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We investigate a one-dimensional model of active motion, which takes into account the effects of persistent
self-propulsion through a memory function in a dissipative-like term of the generalized Langevin equation for
particle swimming velocity. The proposed model is a generalization of the active Ornstein-Uhlenbeck model
introduced by G. Szamel [Phys. Rev. E 90, 012111 (2014)]. We focus on two different kinds of memory which
arise in many natural systems: an exponential decay and a power law, supplemented with additive colored noise.
We provide analytical expressions for the velocity autocorrelation function and the mean-squared displacement,
which are in excellent agreement with numerical simulations. For both models, damped oscillatory solutions
emerge due to the competition between the memory of the system and the persistence of velocity fluctuations.
In particular, for a power-law model with fractional Brownian noise, we show that long-time active subdiffusion
occurs with increasing long-term memory.
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I. INTRODUCTION

Systems in out-of-equilibrium conditions are ubiquitous
in nature, among which biological active matter is the most
representative. For instance, motile bacteria employ diverse
swimming patterns to traverse complex habitats [1,2]. Recent
technological advances have allowed the design of artificial
particles that take advantage of different physical and/or
chemical mechanisms to self-induce motion that mimics bi-
ological motility [3]. Such mobile entities, either biologi-
cal [4,5] or human-made [6–10], are able to develop au-
tonomously directed motion by using the locally available
energy from the environment [3]. These particles are called
self-propelled or, more generally, active particles.

For nonequilibrium statistical physicists, active matter pro-
vides a rich field of research that has allowed the rapid
progress of different theoretical frameworks. It has been
pointed out that the detailed balance between the injection and
the dissipation of energy is not satisfied at the microscopic
scale in active systems. However, many of the accomplished
advancements in the understanding of active matter have
partly relied on the intuition built from equilibrium systems
[11–13]. For instance, the concept of effective temperature has
provided a valuable description of some out-of-equilibrium
systems [14–16], and in particular in systems of active par-
ticles [7,17–24]. In general, the possibility of defining an
effective temperature relies on the fulfillment of a nonthermal
fluctuation-dissipation relation. This is the case for timescales
larger than the persistence one, for which the motion of free
active particles is well characterized by an effective diffusion
coefficient. Such a behavior can be interpreted as the mo-
tion of a passive Brownian particle diffusing in a fictitious
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environment at an effective temperature higher than the true
equilibrium temperature of the surroundings.

A model of active motion that has attracted a great deal
of attention because of its simplicity is the so-called active
Ornstein-Uhlenbeck model (AOUM). It is based on the as-
sumptions that in the overdamped regime, the particle position
changes in time due to all the potentials that affect its motion,
as well as due to its own self-propulsion velocity, which is de-
scribed by an Ornstein-Uhlenbeck process [22]. The AOUM
has been used as a basis to consider interactions among self-
propelled particles [25,26] and to study the main nonequi-
librium features exhibited by active matter, such as motility-
induced phase separation [27,28]. Also, it has allowed the
derivation of analytical results in the case of independent
active particles confined in simple potentials [29,30]. Further-
more, within the framework of stochastic thermodynamics, it
has permitted the analysis of entropy production, fluctuation
theorems, and Clausius relations for active matter [31–33].

In this paper we consider a generalization of the AOUM
based on the generalized Langevin equation (GLE) [34,35],
which endows the standard Langevin model of Brownian
motion with finite-time correlations. The GLE usually models
systems in viscoelastic baths near equilibrium states and
includes retarded memory effects in the viscous drag term
of the equation and correlated thermal noises [36–43]. Re-
markably, these kinds of models are also of great theoreti-
cal interest to describe nonequilibrium systems, as memory
effects cannot be neglected in many situations. For active
matter, memory effects can significantly alter the directional
dynamics of individual self-propelled particles when moving
in viscoelastic media. For instance, in polymer solutions the
persistence length of flagellated bacteria [44] and synthetic
nanopropellers [45] is enhanced, while self-propelled spheri-
cal colloids exhibit an increase of rotational diffusion [46] and
circular trajectories [47]. Memory effects are revealed in many

2470-0045/2019/100(3)/032123(11) 032123-1 ©2019 American Physical Society

https://orcid.org/0000-0003-0346-2967
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032123&domain=pdf&date_stamp=2019-09-16
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.90.012111
https://doi.org/10.1103/PhysRevE.100.032123


SEVILLA, RODRÍGUEZ, AND GOMEZ-SOLANO PHYSICAL REVIEW E 100, 032123 (2019)

other active systems with long-range temporal correlations
that also motivate our analysis, e.g., self-propelled particles in
glassy [48] or disordered heterogeneous media [49,50], motile
bacteria with intricate swimming patterns [1], microorganisms
with strong autochemotactic response [51], and active liquid-
crystal droplets [52].

In Sec. II we present the explicit formulation of the
model that describes the motion of self-propelled particles
subject to thermal and active fluctuations. We show that the
probability density of the complete process can be written
as the convolution of the diffusion probability density, due
to thermal fluctuations, and the corresponding probability
distribution of the active part of motion, which is analyzed
in Sec. III. In the same section two relevant examples are
discussed in detail, first, a memory function that models the
retarded effects on the swimming velocity due to viscoelastic-
like effects, and, second, a memory function with power-law
long-lived correlations. Both examples qualitatively capture
the phenomenology observed in a variety of active systems,
namely the occurrence of anticorrelations of the swimming
velocity which lead to self-trapping effects. Finally, in Sec. IV
we summarize the main results of our work and make some
further physical remarks.

II. THE GENERALIZED ORNSTEIN-UHLENBECK
MODEL OF ACTIVE MOTION

One remarkable aspect of the motion of active particles
is that it is persistent, i.e., the particles approximately re-
tain the state of motion for a characteristic finite timescale,
called the persistence time. This feature is indeed observed
in the patterns of motion of different microorganisms and
some artificially designed self-motile particles. For instance,
the run-and-tumble pattern of Escherichia coli alternates time
intervals at a rather constant speed in a straight line along a
randomly chosen direction, interrupted by short time periods
during which the bacterium tumbles almost at rest. On a
statistical description, the run-and-tumble motion can be char-
acterized by a finite timescale of persistence, which makes the
motility behavior strongly correlated in time, thus rendering
the nonequilibrium signatures conspicuously observable.

