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Realizable solutions of the Thouless-Anderson-Palmer equations
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We show that the only solutions of the Thouless-Anderson-Palmer (TAP) equations for the Sherrington-
Kirkpatrick model of Ising spin glasses which can be found by iteration are those whose free energy lies on
the border between replica-symmetric and broken-replica-symmetric states, when the number of spins N is
large. Convergence to this same borderline also happens in quenches from a high-temperature initial state to a
locally stable state where each spin is parallel to its local field; both are examples of self-organized criticality.
At this borderline the band of eigenvalues of the Hessian associated with a solution extends to zero, so the states
reached have marginal stability. We have also investigated the factors which determine the free-energy difference
between a stationary solution corresponding to a saddle point and its associated minimum, which is the barrier
which has to be surmounted to escape from the vicinity of a TAP minimum or pure state.
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I. INTRODUCTION

One of the most influential papers in the theory of spin
glasses was the paper of Thouless, Anderson, and Palmer
(TAP) [1]. They provided a set of N-coupled equations for
the magnetization mi at site i of the Sherrington-Kirkpatrick
(SK) [2] model of Ising spin glasses. Since then equations
equivalent to those of TAP have been studied for p-spin
models, which are models for structural glasses and also for a
host of computer science applications [3].

The free energy F (multiplied by β = 1/kBT ) associated
with a TAP state for the Ising spin SK model is

F = −β
∑
i< j

Ji jmimj − β2N

4
(1 − q)2

+
∑

i

[
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

]
, (1)

where q = (1/N )
∑

i m2
i . The TAP equations themselves

are derived from the stationarity equations ∂F/∂mi = 0, i =
1, . . . , N and take the form

mi = Gi(m) = tanh

⎡
⎣β

∑
j �=i

Ji jm j − β2(1 − q)mi

⎤
⎦. (2)

The Hessian associated with the stationary points of F was
studied long ago [4,5]. It is defined by

Ai j = ∂2F

∂mi∂mj

= −βJi j − 2β2

N
m∗

i m∗
j +

[
1

1 − (m∗
i )2

+ β2(1 − q)

]
δi j,

(3)

where m∗
i denotes the magnetization at site i at a stationary

point.
A great deal is already known about the solutions of the

TAP equations and their associated Hessians. There are an
exponentially large number of solutions for β > 1, that is,
T < Tc = 1. The complexity of the minima of F is defined
by

�min( f ) = ln Nsolns( f )

N
, (4)

where Nsolns( f ) denotes the number of minima of free en-
ergy per spin f = F/βN . �min( f ) quantifies the number of
solutions when it is exponentially large. It is nonzero over a
range of f values [6–9]. The solution of lowest free energy
per spin f0 is one of the pure states of the Parisi replica
symmetry broken solution (RSB) [10,11]. The pure states are
those whose free energies per spin are only O(1/N ) above f0.
There is a critical fc at which the solutions change their nature
[6,7]. Those solutions at f > fc are uncorrelated with each
other and their Hessians have a single, nearly null eigenvalue
(whose value vanishes in the limit N → ∞), separated by a
gap from a band of N − 1 eigenvalues. As the free energy is
reduced toward fc the gap goes to zero and for all f � fc there
is no gap between the lowest “null” eigenvalue and the bottom
of the band [8]. The states with f < fc have nontrivial RSB
overlaps with each other [6,7]. Those with f > fc have trivial
(zero) replica-symmetric (RS) overlap with each other.

