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Uncertainty relations for underdamped Langevin dynamics
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A trade-off between the precision of an arbitrary current and the dissipation, known as the thermodynamic
uncertainty relation, has been investigated for various Markovian systems. Here, we study the thermodynamic
uncertainty relation for underdamped Langevin dynamics. By employing information inequalities, we prove
that for such systems, the relative fluctuation of a current at a steady state is constrained by both the entropy
production and the average dynamical activity. We find that unlike what is the case for overdamped dynamics, the
dynamical activity plays an important role in the bound. We illustrate our results with two systems, a single-well
potential system and a periodically driven Brownian particle model, and numerically verify the inequalities.
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I. INTRODUCTION

Fluctuations in small systems far from thermal equilibrium
have been actively studied over the last two decades. Universal
relations that characterize nonequilibrium systems, such as
fluctuation-dissipation theorems [1–4] and fluctuation theo-
rems [5–7], have been discovered as a result. These relations
are fundamentally important and enable us to investigate the
properties of many physical systems experimentally. In recent
years, the thermodynamic uncertainty relation (TUR) [8,9],
quantifying a trade-off between the fluctuation of an arbitrary
current and the dissipation, has been an important discovery
in statistical physics. Qualitatively, the TUR indicates that it
is impossible to attain a small fluctuation without increasing
the dissipation quantified by entropy production in the system.
In particular, it states that

Var[�]

〈�〉2
� 2

T σ
(1)

holds for an arbitrary current � and finite observation time T
in a nonequilibrium steady state. Here, 〈�〉 and Var[�] denote
the mean and variance of the current, respectively, and σ is the
entropy production rate. Hereafter, the term “bound” refers
to the lower bound on the current fluctuation and 2/(T σ ) is
called the original bound.

The TUR has been proven for continuous-time discrete-
state Markov-jump processes [10], extended to other contexts
[11–23], and successfully applied to study a range of specific
problems [24–28]. A remarkable application of the TUR is
in the quantification of the entropy production from experi-
mental data using fluctuating currents [29]. It is of particular
interest that the TUR is also valid for overdamped Langevin
systems [30,31]. However, overdamped dynamics, which are
only approximate descriptions of underdamped dynamics, can
dramatically fail to capture thermodynamic quantities such as
the entropy production [32–34]. Therefore, it is natural to ask
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whether the TUR is valid for underdamped systems; and more
importantly, if not, whether there exists an analogous bound
for such systems.

In the present paper, we address the aforementioned ques-
tion for underdamped Langevin dynamics, wherein damping
does not suppress inertial effects. Regarding the validity of the
TUR, we numerically found that it does not universally hold.
Therefore, the original bound cannot be utilized for general
underdamped systems. By applying information inequalities
to systems, we derive new bounds for both scalar and vector
currents in the steady state. Specifically, we prove that the rel-
ative fluctuation of a current is bounded from below by a quan-
tity involving entropy production and the average dynamical
activity. This activity term is a kinetic aspect of the system and
plays a central role in characterizing its dynamics [35–40].
The results imply that the current fluctuation is constrained
not only by entropy production but also by dynamical activity.
We empirically verify the derived bounds via numerical simu-
lations. In addition, we show that our approach can be applied
to the derivation of an uncertainty relation for active matter
systems, which have recently attracted considerable interest
[41–48].

II. MODEL

We consider a general underdamped system of N particles,
wherein the particle i is in contact with a heat reservoir in
equilibrium at temperature Ti. The dynamics of the system are
described by a set of coupled equations as follows:

ṙi = vi, miv̇i = −γivi + Fi(r) + ξi, (2)

where the dots indicate time derivatives, r = [r1, . . . , rN ]�
and v = [v1, . . . , vN ]� denote positions and velocities, re-
spectively; mi and γi are the mass and the damping coefficient
of particle i, respectively; Fi(r) = −∂riU (r) + fi(r) is the total
acting force with the potential U (r); and the ξi’s are zero-
mean white Gaussian noises with variances 〈ξi(t )ξ j (t ′)〉 =
2Tiγiδi jδ(t − t ′). Throughout this study, Boltzmann’s constant
is set to kB = 1. The time evolution of the phase-space proba-
bility distribution function, P(r, v, t ), can be described by the

2470-0045/2019/100(3)/032130(13) 032130-1 ©2019 American Physical Society

https://orcid.org/0000-0001-8184-9433
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032130&domain=pdf&date_stamp=2019-09-20
https://doi.org/10.1103/PhysRevE.100.032130


TAN VAN VU AND YOSHIHIKO HASEGAWA PHYSICAL REVIEW E 100, 032130 (2019)

Kramers equation

∂t P(r, v, t ) =
N∑

i=1

[−∂ri Jri (r, v, t ) − ∂vi Jvi (r, v, t )
]
, (3)

where Jri (r, v, t ) = viP(r, v, t ) and Jvi (r, v, t ) = 1/mi

[−γivi + Fi(r) − Tiγi/mi∂vi ]P(r, v, t ). Hereafter, we focus
exclusively upon the steady state, in which the system has
stationary distribution Pss(r, v) and probability currents
Jss

ri
(r, v) and Jss

vi
(r, v).

Let � ≡ [r(t ), v(t )]t=T
t=0 denote a phase-space trajectory that

starts at the point (r0, v0) ≡ (r(0), v(0)) and has length T .
The entropy production characterizes the irreversibility in the
system and has been generalized to the level of stochastic
trajectories [49]. Along the trajectory �, the entropy produc-
tion can be defined as �stot[�] ≡ ln(P[�]/P†[�†]), which is
a comparison of the probabilities of the forward path � and
its time-reversed counterpart �† ≡ [r(T − t ),−v(T − t )]t=T

t=0
[50–52]. Here, P[�] and P†[�†] are the probabilities of ob-
serving the forward path � and its time-reversed path �†, re-
spectively. Because the initial distribution in the time-reversed
process is P(r(T ), v(T ), T ), the entropy production can be
decomposed as

�stot[�] = − ln
P(r(T ), v(T ), T )
P(r(0), v(0), 0)

+ ln
P[�|r(0), v(0)]

P[�†|r(T ),−v(T )]
, (4)

where the first and second terms in the right-hand side of
Eq. (4) correspond to the system entropy production and the
medium entropy production, respectively. Using stochastic
thermodynamics [7,52], we can show that the entropy pro-
duction rate, which includes changes in the system entropy
and the medium entropy, is as follows:

σ =
N∑

i=1

∫∫
dr dv

m2
i

Tiγi

J ir
vi

(r, v)2

Pss(r, v)
, (5)

where J ir
vi

(r, v) is the irreversible current given by J ir
vi

(r, v) =
−1/mi[γivi + Tiγi/mi∂vi ]P

ss(r, v). The detailed calculation of
σ is provided in Appendix 1. For an arbitrary trajectory �,
we consider a generalized observable-type current, �[�] =∫ T

0 dt �(r)� ◦ ṙ, where � ∈ RN×1 is the projection function
and ◦ denotes the Stratonovich product. Our aim is to derive a
lower bound on the fluctuation of the current �[�].