Here we provide a theoretical framework with the possibil-
ity of considering a variety of patterns of persistent motion.
The equations that describe the time evolution of the parti-
cle position x(t ) of an overdamped active Brownian particle
diffusing in one dimension, and the time evolution of its
swimming velocity, vs(t ), are given by

d

dt
x(t ) = vs(t ) + ξx(t ), (1a)

d

dt
vs(t ) = − 1

τR

∫ t

0
ds γ (t − s)vs(s) + ξvs (t ). (1b)

In Eq. (1a), ξx(t ) denotes the thermal noise caused by the
medium, which is modeled here as Gaussian white noise,
i.e., with average 〈ξx(t )〉 = 0 and autocorrelation function
〈ξx(t )ξx(s)〉 = 2DT δ(t − s); DT is the diffusion constant due
to translational motion given by μkBT , μ being the mobility;
kB the Boltzmann constant; and T the medium temperature.
Equation (1b) is the well-known GLE that in the context of
the present paper provides a generalization of the AOUM of

active motion [22], which takes into account the exponential
correlations of the swimming velocity that gives rise to ex-
ponentially persistent motion. Here, Eq. (1b) opens the door
for taking into account a variety of persistent motions by
properly choosing the memory function γ (t ) [53], which has
units of time−1. The timescale τR in Eq. (1b) characterizes the
persistence of the velocity fluctuations (the persistence time).
For times larger than τR, they relax to zero, fading out the
ballistic motion.

We focus on the physically relevant case where Eqs. (1)
describe a stationary process whose statistical properties
are invariant under temporal translations. For simplicity,
the noise term ξvs (t ) is assumed to be stationary and
Gaussian with vanishing average 〈ξvs (t )〉 = 0 and autocorre-
lation function

〈
ξvs (t )ξvs (s)

〉 = v2
0

τR
η(|t − s|). (2)

In Eq. (2), η(t ) is a function with physical units of time−1,
whereas v0 determines the variance of the velocity fluc-
tuations, 〈vs(t )vs(t )〉 = 〈vs(0)vs(0)〉 = v2

0 , which defines the
characteristic self-propelling speed v0. Although there are
no a priori reasons to establish a relation between γ (t ) and
η(t ), it is physically plausible that the relation η(t ) = γ (t )
may be sustained in some cases of interest. This relation does
not imply thermal equilibrium but only expresses the simple
situation, described by linear-response theory, for which the
response of the swimming velocity to active fluctuations is
connected by the square of the self-propelling speed divided
by the persistent time [54]. The active Ornstein-Uhlenbeck
model of Szamel [22] is recovered from Eq. (1b) for the
zero-ranged memory function γ (t ) = η(t ) = 2δ(t ), which
leads to an exponentially decaying autocorrelation function,
i.e., 〈vs(t )vs(s)〉 = v2

0 exp(−|t − s|/τR), also considered in the
analysis of a two-dimensional active motion in Ref. [55].

We pay particular attention to the statistical properties of
active motion induced by finite- and long-ranged memory
functions. We are mainly interested on the statistics of the
particle swimming velocity an its position, for which the
explicit dynamics of the self-propulsion velocity is implied
by the memory function γ (t ). The formal solutions of Eqs. (1)
are given explicitly by

x(t ) = 〈〈x(t )〉〉 +
∫ t

0
ds �(t − s)ξvs (s) +

∫ t

0
ds ξx(s), (3a)

vs(t ) = 〈vs(t )〉 +
∫ t

0
ds �′(t − s)ξvs (s), (3b)

where

〈〈x(t )〉〉 = x(0) + vs(0) �(t ), (4a)

〈vs(t )〉 = vs(0) �′(t ), (4b)

give the mean position and the mean swimming velocity,
respectively. The average 〈〈·〉〉 is taken over the independent
realizations of the Gaussian white noises ξx(t ) and ξvs (t ),
while 〈·〉 only over realizations of ξvs (t ). x(0) and vs(0) are
the corresponding initial values. �(t ) and �′(t ) = d�(t )/dt

032123-2



GENERALIZED ORNSTEIN-UHLENBECK MODEL FOR … PHYSICAL REVIEW E 100, 032123 (2019)

are the solutions of the deterministic counterpart of Eqs. (1a)
and (1b) and given by the inverse Laplace transform of

�̃(ε) = ε−1�̃′(ε), (5a)

�̃′(ε) =
[
ε + 1

τR
γ̃ (ε)

]−1

, (5b)

respectively. The symbol f̃ (ε) denotes the Laplace trans-
form of the function of time f (t ), defined by f̃ (ε) =∫ ∞

0 dt e−εt f (t ) with ε the Laplace variable, a complex num-
ber.

The long-time regime of the quantities (5) is determined
by the asymptotic behavior of γ (t ). It is customary to re-
quire that γ (t ) vanishes with increasing t , which means that
in the Laplace domain limε→0 εγ̃ (ε) → 0. A necessary and
sufficient condition for a well-defined asymptotic limit of
�(t ) and �′(t ), and therefore a well-behaved time dependence
of the average trajectories (4), is that εγ̃ (ε) goes to zero
slower than ε2. This is trivially satisfied by positive mono-
tonically decreasing memory functions—which maintain the
physical interpretation of persistence—that go exponentially
or faster to zero or by those that go to zero as t−β with
0 < β < 1.

The characteristic function of the probability density asso-
ciated to the stochastic process defined by Eqs. (1) is given by

Ĝ(k, q, t ) =
〈〈

exp

{
−i

∫ t

0
ds k ξx(s)

}
× exp

{
−i

∫ t

0
ds [q�′(t −s)+k�(t −s)]ξvs (s)

}〉〉
.