A stationary solution of the TAP equations which corre-
sponds to a minimum will have all the eigenvalues of its
associated Hessian non-negative. It turns out that the other
stationary points are saddle points with just a single negative
eigenvalue [8]. Every minimum has its associated saddle
point, so the complexity of the saddle points is identical
to that of the minima. Once over the saddle point in the
direction away from the minimum one goes toward the trivial
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paramagnetic solution (P) for which m∗
i = 0. Thus the free-

energy landscape of the free-energy functional of Eq. (1) is
simple; it has a spokelike arrangement of minimum, asso-
ciated saddle and P at the center of the wheel [8,9]. The
free-energy difference between the free energy at the saddle
point and its associated minimum is the barrier which has to
be surmounted to escape from the minimum. In this paper
we have once more investigated these barriers in order to
determine some of the factors which might control their
magnitude. The simulations of Billoire et al. [12,13] indicate
that the barriers separating pure states may scale as N1/3. Our
studies suggest that non-pure-state solutions will have much
smaller barriers, of O(1), so that it will be possible to escape
from their vicinity by thermal fluctuations (in agreement with
our earlier study [5]).

The chief purpose of this paper is to report a feature of
the actual solutions found in numerical work which has not
previously been noticed. In numerical work, the free-energy
minima can be obtained by the iterative map:

m(k+1)
i = m(k)

i + α
[
Gi(m

(k) ) − m(k)
i

]
, (5)

where α is a parameter which controls the approach to the
next iterate [5]. In this work, we used α = 1.2 except where
indicated. The value of α affects the free energy per spin f
which is obtained, and instead of obtaining a spread of values
of f the iteration scheme picks out in the large-N limit one
particular value of f , f̃ . What we want to point out is that
our states at this particular value of f have the properties of
states at the critical value fc, which is the borderline between
states which are replica symmetric (RS) and those whose
replica symmetry is broken (RSB) [6,7]. f̃ is less than fc.
fc is that associated with all possible minima of the TAP
functional rather than the subset produced by the chosen
iteration scheme. In our work the states found lie close to f̃ ,
differing from it by an amount which decreases as N becomes
large. Even though f̃ corresponds to a free energy per spin
below fc (so it nominally lies in the region where the states
would have RSB features), the states produced in the iteration
(which are just a subset of all the possible states at f̃ ) do
not have this feature. Instead the subset of states generated
is closer in its properties to those at the borderline fc itself.

The iteration procedure of Eq. (5) is just one of a large
number of ways of solving the TAP equations, but we suspect
that any iterative solution will have the same features as
those found using Eq. (5). Evidence for this belief is to be
found in Ref. [14]. Plefka used an iterative scheme which
was similar to solving Glauber dynamical equations. He found
that the states which he obtained all had the same free energy
and which were also marginal, just as we find. (His scheme
converges to a value of the free energy different to the one
which we find). We have also studied the iterative procedure
of Bolthausen [15]. In his procedure the Onsager reaction term
was calculated at stage k − 1. Bolthausen was able to show
that in a field the procedure converged in the paramagnetic
phase but we found it less efficient than that of Eq. (5)
in converging to a stationary solution: Starting from some
initial state a common feature is just bouncing around without
convergence. However, Eq. (5) was more likely to find a

solution than the Bolthausen method at large N values and
we have used it throughout this paper.

What led us to carry out this investigation was the work
of Sharma et al. [16,17]. It was found in these papers that a
quench from an initial random (i.e., high-temperature) spin
configuration by successively putting spins in turn parallel
to their local fields until all are so aligned led to a final
quenched state which in SK type models lay on the boundary
between replica-symmetric states and states with RSB. This
is what we also find for solutions of the TAP equations; the
iterative solution has parallels with the quenching procedure.
The number of quenched states at T = 0 has also been studied
as a function of their energy, and there exists a critical energy
per spin ec below which the states have RSB features and
above which the states are uncorrelated [6,18]. A problem
with studying the Ising model at T = 0, i.e., in the quenched
state, is that a Hessian cannot be constructed as the spins take
the values ±1, so marginality as indicated by eigenvalues of a
Hessian extending down to zero [19] cannot be investigated.
A big disadvantage of studying the finite-temperature TAP
equations is that the values of N which can be studied with
the TAP equations are much smaller than those which can be
handled in a quench. The same self-organized critical features
are present in both the solutions of the TAP equations and in
the quenched states and presumably the physics behind this is
the same [16], i.e., somewhat obscure, at least to us. However,
for certain aspects of the quenched problem one has some
features which are rigorously established; Newman and Stein
[20] have shown that in the large-N limit, the quench takes
one to a particular energy per spin ẽ which is self-averaging
but dependent on the algorithm used. It would be nice if
their proof could be extended to the somewhat similar TAP
problem, as our work shows that as N gets large that there is
convergence to a particular free energy f̃ .