III. UNCERTAINTY RELATIONS

A. Derivation

To derive our results, let us consider the auxiliary dynamics

ṙi = vi, miv̇i = Hi,θ (r, v) + ξi, (6)

where θ is a perturbation parameter and Hi,θ (r, v) is the force
acting upon particle i. The detailed form of Hi,θ (r, v) will be
determined later. For an arbitrary function f [�], let 〈 f 〉θ ≡∫
D� f [�]Pθ [�] and Varθ [ f ] ≡ 〈( f − 〈 f 〉θ )2〉θ . Here, Pθ [�]

is the probability of observing the trajectory � generated by
the auxiliary dynamics. It can be expressed in a path-integral

form as [53]

Pθ [�] = NPss
θ (r0, v0)

N∏
i=1

exp (−Ai[�]) , (7)

where Ai[�] ≡ ∫ T
0 dt[miv̇i − Hi,θ (r, v)]2/(4Tiγi ) is an

Onsager–Machlup action functional, Pss
θ (r0, v0) is the

stationary distribution of the auxiliary dynamics, and N
is a term independent of θ . The integral in the action
functional is interpreted as the continuum limit of an Ito
sum with pre-point discretization. Note that writing the
crossing term

∫
dt v̇iHθ,i(r, v) in the Stratonovich integral

(i.e., mid-point discretization) results in a different form of
the path integral. However, it can be shown that both pre-
and mid-point discretization schemes reduce to the same
path-integral representation in the case of additive noise (see
Appendix 2). Hereafter, the notations 〈··〉 and 〈··〉θ imply
averages taken over ensembles in the original and auxiliary
dynamics, respectively. In the steady state, the average of the
current becomes 〈�〉θ = T

∫∫
dr dv �(r)�Jss

r,θ (r, v), where
Jss

r,θ (r, v) = vPss
θ (r, v) is the vector of probability currents in

the auxiliary dynamics. Since 〈�〉θ is a function of θ , i.e.,
〈�〉θ = ψ (θ ), we can consider � as an estimator of ψ (θ ).
The precision of this estimator is bounded from below by the
reciprocal of the Fisher information as [21]

Varθ [�]

(∂θ 〈�〉θ )2 � 1

I (θ )
, (8)

where I (θ ) ≡ − 〈
∂2
θ lnPθ

〉
θ

is the Fisher information, which
can be calculated via the path integral in Eq. (7). Equation
(8) is known as the Cramér-Rao inequality, and indicates a
trade-off between the precision of an estimator and the Fisher
information. The analogy between this inequality and the
TUR has been utilized to derive the original bound [21,54].
Next, we use the virtual-perturbation technique [55] and con-
sider the auxiliary dynamics with the following force:

Hi,θ (r, v) = −(1 + θ )γivi + (1 + θ )2Fi(r)

+ Tiγi

mi
[1 − (1 + θ )3]

∂vi P
ss(r, v/(1 + θ ))

Pss(r, v/(1 + θ ))
. (9)

When θ = 0, Hi,θ (r, v) = −γivi + Fi(r) and the auxiliary
dynamics become the original ones. Verifying that these
auxiliary dynamics have a stationary distribution Pss

θ (r, v) =
Pss(r, v/(1 + θ ))/(1 + θ )N is easy. The average current in the
auxiliary dynamics is related to that in the original dynamics
as 〈�〉θ = (1 + θ )〈�〉; thus, we have ∂θ 〈�〉θ = 〈�〉. By let-
ting θ = 0 in Eq. (8), we obtain the following inequality:

Var[�]

〈�〉2
� 2

�
, (10)

where � = 2I (0) = T (9σ + 4ϒ ) + 
 and

ϒ =
N∑

i=1

(
1

Tiγi
〈Fi(r)2〉 − 3

γi

Ti

〈
v2

i

〉+ 4
γi

mi

)
, (11)


 = 2

〈(
N∑

i=1

vi∂vi P
ss(r, v)/Pss(r, v)

)2〉
− 2N2. (12)

Inequality (10) is the main result of our paper and holds
for an arbitrary timescale and general underdamped systems.
The detailed derivation is provided in Appendix 3. As seen,

032130-2



UNCERTAINTY RELATIONS FOR UNDERDAMPED … PHYSICAL REVIEW E 100, 032130 (2019)

the derived bound is not equal to the reciprocal of entropy
production as is the original bound (which will be shown
to be violated in underdamped systems). In addition to the
entropy production, the derived bound also contains ϒ , which
involves the moments of the forces and velocities, and a
boundary term 
, which is always non-negative, as 
 =
2〈[∂θ ln Pss

θ (r0, v0)]2〉θ=0. In the long-time limit, i.e., T → ∞,
the boundary term can be neglected. Thus, our result reduces
to a bound that was derived in Ref. [56] for a one-dimensional
system using large deviation theory. Since the kinetic term ϒ

can be estimated from the experimental data, our bound can be
applied to quantify the entropy production for underdamped
systems as in Ref. [29], where the original bound has been
used to infer a lower bound on entropy production for over-
damped systems.

Considering the equality condition of the derived bound,
the lower bound in Eq. (10) can be attained if and only
if the equality condition in Eq. (8) is satisfied with θ = 0.
Equivalently, ∂θ lnPθ [�]|θ=0 = μ [�[�] − ψ (0)] must hold
for an arbitrary trajectory �, where μ is a scaling coefficient.
However, it can be proven that this lower bound cannot be
attained (the detailed proof is provided in Appendix 4).

So far, we have considered currents with projection func-
tions involving only r. Here, we derive a bound for a certain
class of more general currents, �[�] = ∫ T

0 dt �(r, v)� ◦ ṙ,
wherein the projection function involves the velocity vari-
ables. Suppose that �(r, v) satisfies �(r, (1 + θ )v) = (1 +
θ )d�(r, v) for all θ ∈ R and for some non-negative number d .
For example, �(r, v) can be a vector of homogeneous polyno-
mials of v (i.e., all nonzero terms have the same degree d with
respect to v). From the relationship 〈�〉θ = (1 + θ )d+1〈�〉,
we have ∂θ 〈�〉θ |θ=0 = (d + 1)〈�〉. Consequently, we obtain
the following bound:

Var[�]

〈�〉2
� 2(d + 1)2

�
. (13)

When the projection function contains only r, i.e., d = 0,
Eq. (13) reduces to Eq. (10).