(6)

This quantity can be explicitly written as the product of
the characteristic function of the translational part ĜDT (k, t )
times the corresponding bivariate characteristic function of
the active part Ĝ(2)

act (k, q, t ), i.e.,

Ĝ(k, q, t ) = ĜDT (k, t ) Ĝ(2)
act (k, q, t ), (7)

where

ĜDT (k, t ) = exp{−DT k2t} (8a)

is the univariate characteristic function of the diffusion equa-
tion, DT the diffusion coefficient linked to thermal fluctua-
tions, and

Ĝ(2)
act (k, q, t ) = exp

[ − 1
2 q2σ 2

vsvs
(t ) − qkσ 2

xvs
(t ) − 1

2 k2σ 2
xx(t )

]
(8b)

is a bivariate Gaussian that corresponds to the characteristic
function of active motion. The expression for Ĝ(2)

act (k, q, t )
in Eq. (8b) explicitly involves the standard elements of
the active covariance matrix �act, i.e., the variance of the
particle position σ 2

xx(t ) ≡ 〈[x(t ) − 〈x(t )〉]2〉, the variance of
the particle swimming velocity σ 2

vsvs
(t ) ≡ 〈[vs(t ) − 〈vs(t )〉]2〉,

and the covariance of the particle position and swimming

velocity σ 2
xvs

≡ 〈[x(t ) − 〈x(t )〉][vs(t ) − 〈vs(t )〉]〉. Such matrix
elements are given by

σ 2
vsvs

(t ) = v2
0

τR

∫ t

0
ds1

∫ t

0
ds2 �′(s1) �′(s2) η(|s1 − s2|), (9a)

σ 2
xx(t ) = v2

0

τR

∫ t

0
ds1

∫ t

0
ds2 �(s1) �(s2) η(|s1 − s2|), (9b)

σ 2
xvs

(t ) = v2
0

τR

∫ t

0
ds1

∫ t

0
ds2 �′(s1) �(s2) η(|s1 − s2|), (9c)

and are valid for arbitrary γ (t ) and η(t ).
Thus, the joint probability density of finding a particle at

position x and swimming with velocity vs at time t , given
that initially (t = 0) the particle was located at x(0) swimming
at velocity vs(0), P[x, vs, t |x(0), vs(0)], can be written as the
convolution

P[x, vs, t |x(0), vs(0)] =
∫ ∞

−∞
dx′GDT [x − 〈〈x(t )〉〉 − x′, t]

× G(2)
act [x

′, vs − 〈vs(t )〉, t], (10)

where

GDT (x, t ) = 1√
4πDT t

exp

(
− x2

4DT t

)
(11)

is obtained straightforwardly by inverting the Fourier trans-
form of Eq. (8a), while

G(2)
act (x, vs, t ) = 1

2πσxx(t )σvsvs (t )
√

1 − C(t )

× exp

{
− 1

2[1 − C(t )]

[
v2

s

σ 2
vsvs

(t )
− 2xvs C(t )

σ 2
xvs

(t )

+ x2

σ 2
xx(t )

]}
(12)

is obtained after inverting the Fourier transform of (8b), where

C(t ) = σ 2
xvs

(t )

σ 2
vsvs

(t )

σ 2
xvs

(t )

σ 2
xx(t )

. (13)

III. THE STATISTICS OF THE ACTIVE
COMPONENT OF MOTION

We have shown that the dynamics is explicitly split into
the translational part and the active one [see Eqs. (7) and
(10)]. This allows us to focus on the statistical properties
of the active part of motion. In such a case, it is equivalent
to consider Eq. (1) with DT = 0 [ξx(t ) = 0 for all t], which
reduces to the standard generalized Langevin equation that
describes the persistence effects of active motion through
the memory function in the dissipative term [53]. In order
to unveil the main consequences of the model proposed,
we restrict our analysis to the case of internal noise, i.e.,
η(t ) = γ (t ).

In addition to the quantities given in Eqs. (9) [evaluated at
η(t ) = γ (t )], we consider the autocorrelation function of the

032123-3



SEVILLA, RODRÍGUEZ, AND GOMEZ-SOLANO PHYSICAL REVIEW E 100, 032123 (2019)

swimming velocity 〈vs(t )vs(s)〉 which can be written as

〈vs(t )vs(s)〉 = v2
s (0)�′(t )�′(s)

+ v2
0

τR

∫ t

0
ds1

∫ s

0
ds2 �′(s1)�′(s2)γ (|s1 − s2|)

(14)

for s � t .
The asymptotic behavior of the quantities (9) and (14)

is determined by the corresponding one of γ (t ), which is
deduced by requiring a well-behaved time dependence of
�(t ) and �′(t ). Such behavior is fulfilled if (a) γ (t ) vanishes
exponentially or faster or if (b) it vanishes as t−β with 0 <

β < 1. In any case we have that σ 2
vsvs

(t ) → 2v2
0 , while it

can be shown that for case (a) we have σ 2
xx(t ) → 2v2

0τRt ,
from which the active diffusion coefficient D = v2

0τR is evi-
dent and σ 2

xvs
(t ) → v2

0τR. For the case (b) we have σ 2
xx(t ) →

2v2
0τR (γ0t )β/�(β + 1)γ0 and σ 2

xvs
(t ) → v2

0τR(γ0t )β−1/�(β ).
γ −1

0 is a timescale that characterizes the memory function and
the relation σ 2

xvs
(t ) = (1/2)(d/dt )σ 2

xx(t ) has been used.
Furthermore, in striking contrast with the zero-ranged

memory function, which gives rise to positive correlations of
the swimming velocity and to a smooth crossover between the
ballistic superdiffusion and the normal diffusion, finite-ranged
memory functions lead to anticorrelations of the swimming
velocity in the intermediate-time regime. These anticorre-
lations are conspicuously revealed in the intermediate-time
regime of σ 2

xx(t ), which are interpreted as a self-trapping
effect. This is discussed in detail in the following subsections.