In a recent study Montanari [21] has discussed an al-
gorithm which returns a spin configuration {Si}, Si = ±1,
such that the energy E = −∑

i< j Ji jSiS j lies above the true
ground-state energy Eg by an amount −εEg. It works by
utilizing the full Parisi replica symmetry solution. It is our
suspicion that using such {Si} as starting points, TAP solutions
quite different from those we study could be generated. Our
initial state is a random state, similar to a paramagnetic state
and our solutions have no overlap with each other. Our work
has similarities to a quench to zero temperature from infinite
temperature. We suspect though that Montanari’s procedure
extended to generate TAP solutions might be similar to a
quench from an initial equilibrated state at T < Tc where
replica symmetry breaking features are present in the initial
state and which are presumably retained during the quench.
If TAP solutions can be generated from the initial state {Si},
then we suspect that they will have nontrivial overlaps with
each other.

The details of our numerical work can be found in Sec. II
while in Sec. III we present the evidence that in the large-N
limit the TAP solutions which can be found lie at the boundary
between solutions whose overlaps are replica symmetric and
those whose overlaps are those of broken replica symmetry.
Our work on barriers is in Sec. IV. We have fitted the free
energy between the minimum and the saddle with a quartic
fit and as a consequence can relate the barrier height to the
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difference in the values of q at the minimum and the saddle
and the curvatures at the minimum and the saddle. We then
discuss how the barriers between pure states could become
of order N1/3. Finally, in Sec. V we comment on unresolved
issues. In Appendix we have derived a finite-size correction to
the position of the Hessian band edge, which turns out to work
well at the rather modest values of N which we can study.

II. SIMULATION DETAILS

We studied the TAP equations for N = 20, 40, 80, 160,
and 320 spins and 500 bond realizations for each N . For each
realization we tried to find solutions by iteration according to
Eq. (5), starting from a random initial state

mi = tanh(β
√

qsXi ),

where qs is the (fictitious) replica-symmetric value of q which
is the solution of q = ∫

tanh(β
√

qξ )2 exp(−ξ 2/2) dξ/
√

2π

[2], and where Xi are normally distributed random variables.
This construction ensures an initial state with a value of q
roughly in the range of typical TAP solutions. As mentioned
in Sec. I we used α = 1.2 except for the final approach (see
below). We chose the temperature T = 0.3 as a compromise
between having too small a probability of finding any solution
at all, as happens for T close to Tc, and having q ≈ 1, which
is the case for T close to 0. The latter would lead to complica-
tions by causing a very large spread in the eigenvalues of the
Hessian, as discussed in Ref. [5], obfuscating the issues we
are focusing on here.

In order to avoid questions of numerical accuracy, which
can be very delicate in the complex TAP free-energy land-
scape, we used arbitrary precision arithmetic with 512 bi-
nary digits for the final approach to a TAP solution and for
subsequent calculations. The final approach is done in terms
of the transformed variables xi = − sgn(mi) log(1 − m2

i ) by
iterating a transformed version of Eq. (5) (see Eq. (12) in
Ref. [5]) and with α = 1 since the final approach starts off
already in the basin of attraction. Use of the transformed
variables is necessary because the original mi may take the
values ±1 within numerical accuracy on iterating Eq. (5)
directly, in which case the Hessian is ill defined, see Eq. (3).