B. Interpretation of the bound

Now, we interpret the physical meaning of the term ϒ in
the bound. In the original dynamics, the action functional in
the path integral with mid-point discretization is [57]

Am
i [�] ≡

∫ T

0
dt

[
1

4Tiγi
(miv̇i + γivi − Fi )

2 − γi

2mi

]
. (14)

The functional Am
i can be decomposed into two contri-

butions: the time-antisymmetric (S ) and time-symmetric
(Ki, K∗

i ) components as −Am
i [�] = Si[�] + Ki[�] + K∗

i [�]
[58], where

Si[�] = −
∫ T

0
dt

1

2Ti
(miv̇i − Fi ) ◦ vi,

Ki[�] =
∫ T

0
dt

[
1

4Tiγi

(
2miv̇i ◦ Fi − γ 2

i v2
i − F 2

i

)+ γi

2mi

]
,

K∗
i [�] = −

∫ T

0
dt

m2
i v̇

2
i

4Tiγi
. (15)

The time-antisymmetric part corresponds to the integrated
entropy flux from the system into the reservoirs and is
thermodynamically consistent with the definition of medium
entropy production �sm[�] ≡ ∑N

i=1
1
Ti

∫ T
0 dt (γivi − ξi) ◦ vi.

The kinetic term K∗
i relates to the mean-square acceleration

of the particles and may quantify an amount of activity.
However, K∗

i should be interpreted as part of the functional
measure; it determines the functional space over which to
integrate [59]. In particular, K∗

i collects trajectories for which
dv2

i /dt remains finite when dt → 0. The time-symmetric
term Ki is identified as the dynamical activity, which has
been introduced in the literature [60–64]. In discrete-state
Markov-jump processes, the dynamical activity characterizes
the timescale of the system and serves as an essential term
in the speed-limit inequality [40] and the kinetic uncertainty
relation [65]. Taking the average of Ki, we explicitly obtain

〈Ki〉 = T
4

(
1

Tiγi
〈Fi(r)2〉 − 3

γi

Ti

〈
v2

i

〉+ 4
γi

mi

)
. (16)

It can be easily confirmed that ϒ = 4
∑N

i=1〈Ki〉/T . Therefore,
the term ϒ in the derived bound is exactly the average
dynamical activity. This implies that the current fluctuation in
underdamped systems is constrained not only by the entropy
production but also by its dynamical activity.

To clarify the role of dynamical activity in the bound, let us
consider equilibrium systems (i.e., the external force fi(r) = 0
and the temperature Ti = T for all i = 1, . . . , N), where the
entropy production vanishes. The steady-state distribution is
of a Maxwell-Boltzmann type,

Pss(r, v) = C exp

[
− 1

T

(
1

2

N∑
i=1

miv
2
i + U (r)

)]
, (17)

where C is the normalizing constant. The average dynamical
activity is always positive, i.e., 〈Ki〉 = T [〈Fi(r)2〉/(T γi ) +
γi/mi]/4 > 0. The average current does not always vanish
as in the equilibrium overdamped systems, for example, for
�(r, v) = v. Therefore, the fluctuation of a current in equilib-
rium is bounded only by the average dynamical activity.

In the following, we provide an explanation regarding why
the dynamical activity appears in the lower bound of the
current fluctuation in underdamped dynamics. For general
Langevin systems, the probability currents can be decom-
posed into irreversible and reversible components [51]. In
overdamped dynamics, which involves only the even vari-
ables, reversible currents are absent from the decomposition
and the probability currents are irreversible. Both the entropy
production and current fluctuation can be characterized via
these probability currents. Therefore, the current fluctuation
can be bounded solely by the associated entropy production.
However, this is not the case for underdamped dynamics.
Unlike in the case of overdamped dynamics, both irreversible
and reversible currents exist in the decomposition of under-
damped dynamics. Both types of currents jointly characterize
the current fluctuation. Moreover, the entropy production is
quantified via the irreversible currents, as in Eq. (5), and
the dynamical activity is quantified via the reversible cur-
rents. Consequently, in underdamped dynamics, the current
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fluctuation is constrained not only by the entropy production
but also by the dynamical activity.

C. Multidimensional TUR

Generally, there are correlations between currents in real-
world systems. Simultaneously observing multiple currents
is expected to yield more statistical information concern-
ing the distribution. Therefore, the multidimensional TUR,
which includes several currents in the observable, provides a
tighter bound than does scalar TUR [54]. Such a bound can
be applied to a study of the trade-off relationship between
power and efficiency in steady-state heat engines [54,66].
Here, we derive the multidimensional TUR for underdamped
systems. We consider a vector observable � ∈ RM×1, de-
fined by �[�] = ∫ T

0 dt �(r) ◦ ṙ, where � ∈ RM×N is an ar-
bitrary matrix-valued function of r. By applying the infor-
mation inequality for a multivariate estimator, we obtain (see
Appendix 5 a)

Covθ [�] � I (θ )−1∂θ 〈�〉θ ∂θ 〈�〉�θ , (18)

where Covθ [�] = [Covθ [�i; � j]] ∈ RM×M is the covari-
ance matrix of the estimator � and the matrix inequal-
ity X � Y indicates that X − Y is positive semidefinite.
Here, Covθ [�i; � j] = 〈�i� j〉θ − 〈�i〉θ 〈� j〉θ . Considering
the same auxiliary dynamics as in Eq. (9), we obtain the
multidimensional TUR as

Cov[�] � 2

�
〈�〉〈�〉�. (19)

From Eq. (19), one can derive various bounds for current fluc-
tuation. For instance, in the case of two-dimensional currents,
i.e., � = [�1,�2]�, the condition of the positive semidefinite
matrix yields a tighter bound:

Var[�1] � 2

�
〈�1〉2 + sup

�2

(
Cov[�1; �2] − 2

�
〈�1〉〈�2〉

)2

Var[�2] − 2
�

〈�2〉2
.