The corresponding joint probability density of the active
part of motion, Pact[x, vs, t |x(0), vs(0)], is given by the con-
volution of G(2)

act (x, vs, t ) with the joint density induced by the
deterministic part of Eqs. (3), namely∫ ∞

−∞
dx′

∫ ∞

−∞
dv′

s G(2)
act (x − x′, vs − v′

s, t )

× δ[x′ − 〈x(t )〉]δ[v′
s − 〈vs(t )〉]. (15)

Using the characteristic function method [56], one can easily
show that G(2)

act (x, vs, t ) satisfies the Fokker-Planck equation
(see Appendix A),(

∂

∂t
+ vs

∂

∂x

)
G(2)

act (x, vs, t )

=
[

f (t )
∂

∂vs
vs + g(t )

∂2

∂x∂vs
+ h(t )

∂2

∂v2
s

]
G(2)

act (x, vs, t ),

(16)

where

f (t ) = σ 2
vsvs

(t )

σ 2
xvs

(t )
, (17a)

g(t ) = d

dt
σ 2

xvs
(t ), (17b)

h(t ) = 1

2

d

dt
σ 2

vsvs
(t ) +

[
σ 2

vsvs
(t )

]2

σ 2
xvs

(t )
. (17c)

In the following subsections we analyze the consequences
of the present model by considering an instance of interest for
each of the two asymptotic behaviors of γ (t ) considered in

this paper. The first example considers a memory function that
decays at least exponentially faster, while the second assumes
the asymptotic behavior of a power law.

A. Exponential memory kernel

As a first example, we focus on a memory kernel consisting
of a δ function plus an exponential decay with relaxation time
τ [57],

γ (t ) = 2(1 − α)δ(t ) + α

τ
exp

(
−|t |

τ

)
, (18)

where 0 < α < 1 is a dimensionless parameter that weighs
the role of the exponential memory over the δ one. This
kind of memory kernel describes the rheological response
of several viscoelastic materials, such as intracellular fluids
[58], polymer solutions [59], wormlike micelles [60], and λ-
phage DNA [61], where τ is the relaxation time of the elastic
microstructure [62]. In the present work, it represents the
retarded effects on the swimming velocity due to viscoelastic-
like effects. More precisely, it considers two channels of
persistence: the standard one, given by the δ function and
considered in Ref. [22], that leads to exponentially decaying
correlations of the swimming velocity, and the other one leads
to long-lived correlations exhibiting intermittently negative
correlations in the intermediate-time regime. For either α = 0
or τ → 0, Eq. (18) corresponds to the AOUM of Szamel [22].

In order to simulate trajectories evolving according to the
generalized model presented in this paper, for 0 < α < 1, we
express Eq. (1b) in a Markovian form by introducing the
additional variable

u(t ) = 1

τ

∫ t

0
ds exp

(
− t − s

τ

)
[vs(s) + τφ2(s)], (19)

where φ2 is a zero-mean Gaussian noise with autocorrelation

〈φ2(t )φ2(s)〉 = 2v2
0τR

ατ 2
δ(t − s). (20)

Then, Eq. (1b) can be written as

d

dt
vs(t ) = −1 − α

τR
vs(t ) − α

τR
u(t ) + φ1(t ), (21a)

d

dt
u(t ) = − 1

τ
[u(t ) − vs(t )] + φ2(t ), (21b)

where φ1(t ) is a zero-mean Gaussian noise, which satisfies

〈φ1(t )φ1(s)〉 = 2(1 − α)v2
0

τR
δ(t − s). (22)

In the following, length scales are normalized by the
persistence length v0τR, timescales by τR, velocities by v0,
and translational diffusion coefficients by v2

0τR. In Fig. 1(a)
we plot some simulated trajectories for different values of
the memory τ and constant α = 0.9. As τ increases, the
shape of the trajectories change qualitatively, displaying three
distinct kinds of behaviors. To better appreciate such regimes
for different values of τ , we compute the corresponding
velocity autocorrelation function 〈vs(t )vs(0)〉. In accordance
with our linear-response assumption, this is given by v2

0�
′(t )

[see Eq. (14)], where �′(t ) has been introduced in Eqs. (3b)
and (4b) and defined in Eq. (5b). As shown in Fig. 1(b), for
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FIG. 1. (a) Examples of trajectories x(t ) evolving according to the generalized Ornstein-Uhlenbeck model (1), with memory kernel given
by (18), for α = 0.9 and different values of the memory time τ . From bottom to top: τ = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 400.
Inset: Expanded view the active trajectory with τ = 12.8. (b) Corresponding velocity autocorrelation function for different values of τ , same
color code as in (a). The values of τ increase from left to right. Inset: Expanded view for τ = 400. (c) Mean-squared displacements of
the trajectories shown in (a). The values of τ increase from bottom to top. Inset: Expanded view of the intermediate regime around τR.
(d) Dependence on the relaxation time τ of the frequency of the damped oscillations, which emerge only between τ+ (	) and τ− (�), for
different values of α increasing from inner to outer curves: α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. (e) Velocity autocorrelation
function and (f) mean-squared displacement, obtained from the analytical expression, for the same parameters plotted in (b) and (c),
respectively.

small values of τ (τ = 0.1 and τ = 0.2) the velocity auto-
correlation function 〈vs(t )vs(0)〉 exhibits a monotonic decay.
Furthermore, damped oscillations of 〈vs(t )vs(0)〉 show up at
larger τ , thus manifesting the appearance of anticorrelations
with a frequency that strongly depends on τ , as observed
for 0.4 � τ � 25.6. For instance, in the inset of Fig. 1(a),
such oscillations can be clearly observed along an active
trajectory with τ = 12.8. Moreover, the oscillations vanish
at very large τ , where 〈vs(t )vs(0)〉 exhibits a single global
minimum, as shown in the inset of Fig. 1(b) for τ = 400,
where velocity anticorrelations occur. In Fig. 1(c) we show the
resulting mean-squared displacements σ 2

xx(t ). For all values
of the relaxation time τ , a ballistic σ 2

xx(t ) ∝ t2 and diffusive
regime σ 2

xx(t ) ∝ t is observed on timescales t � τR and t �
τR, respectively. This is in contrast to intermediate timescales
(comparable to τR), where a strong dependence on τ is found,
see inset of Fig. 1(c).