For each solution found we tried to locate the correspond-
ing saddle using the method described in Ref. [8]. We then
calculated the eigenvalues and eigenvectors of the Hessian at
both the minimum and the saddle (if it was found). Since the
Hessian matrices can be very ill conditioned, it is in this step
where the arbitrary precision arithmetic is most useful.

Since the quantities we examine in this work may have
strongly non-Gaussian distributions, such as for instance the
low-lying eigenvalues of the Hessian, with possibly fat tails,
we used the median instead of the mean consistently through-
out this work for robustness. Accordingly, all error bars shown
are 95% confidence intervals for the median.

III. SELF-ORGANIZED CRITICALITY

In this section we give the details of why we believe that the
solutions of the TAP equations which are found by an iterative
process lie at the boundary between replica-symmetric and
broken-replica-symmetry solutions. In Fig. 1 we have plotted

FIG. 1. The free energy per spin, f , of the TAP solutions and the
square root of its variance plotted against 1/N2/3 at a temperature
T = 0.3.

the free energy per spin of the solutions found at a temperature
T = 0.3 and with α = 1.2 as a function of 1/N2/3. The vari-
ance decreases strikingly rapidly as N increases, suggesting
that as N → ∞, there will be a well-defined limit for the
free energy f̃ . In Ref. [9] the entire �min( f ) curve was
obtained when studying values of N to 80. Unfortunately, as N
increases this becomes harder and harder to do as the solutions
found are approaching f̃ and solutions well away from this
value are rarely found. Thus the authors of Ref. [9] only
succeeded in finding all the solutions by virtue of finite-size
effects. As N grows, the chance of finding solutions well
away from f̃ rapidly decreases to zero. The rapid decrease
of the variance with increasing N is very suggestive that the
solutions being found do not come from all over the �min( f )
curve (which would lead to an N-independent variance) but
rather are just those associated with a particular value of the
free energy. We do not have any arguments as to why the N
dependence of f and the square root of its variance should
vary as 1/N2/3; we only use a 1/N2/3 as this form arises
frequently for finite-size effects in the SK model [5,22]. The
data for f are not even monotonic as a function of 1/N2/3,
which suggests that the values of N which we can study are
not yet large enough to be in the asymptotic regime for this
quantity.

Our contention is not only that the solutions found in an
iterative procedure converge to a unique value of the free
energy as N → ∞ but the particular free energy converged
to is the critical free energy which separates states with
vanishing overlaps from those with nontrivial overlaps. We
shall refer to this borderline as the RS-RSB critical point. The
free energy per spin fc is the free energy at this borderline
when all possible minima of the TAP equations are studied.
The subset of these states which we obtain by iteration whose
free energies are close to f̃ have the features of states at fc.
We have obtained the Hessians associated with the minima
obtained by iteration. Figure 2 shows that the two lowest
eigenvalues of the Hessian seem to be both approaching zero
as 1/N2/3. The smallest eigenvalue λ1 is the “null” eigen-
value associated with the broken supersymmetry [8,9,23].
The second eigenvalue λ2 lies at the bottom of the band of
eigenvalues of the Hessian and for states with f > fc should
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FIG. 2. The lowest two eigenvalues λ1 and λ2 versus N on a
log-log scale. All data are for T = 0.3 with α = 1.2. The black line
shows a line of slope 1/N2/3. Also shown are the results for the band
edge λ2 without finite-size corrections (FSC) and the band edge with
finite-size correction, both discussed in Appendix; the latter is closer
to the observed values of λ2.

be different from λ1 by a finite amount which does not vanish
as N → ∞. Notice that for the smallest value of N in the plot,
N = 20, where one will be sampling states over a wide range
of f values, one can see that indeed λ2 looks quite distinct
from λ1.