(20)

In addition to the variance of individual currents, this inequal-
ity also involves the correlation of two currents. A remarkable
point in Eq. (20) is that if a current �1 satisfies Var[�1] =
2〈�1〉2/�, then Cov[�1; �2] = 2〈�1〉〈�2〉/� holds for an
arbitrary nonvanishing current �2. Although the equality
condition of the derived bound cannot be attained, inequal-
ities like Eq. (20) provide insight into the correlation of
currents. In particular, for overdamped dynamics, the current
�tot of stochastic total entropy production with a specific
form of the drift function satisfies the equality condition
[21]; thus, Cov[�tot; �] = 2〈�〉 for an arbitrary current �,
which expresses a universal property of stochastic entropy
production. Another direction is to derive an inequality di-
rectly from the definition of the positive semidefinite matrix,
x�(Cov[�] − 2〈�〉〈�〉�/�)−1x � 0 for all x ∈ RM×1 (if X
is a nonsingular, positive semidefinite matrix, then so is X−1).
By choosing x = 〈�〉, we obtain the following inequality (see
Appendix 5 b):

〈�〉�Cov[�]−1〈�〉 � �

2
, (21)

FIG. 1. Schematic diagrams of systems used in simulations.
(a) The particle is confined in a single-well potential U (r) ∝ r2n.
There is no external force, and the system is in equilibrium. (b) The
Brownian particle is driven out of equilibrium by a constant external
force fnc under a periodic potential U (r) ∝ cos(2πnr/L).

which relates the means and covariances of multiple currents.
For uncorrelated currents, i.e., Cov[�i; � j] = δi jVar[�i], one
can obtain the following inequality from Eq. (21):

M∑
i=1

〈�i〉2

Var[�i]
� �

2
. (22)

Equation (22) can be considered a generalization of Eq. (10).
We note that inequalities analogous to Eqs. (21) and (22) have
been derived for overdamped Langevin dynamics in Ref. [54].
However, they do not hold for general underdamped systems,
although our derived bounds are always satisfied.

IV. APPLICATIONS

A. Illustrative examples

We illustrate our results [Eqs. (10) and (13)] with the aid
of two systems. We first consider an equilibrium system under
the symmetric single-well potential U (r) = αr2n/(2n) with n
as a positive integer, as illustrated in Fig. 1(a). The total force
acting upon the particle is F (r) = −αr2n−1. For this system,
the dynamical activity ϒ and the boundary term 
 can be
calculated analytically as

ϒ = α2

T γ

(
α

2nT

)−2+1/n G
(
2 − 1

2n

)
G
(

1
2n

) + γ

m
, 
 = 4, (23)

where G(z) = ∫∞
0 dx xz−1e−x is the gamma function. Since

the entropy production vanishes, � can be expressed as � =
4T ϒ + 4. We consider current �[�] = ∫ T

0 dt v2, which is
proportional to the accumulated kinetic energy of the particle.
According to Eq. (13), the bound on this current fluctuation
reads Var[�]/〈�〉2 � 8/�, which is illustrated in Fig. 2. We
find that the bound is satisfied for all selected parameter
settings.

Next, we study a Brownian particle circulating on a
ring of circumference L under a periodic potential U (r) =
αL/(2πn) cos (2πnr/L), with integer n > 0 [see Fig. 1(b) for
illustration]. The total force acting upon the particle is F (r) =
−∂rU (r) + fnc, where fnc is a constant external force that
drives the particle out of equilibrium. In the steady state, the
entropy production rate becomes σ = fnc〈v〉/T . We validate
the derived bound for current �[�] = ∫ T

0 dt ṙ, which corre-
sponds to the accumulated distance traveled by the particle.
According to Eq. (10), we have Var[�]/〈�〉2 � 2/�. This
and the original bound are illustrated in Fig. 2. We find that
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FIG. 2. Numerical verification of the bounds. We randomly sam-
ple parameters and numerically solve the Langevin equation 106

times with the time step �t = 10−4. The parameter ranges are
m, γ , α, T ∈ [0.1, 10] and T ∈ [1, 10]. The dashed line depicts each
saturated case of the bounds. For the single-well potential system, we
calculate Eeq ≡ 8〈�〉2/ (� Var[�]), which should satisfy Eeq � 1,
and plot Eeq as a function of � with green circles. All circular
points are located below the line, thus empirically verifying the
derived bound [Eq. (13)]. Here, n ∈ [1, 3]. For the Brownian particle
model, we evaluate Eneq ≡ 2〈�〉2/ {(� − 
) Var[�]} since accurate
calculation of 
 is difficult; Eneq is plotted as a function of � − 


with orange squares. Since 
 is non-negative, the derived bound
[Eq. (10)] is empirically verified if Eneq � 1 holds. It is possible that
Eneq > 1 despite the derived bound being satisfied. We also simulta-
neously calculate Econ ≡ 2〈�〉2/ (T σ · Var[�]), which corresponds
to the original bound [Eq. (1)], and plot it as a function of T σ with
violet triangles. Econ > 1 indicates that the original bound is violated.
As seen, all square points lie below the dashed line and the derived
bound is empirically verified. By comparison, many triangular points
are located above the line, thus implying that the original bound is
violated. Here, L = 1, fnc ∈ [0.1, 10], and n ∈ [1, 10].

the original bound can be violated; thus, Eq. (1) does not hold
for general underdamped systems. In comparison, our bound
is always satisfied and thus Eq. (10) is empirically verified.

B. TUR for active matter systems

We consider a model system of active matter, namely,
active Ornstein-Uhlenbeck particles (AOUPs), as has been
studied in the literature [46,47]. The system contains N self-
propelled particles, which extract energy from the surrounding
environment and exhibit self-induced motion. The dynamics
of the particle i are governed by

ṙi = −μ∂ri�(r) + ηi, τ η̇i = −ηi + ξi, (24)

where μ is the mobility of particles, �(r) is an interac-
tion potential, ξi’s are zero-mean Gaussian white noises
with properties 〈ξi(t )ξ j (t ′)〉 = 2Diδi jδ(t − t ′), and ηi’s are
Ornstein-Uhlenbeck processes with variances 〈ηi(0)η j (t )〉 =
Diδi je−|t |/τ /τ . Here, τ is the persistent time. In the τ → 0
limit, ηi’s become white noises with delta-function variances

and ri’s become Markovian processes. It is interesting that
the force that drives the system out of equilibrium arises
from the nonequilibrium environment. To develop stochastic
thermodynamics for the system, a mathematical mapping to
an underdamped dynamics has been conducted by introduc-
ing velocity variables [46–48]. Specifically, taking the time
derivative of Eq. (24), the system dynamics can be mapped to
the following underdamped dynamics:

ṙi = vi, τ v̇i = −vi − μ

(
1 + τ

N∑
k=1

vk∂rk

)
∂ri�(r) + ξi.