Indeed, from Eqs. (21), we can derive the following equa-
tion for the autocorrelation function:

d2〈vs(t )vs(0)〉
dt2

+
(

1

τ
+ 1 − α

τR

)
d〈vs(t )vs(0)〉

dt

+ 1

ττR
〈vs(t )vs(0)〉 = 0, (23)

which is formally equivalent to the equation of motion of
a damped harmonic oscillator with undamped angular fre-
quency ω0 and damping ratio ζ given by

ω0 = 1√
ττR

, (24a)

ζ = 1

2

√
ττR

(
1

τ
+ 1 − α

τR

)
, (24b)

respectively. Under the initial conditions 〈vs(0)vs(0)〉 = v2
0

and d〈vs (t )vs (0)〉
dt |t=0 = − 1−α

τR
v2

0 , Eq. (23) has three different
kinds of solutions, which are determined by two particular
values of the memory time τ

τ+ = τR

(1 + √
α)2

, (25a)

τ− = τR

(1 − √
α)2

. (25b)

Note that τ+ < τR, whereas τ− > τR for all values of α. In
particular, for the value α = 0.9 considered here in most of
our numerical results, τ+ = 0.26 and τ− = 379.74. For 0 �
τ < τ+ or τ− < τ , the solution for 〈vs(t )vs(0)〉 is composed
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of two exponential decays,

〈vs(t )vs(0)〉 = v2
0

2ω0

√
ζ 2 − 1

[
A−e−ω0(ζ−

√
ζ 2−1)t

+ A+e−ω0(ζ+
√

ζ 2−1)t
]
, (26)

where the amplitudes A± are given by

A± = 1

2

√(
1 − α

τR
+ 1

τ

)2

− 4

ττR
± 1

2

(
1 − α

τR
− 1

τ

)
. (27)

For 0 � τ < τ+, Eq. (26) represents a double-exponentially
monotonic decay from v2

0 to 0 of the velocity autocorrelation
function. This corresponds to the behavior shown in Fig. 1(b)
for τ = 0.1 and 0.2, which are below τ+. On the other hand,
τ− < τ yields a nonmonotonic dependence of 〈vs(t )vs(0)〉
on t , with a single minimum around which anticorrelations
〈vs(t )vs(0)〉 < 0 happen. This is illustrated in the inset of
Fig. 1(b) for τ = 400, where 〈vs(t )vs(0)〉 < 0 for t > 20.89,
while the minimum is located at t = 40.72.

At τ = τ±, the velocity autocorrelation function takes the
critical damping form

〈vs(t )vs(0)〉 = v2
0e

− t√
τ±τR

[
1 +

(
1√
τ±τR

− 1 − α

τR

)
t

]
. (28)

The two solutions (28) separate the pure exponential solutions
for 0 � τ < τ+ and τ− < τ from those within the interval
τ+ < τ < τ−. For the latter, the velocity autocorrelation func-
tion has the following damped-oscillatory form:

〈vs(t )vs(0)〉 = v2
0 exp(−ζω0t )[cos(

√
1 − ζ 2ω0t )

+ B sin(
√

1 − ζ 2ω0t )], (29)

where the amplitude

B = 1√
1 − ζ 2ω0

(
ζω0 − 1 − α

τR

)
, (30)

and the frequency of the damped oscillations,

√
1 − ζ 2ω0 =

√
1

ττR
− 1

4

(
1

τ
+ 1 − α

τR

)2

, (31)

has a nonmonotonic dependence on τ . This corresponds to
the behavior observed for τ = 0.4, 0.8, 1.6, 3.2, 6.4, 12.8,
and 25.6 in Fig. 1(b). In Fig. 1(d) we plot

√
1 − ζ 2ω0 as

a function of τ for different values of α. While at small
α the interval over which oscillatory solutions are possible
is very narrow and the oscillation frequencies are low, it
broadens and the corresponding frequencies are enhanced
with increasing α, i.e., when the exponential memory term in
Eq. (18) becomes dominant. In Fig. 1(e) we show the velocity
autocorrelation function obtained directly from the explicit
expressions (24)–(31) for α = 0.9 and the same values of τ as
in 1(b), where excellent agreement with the numerical results
is observed.

Using the previous expressions for 〈vs(t )vs(0)〉, we can
readily derive the corresponding ones for the mean-squared

displacement. For 0 � τ < τ+ or τ− < τ , this reads

σ 2
xx(t ) = 2v2

0τR[t − (τR − ατ )]

+ v2
0

ω2
0

√
ζ 2 − 1

[
C−e−ω0(ζ−

√
ζ 2−1)t

+ C+e−ω0(ζ+
√

ζ 2−1)t
]
, (32)

where

C± = ±−ζ ±
√

ζ 2 − 1 + 1−α
ω0τR

2ζ (ζ ±
√

ζ 2 − 1) − 1
. (33)

At τ = τ±, the expression for the mean-squared displacement
is

σ 2
xx(t ) = 2v2

0τR

{[
1 ±

√
α

1 ± √
α

exp

(
−1 ± √

α

τR
t

)]
t

+ 1 ± 2
√

α

(1 ± √
α)2

τR

[
exp

(
−1 ± √

α

τR
t

)
− 1

]}
, (34)

while for τ+ < τ < τ−, σ 2
xx(t ) can be expressed as

σ 2
xx(t ) = 2v2

0τR

{
t − (τR − ατ )

+ e−ζω0t

[
τR(τR − ατ ) cos(

√
1 − ζ 2ω0t )

− 2ζ
√

1 − ζ 2 + (1 − 2ζ 2)B

ω2
0

sin(
√

1 − ζ 2ω0t )

]}
.