The bottom of the band can be calculated by considering
the matrix Xi j defined via Ai j = (X −1)i j − (2β2/N )mimj , i.e.,
the Hessian without the projector term. The projector term,
being O(1/N ), is only a small perturbation which changes the
eigenvalues of A only slightly except for the isolated one. We
expect that λ2 ≈ μ2, the second smallest eigenvalue of X −1.
If we define p = β2N−1 ∑

i(1 − m2
i )3, then the band edge

without finite-size corrections should be at [4,24]

λ2 = x2/(4p), where x = 1 − β2N−1
∑

i

(
1 − m2

i

)2
. (6)

This is, however, only an approximation valid for small
x2/(4p). In Appendix we show how to find the exact indi-
vidual band edge z0 numerically. We have plotted z0 for λ2 in
Fig. 2 but the agreement with the measued values of λ2 is not
good, presumably because of finite-size effects. In Appendix
we describe how to obtain a finite-size correction for the band
edge, which does indeed improve the agreement with λ2.

The results in Fig. 2 show that as N increases both λ1 and
λ2 are approaching zero, indicating that the solutions we are
finding in this limit are similar to those whose free energy is
less than fc. Below fc the states are associated with full replica
symmetry breaking [7] and would be associated with massless
modes so that for all TAP states with f < fc one would expect
both λ1 and λ2 to decrease as 1/N2/3, just as found in Fig. 2.
To see that the convergence is not to a state below fc but to a
state right at the borderline between RS and RSB states, we
have studied the overlaps of the solutions in Fig. 3.

The probability density of overlaps of solutions at a given
size N was defined as

P(q) = 1

N (N − 1)

∑
s �=s′

δ

(
q − N−1

∑
i

ms
i m

s′
i

)
. (7)

FIG. 3. (a) Histograms for the probability density of overlaps of
the solutions found at two different N values, N = 160 and N = 320.
The distribution of q is expected to shrink toward P(q) = δ(q) as
N → ∞. The histograms are compiled from the overlaps of all pairs
of solutions belonging to the same bond realization, averaged over all
realizations [see Eq. (7)]. All realizations with at least two solutions
were used. (b) Histograms of the numbers of solutions. (c) The
variance of the overlaps q plotted against N . For N > 80 a shrinkage
perhaps to zero is becoming visible.

(Note that q here is not that of the TAP equation; s and s′ de-
note two distinct solutions). We have also averaged the result
over Ji j realizations. Figure 3(a) shows P(q) for two different
system sizes. Both peak at q = 0, a feature which would not
be expected when f < fc. Right at f = fc the expected form
of P(q) = δ(q) in the large-N limit. We expect that this peak
is broadened by finite-size effects so that the data at finite N
and q could be collapsed onto a universal curve by plotting
against qN1/3, but we do not have data at large-enough values
of N to study this. Figure 3(c) shows the variance of q shrinks
with N for N > 80, which is what would be expected if P(q) is
approaching a δ function at large N . For states with f < fc the
variance of q would be expected to approach a nonzero value
in the large-N limit. Figure 3(b) shows the number of bond
realizations for which a given number of solutions was found.
For N = 160, the most common number of solutions found
was zero. For N = 320 the situation improves, presumably
because the larger the value of N the more solutions there are
to be found. Figure 3(c) illustrates why the N values which
we can reach are a long way away from being in the large-N
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regime for some quantities, and Fig. 3(b) illustrates how hard
it is to get nontrivial solutions of the TAP equations.

The fact is that λ2 ∼ 1/N2/3 also explains another puzzling
feature associated with solving the TAP equations by iteration;
the solutions have always been reported from the earliest days
as having a Hessian spectrum whose band edge extended
down to zero [4] rather than having a finite band gap as
expected, for example, at the peak of the �min( f ) or for any
f > fc. In fact, no finite band gap has ever been clearly seen
in numerical studies of the TAP equations.

We conclude that the solutions which are found by iteration
are at an RS-RSB border. They are an example of self-
organized criticality. The states (solutions) are associated with
a Hessian whose eigenvalues extend to zero and so are also
marginal [19] as well as self-organized.