(25)

By applying our approach to these underdamped dynamics,
an uncertainty relation for an arbitrary observable �[�] =∫ T

0 dt �(r)� ◦ ṙ can be obtained as follows:

Var[�]

〈�〉2
� 2

�
, (26)

where � = T (9σ + 4ϒa) + 
 and

ϒa =
N∑

i=1

1

Di

⎡
⎣τμ

N∑
j=1

〈
viv j∂

2
rir j

�(r)
〉

− 2

˝⎛
⎝ N∑

j=1

v j
[
δi j + τμ∂2

rir j
�(r)

]⎞⎠
2˛

+ 3Di

τ

〈
1 + τμ∂2

ri
�(r)

〉⎤⎦. (27)

The detailed derivation of the bound is given in Appendix 6.
We note that the definition of the total entropy production in
the AOUP system is not unique and depends on the chosen
coarse-grained model. The definition employed here is the
same as in Ref. [46].

V. CONCLUSION

In summary, we have derived the bounds on the current
fluctuation in underdamped Langevin dynamics using infor-
mation inequalities. Our results indicated that the current
fluctuation is constrained not only by the entropy production
but also by the average dynamical activity. The derived bound
can be used as a tool for estimating thermodynamic quantities
from the experimental data. Deriving a bound for general cur-
rents of the form

∫
dt[�1(r, v)� ◦ ṙ + �2(r, v)� ◦ v̇] requires

further investigation.
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APPENDIX: DETAILED CALCULATIONS AND DERIVATIONS

For the sake of convenience, we consider a more general system whose dynamics are described by

ṙi = vi, miv̇i = Hi(r, v) + ξi, (A1)

where Hi(r, v) = ∑N
j=1 v jGi j (r) + Fi(r) and 〈ξi(t )ξ j (t ′)〉 = 2Diδi jδ(t − t ′). The system employed in the paper can be obtained

by substituting

Gi j (r) ← −δi jγi, Di ← Tiγi. (A2)

1. Calculation of entropy production rate

Following Ref. [51], we calculate the entropy production rate. Let us consider an infinitesimal time interval [t, t + dt], in
which r ≡ r(t ), v ≡ v(t ), r′ ≡ r(t + dt ), and v′ ≡ v(t + dt ). From the definition of the entropy production in Eq. (4), the
entropy production in this time interval is given by

d�stot = −d[ln P(r, v, t )] + ln
P[r′, v′, t + dt |r, v, t]

P[r,−v, t + dt |r′,−v′, t]
. (A3)

By using the short time propagator, we can express the transition probability as

P[r′, v′, t + dt |r, v, t] =
N∏

i=1

mi√
4πDidt

exp

[
− [midvi − Hi(r, v)dt]2

4Didt

]
, (A4)

where dvi = v′
i − vi. The force Hi(r, v) can be decomposed into reversible and irreversible parts as Hi(r, v) = H ir

i (r, v) +
H rev

i (r, v), where H ir
i (r, v) = ∑N

j=1 v jGi j (r) and H rev
i (r, v) = Fi(r). Analogously, we also have

P[r,−v, t + dt |r′,−v′, t] =
N∏

i=1

mi√
4πDidt

exp

[
−
(
midvi − [−H ir

i (r, v) + H rev
i (r, v)

]
dt
)2

4Didt
− 1

mi
∂vi H

ir
i (r, v)dt

]
. (A5)

We note that in the case of additive noise, the discretization schemes in the forward and backward paths are independent.
However, for multiplicative noise, there is a constraint on the discretization. That is, if the evaluation points in the forward
path are ar′ + (1 − a)r and av′ + (1 − a)v, then in the backward path, they should be br + (1 − b)r′ and bv + (1 − b)v′, where
b = 1 − a. Here, we have employed the discretization with a = 0 and b = 1. Using Eqs. (A4) and (A5), we obtain

ln
P[r′, v′, t + dt |r, v, t]

P[r,−v, t + dt |r′,−v′, t]
=

N∑
i=1

[
mi

Di
H ir

i (r, v)dvi − 1

Di
H ir

i (r, v)H rev
i (r, v)dt + 1

mi
∂vi H

ir
i (r, v)dt

]
. (A6)

The change in the system entropy is written in Ito rules as

−d[ln P(r, v, t )] = − 1

P(r, v, t )
∂t P(r, v, t )dt − 1

P(r, v, t )

N∑
i=1

∂ri P(r, v, t )dri − 1

P(r, v, t )

N∑
i=1

∂vi P(r, v, t )dvi

−
N∑

i=1

Di

m2
i P(r, v, t )

[
∂2
vi

P(r, v, t ) − 1

P(r, v, t )

[
∂vi P(r, v, t )

]2
]

. (A7)

Plugging Eqs. (A6) and (A7) into Eq. (A3), we obtain

d�stot =
N∑

i=1

[
mi

Di
H ir

i (r, v)dvi − 1

Di
H ir

i (r, v)H rev
i (r, v)dt + 1

mi
∂vi H

ir
i (r, v)dt

]

− 1

P(r, v, t )
∂t P(r, v, t )dt − 1

P(r, v, t )

N∑
i=1

∂ri P(r, v, t )dri − 1

P(r, v, t )

N∑
i=1

∂vi P(r, v, t )dvi

−
N∑

i=1

Di

m2
i P(r, v, t )

[
∂2
vi

P(r, v, t ) − 1

P(r, v, t )

[
∂vi P(r, v, t )

]2
]

. (A8)

In the steady state, i.e., P(r, v, t ) = Pss(r, v), the average entropy production can be calculated as

〈d�stot〉 =
∫∫

dr dvPss(r, v)〈d�stot|r, v〉, (A9)
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where 〈d�stot|r, v〉 can be evaluated by replacing terms in d�stot such that dri = vidt and midvi = Hi(r, v)dt . Then, we obtain

〈d�stot〉 =
N∑

i=1

∫∫
dr dv

[
1

Di
Pss(r, v)H ir

i (r, v)2 + Pss(r, v)

mi
∂vi H

ir
i (r, v) − vi∂ri P

ss(r, v)

− Hi(r, v)

mi
∂vi P

ss(r, v) − Di

m2
i

∂2
vi

Pss(r, v) + Di

m2
i Pss(r, v)

[
∂vi P

ss(r, v)
]2
]

dt

=
N∑

i=1

∫∫
dr dv

[
H ir

i (r, v)Pss(r, v) − Di/mi∂vi P
ss(r, v)

]2

DiPss(r, v)
dt

=
N∑

i=1

∫∫
dr dv

m2
i

Di

J ir
vi

(r, v)2

Pss(r, v)
dt, (A10)

where J ir
vi

(r, v) = 1/mi[H ir
i (r, v) − Di/mi∂vi ]P

ss(r, v). Finally, the entropy production rate is given by

σ ≡ 〈d�stot〉
dt

=
N∑

i=1

∫∫
dr dv

m2
i

Di

J ir
vi

(r, v)2

Pss(r, v)
. (A11)

Now, by setting

Gi j (r) ← −δi jγi, Di ← Tiγi, (A12)

the irreversible current becomes J ir
vi

(r, v) = −1/mi[γivi + Tiγi/mi∂vi ]P
ss(r, v), and the entropy production rate reads

