has presented a driven bidi-
rectional two-lane model. Monte Carlo simulation, simple
mean field and cluster mean field methods are employed,
respectively, to research dynamic characteristics of the model
with periodic boundary. By simulations, phase separations are
observed in the system with some values of parameters (p, q).
When the system does not occur phase separation, cluster
mean field results are in good agreement with simulation
results. Based on cluster mean field analysis and simulations,
an inference is given that the system can appear at phase
separation when the maximum of P(1, 2) + P(3, 2) is larger
than that of P(1, 0) + P(3, 0). The phase diagram including
phase separation state and homogeneous state is drawn, and
the phase boundary from the above inference is validated
through an investigation of the coarsening process of the
system based on simulation. Possible mechanism about the
phase separation is also discussed.
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APPENDIX

In this Appendix, the other seven independent master equa-
tions for two-cell cluster probabilities are presented ignoring
the derivation process, because the derivation method is simi-
lar to that of Eq. (19).
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Analyzing the temporal evolution of two-cell cluster probability P(0, 0) and dP(0,0)
dt = 0, we can get

P(0, 1)
∑

τ∈{0,2}
P(1, τ )p

τ
2

∑
τ∈{0,1,2,3}

P(1, τ )
+ P(0, 2)P(2, 0)∑

τ∈{0,1,2,3}
P(τ, 2)

+ P(1, 2)P(2, 0)p∑
τ∈{0,1,2,3}

P(2, τ )

−
P(0, 0)

∑
τ∈{1,3}

P(τ, 0)q
τ−1

2

∑
τ∈{0,1,2,3}

P(τ, 0)
−

P(0, 0)
∑

τ∈{2,3}
P(0, τ )qτ−2

∑
τ∈{0,1,2,3}

P(0, τ )
= 0 . (A1)

Considering the temporal evolution of P(1, 1) and dP(1,1)
dt = 0, we can have

P(0, 1)
∑

τ∈{1,3}
P(τ, 0)q

τ−1
2

∑
τ∈{0,1,2,3}

P(τ, 0)
+

P(3, 1)
∑

τ∈{0,1}
P(τ, 3)

(
τ p + (1 − τ )q

)
∑

τ∈{0,1,2,3}
P(τ, 3)

−
P(1, 1)

( ∑
τ∈{0,2}

P(1, τ )p
τ
2 + ∑

τ∈{2,3}
P(1, τ )p

)
∑

τ∈{0,1,2,3}
P(1, τ )

= 0 .

(A2)

Considering the temporal evolution of P(3, 0) and dP(3,0)
dt = 0, we can obtain

P(1, 2)p +
P(2, 0)

∑
τ∈{1,3}

P(τ, 2)p

∑
τ∈{0,1,2,3}

P(τ, 2)
+

P(3, 1)
∑

τ∈{0,2}
P(1, τ )p

τ
2

∑
τ∈{0,1,2,3}

P(1, τ )
− P(3, 0)q

−
P(3, 0)

∑
τ∈{0,1}

P(τ, 3)
(
τ p + (1 − τ )q

)
∑

τ∈{0,1,2,3}
P(τ, 3)

−
P(3, 0)

∑
τ∈{2,3}

P(0, τ )qτ−2

∑
τ∈{0,1,2,3}

P(0, τ )
= 0 . (A3)

Noting the temporal evolution of P(1, 2) and dP(1,2)
dt = 0, we can have

P(0, 2)
∑

τ∈{1,3}
P(τ, 0)q

τ−1
2

∑
τ∈{0,1,2,3}

P(τ, 0)
+

P(1, 0)
∑

τ∈{2,3}
P(0, τ )qτ−2

∑
τ∈{0,1,2,3}

P(0, τ )
+

P(1, 3)
∑

τ∈{0,2}
P(3, τ )

(
τ
2 p + (1 − τ

2 )q
)

∑
τ∈{0,1,2,3}

P(3, τ )

+
P(3, 2)

∑
τ∈{0,1}

P(τ, 3)
(
τ p + (1 − τ )q

)
∑

τ∈{0,1,2,3}
P(τ, 3)

− 2P(1, 2)p = 0 . (A4)

Considering the temporal evolution of P(2, 1) and dP(2,1)
dt = 0, we can obtain

(P(3, 0) + P(0, 3))q −
P(2, 1)

( ∑
τ∈{0,1}

P(τ, 2)pτ + ∑
τ∈{1,3}

P(τ, 2)p
)

∑
τ∈{0,1,2,3}

P(τ, 2)
−

P(2, 1)
( ∑

τ∈{0,2}
P(1, τ )p

τ
2 + ∑

τ∈{2,3}
P(1, τ )p

)
∑

τ∈{0,1,2,3}
P(1, τ )

= 0 .

(A5)

Analyzing the temporal evolution of P(3, 1) and dP(3,1)
dt = 0, we can get

P(1, 3)p +
P(2, 1)

∑
τ∈{1,3}

P(τ, 2)p

∑
τ∈{0,1,2,3}

P(τ, 2)
−

P(3, 1)
∑

τ∈{0,1}
P(τ, 3)

(
τ p + (1 − τ )q

)
∑

τ∈{0,1,2,3}
P(τ, 3)

−
P(3, 1)

( ∑
τ∈{0,2}

P(1, τ )p
τ
2 + ∑

τ∈{2,3}
P(1, τ )p

)
∑

τ∈{0,1,2,3}
P(1, τ )

= 0 . (A6)
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Considering the temporal evolution of P(3, 3) and dP(3,3)
dt = 0, we can have

P(2, 3)
∑

τ∈{1,3}
P(τ, 2)p

∑
τ∈{0,1,2,3}

P(τ, 2)
+

P(3, 1)
∑

τ∈{2,3}
P(1, τ )p

∑
τ∈{0,1,2,3}

P(1, τ )

−
P(3, 3)

∑
τ∈{0,2}

P(3, τ )
(

τ
2 p + (1 − τ

2 )q
)

∑
τ∈{0,1,2,3}

P(3, τ )
−

P(3, 3)
∑

τ∈{0,1}
P(τ, 3)(τ p + (1 − τ )q)

∑
τ∈{0,1,2,3}

P(τ, 3)
= 0. (A7)
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