IV. BARRIERS

In the SK model, the low-temperature spin glass phase
has broken replica symmetry. That means it is associated
with pure states, whose free energy per spin differ from each
other by terms of O(1/N ) [11]. Escape from a pure state is
prevented by large barriers. The simulations in Refs. [12,13]
indicate that the barriers scale with the number of spins N
as N1/3. Unfortunately, there seems to be only a little under-
standing of the origin or form of these barriers [25]. In this
paper we shall try to cast some light on them by assuming that
TAP solutions whose free energies per spin are within O(1/N )
of f0, the solution of lowest free energy, can be identified as
pure states and that the barrier for escaping a pure state can
be identified with the free-energy difference between the free
energy of a TAP minimum and its associated saddle point.
Alas, as pointed out in Sec. III, the only states which we can
find by directly solving the TAP equations are those which are
around a free energy on the RS-RSB boundary (i.e., around
f̃ ) and not those whose free energies lie within O(1/N ) of
f0. However, by examining the factors which determine the
magnitude of barriers we have been able to understand the
features which have to be present for barriers to scale as N1/3.

The TAP free energy Fq as a function of mi and q is defined
[8] via

Fq = F + β2

2
(1 − q)

(∑
i

m2
i − Nq

)
, (8)

where F is the functional of mi and q of Eq. (1), except that
now q is regarded as an independent variable, unrelated to
the mi; Fq is a function of the N + 1 variables m1, . . . , mN , q,
whereas the original TAP free energy F depends only on the
variables m1, . . . , mN [with q defined as q = (1/N )

∑
i m2

i ].
One can easily show that the stationarity equations for Fq

reproduce the TAP equations: ∂Fq/∂mi = Gi = 0. However,
for these new equations the quantity Q ≡ 1

N

∑
i m2

i is in gen-
eral not equal to the parameter q appearing in the equations.
However, the additional stationarity equation, 0 = ∂Fq/∂q =
(β2/2)(Nq − ∑

i m2
i ), forces Q = q at stationary points in the

full (N + 1)-dimensional space. Therefore at the minimum
and the saddle the free-energy functions F and Fq have the
same mi and q values. By formally eliminating the variables
mi by use of the TAP equations one can obtain the function

FIG. 4. The functions Q(q) (red line) and fq − max( fq ) (blue
line) versus q. The minimum and the saddle of fq occur where Q(q)
crosses the yellow line Q = q for N = 320. The free energy per spin
at the saddle is max( fq ).

Fq as a function of q. Starting from a minimum, where Q = q,
and following Fq(q) for decreasing q until Q = q again, the
corresponding saddle is found. In Fig. 4 we have plots of
fq = Fq/N and Q as functions of q.

To understand how the barrier height, which is the free-
energy difference between the saddle-point value Fs of the free
energy and the minimum value Fm, i.e., B = Fs − Fm, might
depend on the values of qm − qs and the curvatures at the
minimum and the saddle, we have used a quartic fit to Fq:

F̃ = c

[
b

4
(q − qs)4 + 1

3
(q − qs)3 − a

2
(q − qs)2

]
≈ Fq − Fs, (9)

where we will relate the coefficients c, b, and a to the
curvatures at the saddle and the values of q at the minimum
qm and at the saddle, qs. F̃ is stationary when

∂F̃/∂q = c[b(q − qs)3 + (q − qs)2 − a(q − qs)] = 0. (10)

qm is the solution of b(qm − qs)2 + (qm − qs) − a = 0. The
free energy F̃s at the saddle is zero and at the minimum

F̃m = c(qm − qs)2

[
b

4
(qm − qs)2 + 1

3
(qm − qs) − a

2

]
. (11)

The barrier is B = F̃s − F̃m = −F̃m. The curvature at the sad-
dle is defined as

∂2F̃/∂q2 = c[3b(q − qs)2 + 2(q − qs) − a] (12)

and equals −ac at the saddle q = qs, while at the minimum

∂2F̃/∂q2 = c[3b(qm − qs)2 + 2(qm − qs) − a]. (13)