σ =
N∑

i=1

∫∫
dr dv

m2
i

Tiγi

J ir
vi

(r, v)2

Pss(r, v)
. (A13)

2. Path integral

We discretize time by dividing the interval [0, T ] into K
equipartitioned intervals with a time step �t , where T =
K�t , t k ≡ k�t , rk

i ≡ ri(t k ), and vk
i ≡ vi(t k ) (superscripts de-

note points in a temporal sequence). Discretization of Eq. (A1)
yields

rk+1
i − rk

i = vk
i �t,

mi
(
vk+1

i − vk
i

) = Hi
(
rk

i , v
k
i

)
�t + �wk

i , (A14)

where �wk
i ≡ wk+1

i − wk
i = wi(t k+1) − wi(t k ) is a Wiener

process with the following properties:〈
�wk

i

〉 = 0,
〈
�wk

i �wk′
i′
〉 = 2δii′δkk′Di�t . (A15)

A stochastic trajectory � ≡ [r0, v0, r1, v1, r2, v2, . . . , rK , vK ]
is specified given W ≡ [�w0,�w1, . . . ,�wK−1] and
(r0, v0). The probability density function of the Wiener
processes �wk is given by Eq. (A16):

P[W] =
N∏

i=1

K−1∏
k=0

P
(
�wk

i

)

=
N∏

i=1

K−1∏
k=0

1√
4πDi�t

exp

[
−
(
�wk

i

)2

4Di�t

]
. (A16)

Let us change the variables in Eq. (A16) from W =
[�w0,�w1, . . . ,�wK−1] to V = [v1, v2, . . . , vK ]. From
Eq. (A14), the determinant of the Jacobian matrix is∣∣∣∣ ∂ (v1, . . . , vK )

∂ (�w0, . . . ,�wK−1)

∣∣∣∣ =
N∏

i=1

K−1∏
k=0

1

mi
, (A17)

given that the determinant of triangular matrices is a product
of their diagonal elements. Using Eqs. (A14), (A16), and
(A17), we obtain

P[�|r0, v0]

=
(

N∏
i=1

K−1∏
k=0

mi√
4πDi�t

)

× exp

⎡
⎣− N∑

i=1

�t

4Di

K−1∑
k=0

(
mi
(
vk+1

i − vk
i

)
�t

− Hi
(
rk

i , v
k
i

))2
⎤
⎦.

(A18)

In the limit K → ∞, we obtain the path integral in Eq. (A19).

P[�|r0, v0] = N
N∏

i=1

exp

[
− 1

4Di

∫ T

0
dt [miv̇i − Hi(r, v)]2

]
(A19)

By substituting such that Di = Tiγi and Hi(r, v) = −γivi +
Fi(r), we have

P[�|r0, v0]

= N
N∏

i=1

exp

[
− 1

4Tiγi

∫ T

0
dt[miv̇i + γivi − Fi(r)]2

]
.

(A20)

The path integral in Eq. (A19) is a continuous limit of the Ito
sum, which can be transformed to a Stratonovich integral via
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the following rule:

∫ T

0
dt v̇i · Hi(r, v)

=
∫ T

0
dt v̇i ◦ Hi(r, v) − Di

m2
i

∫ T

0
dt ∂vi Hi(r, v), (A21)

where · and ◦ denote the Ito and Stratonovich products, re-
spectively. The path integral using the mid-point discretization
is then expressed as

P[�|r0, v0] = N
N∏

i=1

exp

[
− 1

4Di

∫ T

0
dt

{
[miv̇i − Hi(r, v)]2

+ 2Di

mi
∂vi Hi(r, v)

}]
. (A22)

For one-dimensional underdamped dynamics

ṙ = v, mv̇ = −γ v + F (r) + ξ (t ), (A23)

the path probability written as the Stratonovich integral be-
comes

P[�|r0, v0] = N exp

(T γ

2m

)

exp

[
− 1

4T γ

∫ T

0
dt[mv̇ + γ v − F (r)]2

]
,

(A24)

which is consistent with the result in Ref. [57].

3. Bound on the fluctuation of currents

Let Pss(r, v) be the steady-state distribution of the original
dynamics. Now, we consider the following auxiliary dynam-
ics:

ṙi = vi, miv̇i = Hi,θ (r, v) + ξi, (A25)

where

Hi,θ (r, v) = (1 + θ )
N∑

j=1

v jGi j (r) + (1 + θ )2Fi(r)

+ Di

mi
[1 − (1 + θ )3]

∂vi P
ss(r, v/(1 + θ ))

Pss(r, v/(1 + θ ))
. (A26)

We note that when θ = 0, Hi,θ (r, v) = ∑N
j=1 v jGi j (r) + Fi(r)

and the auxiliary dynamics become the original ones. The
corresponding Kramers equation of this dynamics is

∂t Pθ (r, v, t ) =
N∑

i=1

[−∂ri Jri,θ (r, v, t ) − ∂vi Jvi,θ (r, v, t )
]
,

(A27)
where

Jri,θ (r, v, t ) = viPθ (r, v, t ),

Jvi,θ (r, v, t ) = 1/mi
[
Hi,θ (r, v) − Di/mi∂vi

]
Pθ (r, v, t ). (A28)

It can be easily proven that the steady-state distribution of the
auxiliary dynamics is Pss

θ (r, v) = Pss(r, v/(1 + θ ))/(1 + θ )N .
Since 〈�〉θ = (1 + θ )〈�〉 ⇒ ∂θ 〈�〉θ = 〈�〉, the Cramér-Rao
inequality when letting θ = 0 reads

Var[�]

〈�〉2
� 1

I (0)
. (A29)

The Fisher information can be calculated as

I (0) = − 〈
∂2
θ ln Pss

θ (r0, v0)
〉
θ=0 + 1

2

〈∫ T

0
dt

N∑
i=1

1

Di
[∂θHi,θ (r, v)]2

〉
θ=0

(A30)

= 〈[
∂θ ln Pss

θ (r0, v0)
]2〉

θ=0 + T
2

N∑
i=1

1

Di
〈[∂θHi,θ (r, v)]2〉θ=0 (A31)

= 〈[
∂θ ln Pss

θ (r0, v0)
]2 〉

θ=0 + T
2

N∑
i=1

1

Di

˝⎛
⎝ N∑

j=1

v jGi j (r) + 2Fi(r) − 3
Di

mi

∂vi P
ss(r, v)

Pss(r, v)

⎞
⎠

2˛
(A32)