(35)

Interestingly, mean-squared displacements which are similar
to the critical damping (34) and to the damped-oscillatory case
(35) have been observed for bacteria with run-reverse-flick
swimming [1], for microorganisms with run-reverse locomo-
tion [63], and for more general patterns of active motion [64]
or with a strong response to self-produced chemoattractants
[51], respectively. In all cases, the previous expressions for
the mean-squared displacement reduce to a ballistic regime
σ 2

xx(t )〉 ≈ v2
0t2 at short timescales, t � τR. In contrast, at t �

τR active diffusion σ 2
xx(t ) ≈ 2Dt is observed, where the active

diffusion coefficient is D = v2
0τR for all values of τ , as shown

in Figs. 1(c) for the numerical trajectories and in Fig. 1(f)
for the analytical expressions. In the insets of Figs. 1(c) and
1(f), we show that the damped oscillations of 〈vs(t )vs(0)〉 for
τ+ < τ < τ− translate into a shift of the short-time ballistic
regime of σ 2

xx(t ) to timescales larger than τR. For τ > τ−, the
ballistic behavior of σ 2

xx(t ) persists for timescales significantly
larger than τR.

The effect of a nonzero thermal diffusion coefficient, DT =
kBT μ > 0, is to simply add an amount 2DT t to the mean-
squared displacement of active motion, which results in a
long-time active diffusion with coefficient DT + v2

0τR. Thus,
such a diffusive behavior can be interpreted in terms of a

nonequilibrium effective temperature Teff = T + v2
0τR

kBμ
. Note

that Teff increases quadratically with v0 regardless of the value
of the memory time τ . This dependence is similar to that
obtained from the conventional AOUM [22] and also to that
for active Brownian particles [7].

032123-6



GENERALIZED ORNSTEIN-UHLENBECK MODEL FOR … PHYSICAL REVIEW E 100, 032123 (2019)

FIG. 2. (a) Examples of trajectories x(t ) evolving according to the generalized Ornstein-Uhlenbeck model (1) with power-law memory
kernel (36) and fractional Brownian noise (37) in the absence of thermal fluctuations for different values of the Hurst parameter increasing
from bottom to top: H = 0.525, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975. (b) Velocity autocorrelation function and (c)
corresponding mean-squared displacement for the different values of the Hurst parameter in (a), same color code. In (b) and (c), the values of
H increase from inner to outer curves and from top to bottom, respectively. The insets in (b) and (c) corresponds to the velocity autocorrelation
function and the mean-squared displacement for H = 0.975 and different values of γ0/τR; from left to right and bottom to top, respectively:
γ0/τR = 4, 2, 1, 0.5, 0.25. (d) Exponent β of the long-time behavior (t � τR) of the mean-squared displacement as a function of H . The
symbols (�) mark the values obtained from the numerical solutions, whereas the solid line represents 2 − 2H . Inset: Frequency of the
velocity oscillations for H = 0.975 as a function of γ0/τR. The dashed line represents Eq. (42). (e) Velocity autocorrelation function and
(f) mean-squared displacement, directly computed from the analytical expressions (40) and (43), respectively, for the same values of H as
those shown in (b) and (c).

B. Power-law memory kernel

As a second example, we consider a power-law memory
kernel [65],

γ (t ) = γ0t2H−1

�(2H )

[
2H − 1

t
+ 2δ(t )

]
, (36)

where 1
2 < H < 1 guarantees the well-behaved time depen-

dence of the quantities in Eqs. (5) and γ0 > 0 a constant with
units of time1−2H . This kind of memory kernel describes sev-
eral physical situations, such as the motion of granules within
the cytoplasm [66], the micromechanical response of the
cytoskeleton [67], and rheological properties of soft biological
tissues [68]. In this case, the corresponding stochastic term
ξvs (t ) in Eq. (1b) is a fractional Gaussian noise (characterized
by the Hurst exponent H), with autocorrelation function〈

ξvs (t )ξvs (s)
〉 = γ0v

2
0 |t − s|2H−1

τR�(2H )

[
2H − 1

|t − s| + 2δ(t − s)

]
.

(37)

Note that this model corresponds to the conventional AOUM
[22] if H = 1

2 . By integrating Eq. (1b) over the time interval
[0, t], a straightforward calculation leads to the following

expression for the velocity at time t :

vs(t ) = vs(0) − γ0

τR�(2H )

∫ t

0
ds

vs(s)

(t − s)1−2H
+ χ (t ), (38)

where χ (t ) = ∫ t
0 dt ′ξvs (t

′) is a fractional Brownian motion
[69], which satisfies 〈χ (t )〉 = 0 and

〈χ (t )χ (s)〉 = γ0v
2
0

2τRH�(2H )

(|t |2H + |s|2H − |t − s|2H
)
. (39)

We simulate particle trajectories evolving according to this
generalized active Ornstein-Uhlenbeck model for different
values of the parameters H and γ0/τR. To this end, the integral
on the right-hand side of Eq. (38) is evaluated using a modified
Adams-Bashforth-Moulton algorithm [70], whereas the frac-
tional Brownian motion χ (t ) is independently generated by
means of the circulant embedding method of the covariance
matrix [71].