These curvatures at the saddle −ac = cs and at the mini-
mum c[3b(qm − qs)2 + 2(qm − qs) − a] = cm, where the cur-
vatures cs and cm were discussed in Ref. [8];

cs or cm = Nβ2

2

(
1 − 2β2

N

∑
i j

miXi jm j

)
, (14)

evaluated for Xi j at values of mi at the saddle or the minimum.
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FIG. 5. Plot of the barrier height (Fs − Fm ) divided by the right-
hand side of Eq. (15) versus qm − qs. The closeness to unity of this
ratio indicates the accuracy of the quartic fit for a particular saddle-
minimum pair.

We can eliminate the coefficients a, b, and c, to get

B = 1
12 (qm − qs)2(cm − cs). (15)

In Fig. 5 we have plotted the observed barrier divided by
the right-hand side of Eq. (15) to check the accuracy of this
equation. It clearly works well for most saddle-point-minima
pairs, but a few are clearly not well accounted for by the
quartic fit of Eq. (9). For these pairs the discrepancy is
simply because the neglected higher terms are just not always
negligible.

Assuming that the quartic fit provides a good fit to the bar-
rier height B we next describe the N dependence of the terms
in Eq. (15). In Fig. 6 evidence is presented that (qm − qs)
decreases with N as ∼1/N1/3 while the curvatures (cm − cs)
grow like ∼N2/3. The variation of (qm − qs) ∼ 1/N1/3 means
that the saddle becomes very close to the minimum in the
large-N limit. Equation (15) then implies that the barrier
height B should be N independent. In Ref. [5] we showed
by varying the iteration parameter α that the barriers were
N independent, varying as B ∼ 1/( f − f0)1/3. Hence at the
critical free energy f̃ between the RS and RSB states, the
barriers would be expected to be N independent. For pure

FIG. 6. Plot of qm − qs on the left axis and cm − cs on the right
axis, both on a logarithmic scale versus N , again on a log scale. Lines
of slope ∼N−1/3 for qm − qs and of slope ∼N2/3 for cm − cs have
been drawn.

states f − f0 ∼ O(1/N ), which explains why pure states have
barriers of order N1/3. Note that at f̃ , the free energy associ-
ated with our iterative solutions, the barriers are numerically
tiny, as can be seen from Fig. 4.

V. DISCUSSION

While the SK model is referred to as a “solvable” model,
the finite-size corrections to the thermodynamic limit have
only been obtained for a few quantities from analytical work.
Mostly all that we have are rather unsatisfactory estimates
from numerical studies. The same is true of the TAP equa-
tions. They become exact in the thermodynamic limit, but
finite-N corrections to them and the N dependencies in their
solutions have not really emerged from analytical studies.
TAP solutions of very low free energies correspond to the pure
states of the SK model in that if one could compute a value
of mi in the pure state it would correspond to that of a TAP
solution [26,27].

Our main discovery is that at large values of N the solutions
of the TAP equations fall at the boundary between states with
replica-symmetric overlaps and those with overlaps like those
of broken replica symmetry. This is like a critical point. These
states are associated with massless modes at large N and so
the solutions found are those of a self-organized marginally
stable critical system.

We do not know how this behavior comes about. But as the
same behavior arises in quenched states of the SK model, it
seems there exists a phenomenon worthy of further study.

APPENDIX: INDIVIDUAL BAND EDGE AND ITS
FINITE-SIZE CORRECTION

In this Appendix, we derive the form of the finite-size
corrections to the individual band edge which was used in
constructing Fig. 2. By “individual,” we mean for a given TAP
solution.