= 〈[
∂θ ln Pss

θ (r0, v0)
]2 〉

θ=0 + T
2

N∑
i=1

1

Di

˝

4

⎛
⎝Fi(r) −

N∑
j=1

v jGi j (r)

⎞
⎠

2

+ 9m2
i

(
J ir
vi

(r, v)

Pss(r, v)

)2

+ 12mi
J ir
vi

(r, v)

Pss(r, v)

⎛
⎝Fi(r) −

N∑
j=1

v jGi j (r)

⎞
⎠
˛
. (A33)

In Eq. (A33), we used the relation that J ir
vi

(r, v) = 1/mi[
∑N

j=1 v jGi j (r)Pss(r, v) − Di/mi∂vi P
ss(r, v)]. Now, we transform each

term in I (0). The first term, which is a boundary value, can be evaluated as

〈[
∂θ ln Pss

θ (r0, v0)
]2〉

θ=0 =
*(

N∑
i=1

vi∂vi P
ss(r, v)/Pss(r, v)

)2+
− N2. (A34)
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The second term in I (0) can be transformed as

˝⎛
⎝Fi(r) −

N∑
j=1

v jGi j (r)

⎞
⎠

2˛
= 〈Fi(r)2〉 +

˝⎛
⎝ N∑

j=1

v jGi j (r)

⎞
⎠

2˛
− 2

N∑
j=1

〈v jFi(r)Gi j (r)〉. (A35)

The third term is equal to the entropy production rate

N∑
i=1

m2
i

Di

〈(
J ir
vi

(r, v)

Pss(r, v)

)2〉
=

N∑
i=1

∫∫
dr dv

m2
i

Di

J ir
vi

(r, v)2

Pss(r, v)
= σ.

(A36)
The last term can be calculated as˝

miJ ir
vi

(r, v)

Pss(r, v)

⎛
⎝Fi(r) −

N∑
j=1

v jGi j (r)

⎞
⎠
˛

=
N∑

j=1

〈v jFi(r)Gi j (r)〉 −
˝⎛
⎝ N∑

j=1

v jGi j (r)

⎞
⎠

2˛
− Di

mi
〈Gii(r)〉.

(A37)

Collecting the terms in Eqs. (A34)–(A37), we can rewrite I (0)
as

I (0) = 1
2 [T (9σ + 4ϒ ) + 
] , (A38)

where

ϒ =
N∑

i=1

1

Di

⎡
⎣〈Fi(r)2〉 − 2

˝⎛
⎝ N∑

j=1

v jGi j (r)

⎞
⎠

2˛

+
N∑

j=1

〈v jFi(r)Gi j (r)〉 − 3Di

mi
〈Gii(r)〉

⎤
⎦ , (A39)


 = 2

*(
N∑

i=1

vi∂vi P
ss(r, v)/Pss(r, v)

)2+
− 2N2. (A40)

The bound in Eq. (A29) then becomes

Var[�]

〈�〉2
� 2

T (9σ + 4ϒ) + 

. (A41)

Now, by substituting Gi j (r) = −δi jγi and Di = Tiγi into ϒ ,
we have

ϒ =
N∑

i=1

1

Tiγi

(
〈Fi(r)2〉 − 2γ 2

i

〈
v2

i

〉− γi〈viFi(r)〉 + 3Tiγ
2
i

mi

)
.

(A42)
Since

〈viFi(r)〉 = γi
〈
v2

i

〉− Tiγi

mi
, (A43)

ϒ can be further simplified as

ϒ =
N∑

i=1

(
1

Tiγi
〈Fi(r)2〉 − 3

γi

Ti

〈
v2

i

〉+ 4
γi

mi

)
. (A44)

Finally, we obtain the bound

Var[�]

〈�〉2
� 2

�
, (A45)

where � = T (9σ + 4ϒ) + 
.

4. Equality condition of the derived bound

The equality condition of the derived bound is that the
following relation,

∂θ lnPθ [�]|θ=0 = μ [�[�] − ψ (0)] , (A46)

holds for an arbitrary trajectory �. Using the formula of the
path integral, we have

∂θ lnPθ [�]|θ=0 = ∂θ ln Pss
θ (r0, v0)

∣∣
θ=0 +

N∑
i=1

1

2Di

∫ T

0
dt ∂θHi,θ (v̇i − Hi,θ )

∣∣∣∣∣
θ=0

= −N −
N∑

i=1

v0
i ∂vi P

ss(r0, v0)

Pss(r0, v0)
+

N∑
i=1

1

2Di

∫ T

0
dt

(
−γivi + 2Fi(r) − 3Di

mi

∂vi P
ss(r, v)

Pss(r, v)

)
· [miv̇i + γivi − Fi(r)]

= −N −
N∑

i=1

v0
i ∂vi P

ss(r0, v0)

Pss(r0, v0)
+

N∑
i=1

1

2mi

∫ T

0
dt

[
γi + 3Di

mi
∂vi

(
∂vi P

ss(r, v)

Pss(r, v)

)]

+
N∑

i=1

1

2Di

∫ T

0
dt

(
−γivi + 2Fi(r) − 3Di

mi

∂vi P
ss(r, v)

Pss(r, v)

)
◦ [miv̇i + γivi − Fi(r)]. (A47)
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Therefore, Eq. (A46) is equivalent with

−N −
N∑

i=1

v0
i ∂vi P

ss(r0, v0)

Pss(r0, v0)
+

N∑
i=1

1

2Di

∫ T

0
dt

(
−γivi + 2Fi(r) − 3Di

mi

∂vi P
ss(r, v)

Pss(r, v)

)
◦ [miv̇i + γivi − Fi(r)]

= μ

[∫ T

0
dt �(r)� ◦ ṙ − ψ (0)

]
−

N∑
i=1

1

2mi

∫ T

0
dt

[
γi + 3Di

mi
∂vi

(
∂vi P

ss(r, v)

Pss(r, v)

)]
. (A48)

Since the left-hand side of Eq. (A48) contains v̇ while the right-hand side does not, Eq. (A48) only holds for all trajectories when
the term v̇ disappears, i.e., when

−γivi + 2Fi(r) − 3
Di

mi

∂vi P
ss(r, v)

Pss(r, v)
= 0 (A49)

for all r, v. Consequently, Eq. (A48) becomes

−N −
N∑

i=1

v0
i ∂vi P

ss(r0, v0)

Pss(r0, v0)
= μ

[∫ T

0
dt �(r)� ◦ ṙ − ψ (0)

]
−

N∑
i=1

1

2mi

∫ T

0
dt

[
γi + 3Di

mi
∂vi

(
∂vi P

ss(r, v)

Pss(r, v)

)]
. (A50)

Now, we take the partial derivative of both sides of Eq. (A49) with respect to vi to obtain

γi + 3Di

mi
∂vi

(
∂vi P

ss(r, v)

Pss(r, v)

)
= 0. (A51)

Using Eq. (A51), we can simplify Eq. (A50) to be

−N −
N∑

i=1

mi

3Di
v0

i

[−γiv
0
i + 2Fi(r0)

] = μ

[∫ T

0
dt �(r)� ◦ ṙ − ψ (0)

]
. (A52)

As can be seen, the term in the left-hand side of Eq. (A52) is only dependent on the initial point of the trajectory, (r0, v0), while
the term in the right-hand side depends entirely on the trajectory �. Therefore, Eq. (A52) does not hold for all trajectories, thus
implying that the equality condition of the derived bound cannot be attained.