We first study the active motion of a free particle when
no translational diffusion (DT = 0) comes into play, i.e.,
d
dt x(t ) = vs(t ). The results for different values of H are
plotted in Figs. 2(a)–2(f), where length scales, timescales,
velocities, and translational diffusion coefficients are
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normalized by v0τR, τR, v0, and v2
0τR, respectively. Some

examples of simulated trajectories x(t ) for different values
of H and γ0/τR = 1 are plotted in Fig. 2(a). We find that
with increasing H , the active trajectories develop a behavior
ranging from quasidiffusion at H slightly larger to 1/2 to a
strong self-trapping induced by persistent oscillations when H
is close to 1. Indeed, in Fig. 2(b) we observe that the velocity
autocorrelation function, 〈vs(t )vs(0)〉, exhibits a well-defined
oscillatory behavior, alternating between periods of positive
correlations and negative correlations, as H increases. The
frequency of the oscillations depends mainly on the parameter
γ0/τR, as confirmed in the inset of Fig. 2(b) for H = 0.975.
This can be understood from the fact that as H approaches
1, the oscillations emerge from the competition between the
long-range persistence of self-propulsion, described by the
convolution in Eq. (1b), and the fractional Brownian noise ξvs .
Since the intensity of the former is proportional to γ0/τR, the
quantity (τR/γ0)1/(2H ) sets the only characteristic timescale
of the system, from which the frequency of the oscillations
must be proportional to (γ0/τR)1/(2H ). Interestingly, the
resulting mean-squared displacements display the typical
ballistic regime σ 2

xx(t ) ∝ t2 at short timescales t � τR for all
1
2 < H < 1, as shown in Fig. 2(c). At larger timescales, the
behavior of σ 2

xx(t ) strongly depends on H . For instance, for H
larger, but close to 1

2 , the mean-squared displacement exhibits
approximately the long-time linear behavior expected for
active Brownian motion: σ 2

xx(t ) ∝ t for t � τR. As H
increases, an intermediate oscillatory behavior at t � τR

shows up, where the amplitude of the oscillations of σ 2
xx(t )

eventually vanishes and leads to a subdiffusive growth at
sufficiently large timescales, confirming the time dependence
σ 2

xx(t ) ∝ tβ , with β = 2 − 2H as shown in Fig. 2(d). We point
out that the previously described behavior is reminiscent of
that of soft self-propelled particles with polar alignment
in crowded glassy environments [48] and active particles
in disordered heterogeneous media [49,50]. In such cases,
interparticle and alignment interactions induce long-range
temporal correlations in the swimming velocity, which in
turn lead to local trapping of the particles, thereby exhibiting
transient oscillations followed by long-time subdiffusion.

An analytical expression for the velocity autocorrelation
function can be derived from the general solution of Eq. (1b),
given by Eqs. (3b), (4b), and (5b). In this case, the Laplace
transform of the power-law memory kernel (36) is explicitly
given by γ̃ (ε) = γ0ε

1−2H . Then a straightforward calculation
leads to

〈vs(t )vs(0)〉 = v2
0E2H,1

(
−γ0t2H

τR

)
, (40)

where Eμ,ν (z) is the two-parameter Mittag-Leffler function,
defined by the series expansion

Eμ,ν (z) =
∞∑

k=0

zk

�(μk + ν)
, (41)

with μ > 0 and ν > 0. In Fig. 2(e) we demonstrate that
the velocity autocorrelation curves computed from Eq. (41)
reproduce very well the numerical results of Fig. 2(b) for
all the values H . In particular, we note that E1,1(z) = exp(z),
while E2,1(−z2) = cos(z). Therefore, as H → 1

2 , the velocity

autocorrelation tends to the conventional Ornstein-Uhlenbeck
model, 〈vs(t )vs(0)〉 = v2

0 exp(−γ0t/τR), with relaxation time
τR/γ0, where γ0 is a dimensionless parameter. On the other
hand, as H approaches 1, 〈vs(t )vs(0)〉 develops a slow-
decaying oscillatory behavior with frequency

� =
(

γ0

τR

) 1
2H

, (42)

in agreement with the frequencies computed numerically, as
verified in the inset of Fig. 2(b) for H = 0.975.

In a similar manner, using the general solution for the
particle position given by Eq. (3a), we obtain the following
expression for the mean-squared displacement:

σ 2
xx(t ) = 2v2

0t2E2H,3

(
−γ0t2H

τR

)
. (43)

Once again, Eq. (43) agrees very well with our numerical
results shown in Fig. 2(c) for all H , see Fig. 2(f). For instance,
for t � (τR/γ0)

1
2H , E2H,3(−z2H ) ≈ 1/�(3) = 1/2 regardless

of H , and thus Eq. (43) reduces to the short-time ballistic
regime, σ 2

xx(t ) ≈ v2
0t2. It should be noted that the oscillations

of σ 2
xx(t ) for t > τR with increasing H can only be captured

when taking into account the full solution of the velocity
autocorrelation function given in terms of the Mittag-Leffler
functions, see Eq. (40). The oscillatory behavior of σ 2

xx(t ) is
smeared out by any asymptotic power-law approximation of
〈vs(t )vs(0)〉, as those considered in Ref. [56]. Furthermore,
taking into account the asymptotic behavior of the general
Mittag-Leffler function Eμ,ν (−z) ≈ z−1/�(ν − μ) for z →
∞, the long-time behavior [t � (τR/γ0)

1
2H ] of the mean-

squared displacement is [37,53]

σ 2
xx(t ) ≈ 2v2

0τR

γ0�(3 − 2H )
t2−2H , (44)

thereby reproducing the exponent β of the active subdiffu-
sive regime we find numerically, see Fig. 2(d). In partic-
ular, from Eq. (44) we recover the long-time dependence
σ 2

xx(t ) ≈ 2v2
0 (τR/γ0)t as H → 1

2 , while the active motion is
subdiffusive with exponent 2 − 2H for H > 1

2 . Total spatial
self-trapping occurs for complete persistence, i.e., for H = 1,
for which the mean-squared displacement saturates to the
value σ 2

xx(t → ∞) = 2v2
0τR/γ0.