The eigenvalue density ρ of (X −1)i j = −βJi j + [ 1
1−(m∗

i )2 +
β2(1 − q)]δi j , i.e., the Hessian without the projector term, can
be obtained from its resolvent,

R(z) = 1

N
Tr(z − X −1)−1

as

ρ(μ) = 1

π
lim
ε↘0

Im R(μ − iε). (A1)

As explained in Ref. [24], the resolvent R′ of X −1/β satisfies
the equation

R′(z) = 1

N

∑
i

[
z − R′(z) − β−1

(
1 − m2

i

)−1 − β(1 − q)
]−1

(A2)

in the large-N limit according to Pastur’s theorem [28]. The
two resolvents are related by βR(βz) = R′(z), hence R satis-
fies

R(z) = 1

N

∑
i

[
z − β2R(z) − (

1 − m2
i

)−1 − β2(1 − q)
]−1

(A3)
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after a change of variables βz → z. Using a quadratic approx-
imation to Eq. (A2) valid for small z − R′(z) − β(1 − q), one
obtains [24]

ρ(μ) = 1

πβ2√p

√
μ − x2/4p

for small μ and x2/4p, where x and p are defined as in Sec. III.
The band edge is thus at x2/4p [29].

However, x2/4p is not always small in our numerical ex-
periments. Hence we refined this approximation by searching
numerically for the infimum of real z for which Eq. (A3) has
no appropriate real solution, as this marks the onset of the
band of eigenvalues according to Eq. (A1). To this end, de-
fine Y ≡ βR(z) − z/β and ki ≡ β−1(1 − m2

i )−1 + β(1 − q);
Eq. (A3) then reads

z = −β

[
Y + 1

N

∑
i

(Y + ki )
−1

]
. (A4)

The largest z, denoted by z0, which still allows for a real
solution, is the maximum of the right-hand side for Y from
the interval (− min({ki}), 0]. This interval follows from the
discussion in the Appendix of Ref. [24] about selecting the
appropriate solution of Eq. (A2). The value of Y at which z0 is
attained is denoted Y0. By numerical optimization both z0 and
Y0 can easily be found. The individual band edge z0 improves
on x2/4p by going beyond the quadratic approximation but
it is still an infinite system result through the use of Pastur’s
theorem.

Hence we are now looking for a finite-size correction to
it. The eigenvalue density ρ, when computed from the full
equation (A3), still starts off with a square-root singularity,
i.e.,

ρ(μ) ≈ γ
√

μ − z0,

for μ close to z0 and some constant γ > 0. For a system of
size N the smallest eigenvalue μ1 will be roughly determined

by the condition

N
∫ μ1

z0

ρ(μ) dμ = 1, (A5)

such that in our case
2
3 Nγ (μ1 − z0)3/2 = 1,

so μ1 ≈ z0 + ( 2
3 Nγ )

−2/3
. The second-smallest eigenvalue μ2

can be calculated in the same way by replacing the right-hand
side of Eq. (A5) by 2, so μ2 ≈ z0 + ( 1

3 Nγ )
−2/3

.
The constant γ can be calculated as follows. Tayor expan-

sion to second order of the right-hand side of Eq. (A4) around
the maximum gives

z = z0 − 1

2
(Y − Y0)2 2β

N

∑
i

(Y0 + ki )
−3

such that

Y = Y0 + i

√
z − z0

β

N

∑
i(Y0 + ki )−3

for z � z0. On the other hand, Y = βR(z) − z/β by definition.
Comparison with Eq. (A1) shows

γ = 1

πβ3/2

[
1

N

∑
i

(Y0 + ki )
−3

]−1/2

.

This can be evaluated numerically since Y0 is already known.
Thus we have calculated the individual band edge z0 and

its finite-size correction for μ1,

z1 = β

(
2

3π
N

)−2/3
[

1

N

∑
i

(Y0 + ki )
−3

]1/3

,

and for μ2,

z2 = β

(
1

3π
N

)−2/3
[

1

N

∑
i

(Y0 + ki )
−3

]1/3

.
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