5. Multidimensional TUR

a. Derivation of Eq. (18)

Following Ref. [67], here we show a proof of Eq. (18). First, noticing that

∂θ 〈�〉θ = ∂θ

∫
D�Pθ [�]�[�] =

∫
D�Pθ [�]�[�]∂θ lnPθ [�] = E[�[�]∂θ lnPθ [�]], (A53)

where E[·] denotes the average taken over all possible trajectories. Since E[∂θ lnPθ [�]] = ∂θ

∫
D�Pθ [�] = 0, Eq. (A53) can

be written

∂θ 〈�〉θ = Cov[�; ∂θ lnPθ ]. (A54)

Now, consider the following vector: (
�[�]

∂θ lnPθ [�]

)
∈ R(M+1)×1, (A55)

whose covariance matrix (
Cov[�] Cov[�; ∂θ lnPθ ]

Cov[�; ∂θ lnPθ ]� Cov[∂θ lnPθ ]

)
(A56)

is positive semidefinite and is equal to (
Cov[�] ∂θ 〈�〉θ
∂θ 〈�〉�θ I (θ )

)
. (A57)

Using the fact that if a matrix X is positive semidefinite, then so is Y �XY , we have that

(I −I (θ )−1∂θ 〈�〉θ )

(
Cov[�] ∂θ 〈�〉θ
∂θ 〈�〉�θ I (θ )

)(
I

−I (θ )−1∂θ 〈�〉�θ

)
(A58)

is also positive semidefinite, where I ∈ RM×M is the identity matrix. After performing some matrix multiplications in Eq. (A58),
we obtain that the matrix

Cov[�] − I (θ )−1∂θ 〈�〉θ ∂θ 〈�〉�θ (A59)

is positive semidefinite, i.e., Cov[�] � I (θ )−1∂θ 〈�〉θ ∂θ 〈�〉�θ .
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b. Derivation of Eq. (21)

By substituting x = 〈�〉 into x�(Cov[�] − 2〈�〉〈�〉�/�)−1x � 0, we have

〈�〉�(Cov[�] − 2〈�〉〈�〉�/�)−1〈�〉 � 0. (A60)

Using the Sherman-Morrison formula,

(A + uv�)−1 = A−1 − A−1uv�A−1

1 + v�A−1u
, (A61)

where A ∈ Rn×n and u, v ∈ Rn, Eq. (A60) can be transformed as follows:

〈�〉�(Cov[�] − 2〈�〉〈�〉�/�)−1〈�〉 = 〈�〉�
(

Cov[�]−1 + 2Cov[�]−1〈�〉〈�〉�Cov[�]−1/�

1 − 2〈�〉�Cov[�]−1〈�〉/�
)

〈�〉

= z + 2z2/�

1 − 2z/�
� 0, (z = 〈�〉�Cov[�]−1〈�〉 � 0)

⇔ 1 − 2z/� � 0

⇔ 〈�〉�Cov[�]−1〈�〉 � �

2
. (A62)

6. TUR for active matter systems

The dynamics in Eq. (25) can be obtained from Eq. (A1) by plugging mi ← τ, Gi j (r) ← −δi j − τμ∂2
rir j

�(r), Fi(r) ←
−μ∂ri�(r). According to Eq. (A41), we have

Var[�]

〈�〉2
� 2

T (9σ + 4ϒa) + 

, (A63)

where 
 is defined as in Eq. (A40) and ϒa is given by

ϒa =
N∑

i=1

1

Di

⎡
⎣〈Fi(r)2〉 − 2

˝⎛
⎝ N∑

j=1

v jGi j (r)

⎞
⎠

2˛
+

N∑
j=1

〈v jFi(r)Gi j (r)〉 − 3Di

mi
〈Gii(r)〉

⎤
⎦ . (A64)

In the steady state, we have

0 =
N∑

i=1

[
∂ri J

ss
ri

(r, v) + ∂vi J
ss
vi

(r, v)
]

=
N∑

i=1

⎡
⎣∂ri [viP

ss(r, v)] + 1

mi
∂vi

⎡
⎣ N∑

j=1

v jGi j (r)Pss(r, v)

⎤
⎦+ 1

mi
∂vi [Fi(r)Pss(r, v)] − Di

m2
i

∂2
vi

Pss(r, v)

⎤
⎦ . (A65)

Using the relation in Eq. (A65) and taking integration by parts, we obtain for i �= j

〈v jFi(r)Gi j (r)〉 = −mi

∑
k

〈
vivk∂rk Fi(r)

〉−∑
l �= j

〈vlFi(r)Gil (r)〉 − 〈Fi(r)2〉. (A66)

Hence,
N∑

j=1

〈v jFi(r)Gi j (r)〉 = −〈Fi(r)2〉 − mi

N∑
j=1

〈
viv j∂r j Fi(r)

〉
. (A67)

By plugging Eq. (A67) into Eq. (A64), we have

ϒa = −
N∑

i=1

1

Di

⎡
⎣mi

N∑
j=1

〈viv j∂r j Fi(r)〉 + 2

˝⎛
⎝ N∑

j=1

v jGi j (r)

⎞
⎠

2˛
+ 3Di

mi
〈Gii(r)〉

⎤
⎦ . (A68)

Next, substituting mi ← τ, Gi j (r) ← −δi j − τμ∂2
rir j

�(r), Fi(r) ← −μ∂ri�(r) into Eq. (A68), we obtain

ϒa =
N∑

i=1

1

Di

⎡
⎣τμ

N∑
j=1

〈
viv j∂

2
rir j

�(r)
〉− 2

˝⎛
⎝ N∑

j=1

v j
[
δi j + τμ∂2

rir j
�(r)

]⎞⎠
2˛

+ 3Di

τ

〈
1 + τμ∂2

ri
�(r)

〉⎤⎦ . (A69)
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The TUR for the active matter system is then given as follows:
Var[�]

〈�〉2
� 2

�
, (A70)

where � = T (9σ + 4ϒa) + 
.
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