In order to better illustrate the effect of thermal fluctuations
on the active trajectories, we focus on a large value of the
Hurst parameter (H = 0.975), for which the velocity autocor-
relation function exhibits a pronounced oscillatory behavior,
see Fig. 3(a). The overall effect is that the presence of a
nonzero DT > 0 destroys the long-time subdiffusive behavior,
thus leading to trajectories with a large dispersion compared
to the diffusion-free case, as shown in Fig. 3(b). In fact, in
the presence of translational thermal noise, the mean-squared
displacement is supplemented by a diffusive term 2DT t ,

σ 2
xx(t ) = 2v2

0t2E2H,3

(
−γ0t2H

τR

)
+ 2DT t . (45)

Thus, depending on the value of DT and the timescale t , dif-
ferent regimes are observed. Indeed, in Fig. 3(c), we observe
that at short timescales, the mean-squared displacement has
a diffusive part (diffusion coefficient equal to DT ), because
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FIG. 3. (a) Velocity autocorrelation function for the active Ornstein-Uhlenbeck model with the power-law memory kernel (36) and
fractional Brownian noise at H = 0.975. (b) Resulting active trajectories for different translational diffusion coefficients from top to bottom:
DT = 0, 10−3, 10−2, 10−1, 1, 10. (c) Corresponding mean-squared displacements. Same color code as in Fig. 3(b). The values of DT

increase from bottom to top. The solid lines represent Eq. (45).

the ballistic motion is negligible with respect to thermal
diffusion. Furthermore, at sufficiently low DT , typically DT �
v2

0τR, and intermediate timescales (comparable to τR), the
oscillatory regime is still observed. On the other hand, for a
sufficiently large thermal diffusion coefficient (DT � v2

0τR),
diffusion dominates completely the particle motion over all
timescales, thereby hindering the memory-induced oscilla-
tions. For all values of DT , the long-time diffusive behavior
occurs, i.e., σ 2

xx(t ) ≈ 2DT t for t � τR, due to the dominance
of thermal diffusion over the subdiffusive growth t2−2H in the
mean-squared displacement. In all cases, Eq. (45) perfectly
describes our numerical results over all timescales and for all
values of H , see solid lines in Fig. 3(c).

We want to point out that in the case of the long-ranged
memory kernel considered here, unlike the case of the finite-
ranged one given in Eq. (18), the interpretation of the long-
time limit of (45) in terms of an effective temperature is
less clear. In fact, if DT = 0, then an effective temperature
cannot be defined in a straightforward manner, mainly due
to the long-ranged (anti-)correlations of the swimming ve-
locity that leads to a self-trapping effect and therefore to
the subdiffusive behavior of the mean-squared displacement
(44). On the other hand, for DT > 0 and in the long-time
regime, the thermal fluctuations overcome the long-ranged
correlations of the swimming velocity induced by the memory
function. Therefore, the effective temperature of the resulting
diffusive process exactly equals the temperature T of the bath
regardless of v0, see Eq. (45).

IV. SUMMARY AND FINAL REMARKS

In this work, we have investigated a generalization of
the so-called active Ornstein-Uhlenbeck model for the mo-
tion of self-propelled particles subject to both thermal and
nonequilibrium active fluctuations. The model considered
here is based on the generalized Langevin equation (1b) for
the swimming velocity and incorporates different channels
of persistence of the particle swimming velocity by means
of a memory function and additive colored noise. We have
explicitly obtained the joint probability density of the particle
position and its swimming velocity for the complete process.

We have also shown that such a probability density can be
split into a thermally diffusive component and an active one.
The latter satisfies the Fokker-Planck equation (16), which
explicitly involves the time-dependent elements of the active
covariance matrix.

We have obtained numerical and analytical results for
the velocity autocorrelation function and the mean-squared
displacement for two specific memory functions that arise in
many natural systems: a finite-ranged exponential decay and
a long-ranged power law. In both cases, damped-oscillatory
behavior, that alternates between positive and negative corre-
lations, of the swimming velocity emerges for certain values
of the relevant parameters. The oscillations are damped in the
case of the exponential decay, which leads to the emergence
of an active diffusion coefficient and allows the definition of a
nonequilibrium effective temperature. In contrast, oscillations
are long lived for the power-law memory, and, remarkably,
long-time subdiffusion is observed. This provides a simple
example of free self-propelled motion where the concept
of nonequilibrium effective temperature can not be trivially
applied.

Although the effects of exponential memory have already
been explicitly considered on the rotational motion of active
Brownian particles [47,55,72,73], to our knowledge this is the
first time that a general formulation encompassing long-lived
correlations in the swimming speed has been studied. Our
approach has allowed us to uncover numerous patterns of
active motion which are absent in the conventional AOUM.
Therefore, we expect that our results will be relevant for
the understanding and modeling of intricate active systems,
whose underlying dynamics, caused either by internal or
external mechanisms, give rise to strong memory effects.
In fact, our single-particle model is able to qualitatively
capture a variety of behaviors observed in numerous active
systems where long-range memory in the swimming veloc-
ity emerges either from self- or interparticle interactions.
Similar effects are also expected to happen for deformable,
asymmetric, or chiral self-propelled particles swimming in
non-Newtonian fluid environments. Under such conditions,
the local rheological properties of the medium, coupled to
the response of the particle, can result in strongly correlated
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fluctuations of the propulsion velocity. A further step will be
to investigate the effect of confining potentials and external
flows, as they introduce additional timescales and correlations
that could significantly modify the persistence of the active
motion.
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APPENDIX: DERIVATION OF THE ACTIVE
FOKKER-PLANCK EQUATION

We briefly derive the Fokker-Planck equation (16) for the
bivariate probability density, G2

act(x, vs, t ), that corresponds
to the active part of motion. The starting point is the char-
acteristic function Ĝ(2)

act (k, q, t ) of active motion, given by
Eq. (8b). After applying the advective derivative in Fourier
space, ∂

∂t − k ∂
∂q , to the expression (8b) we have that(

∂

∂t
− k

∂

∂q

)
Ĝ(2)

act (k, q, t )

= −qk

[
d

dt
σ 2

vsvs
(t ) − σ 2

xvs
(t )

]
Ĝ(2)

act (k, q, t )

− q2

[
1

2

d

dt
σ 2

vsvs
(t )

]
Ĝ(2)

act (k, q, t ), (A1)

where σ 2
vsvs

(t ), σ 2
xvs

(t ), and σ 2
xx(t ) are the elements of the

active covariance matrix �act, and we have used that σ 2
xvs

(t ) =
1
2

d
dt σ

2
xx(t ), which makes the proportional terms to k2 cancel

each other. By noticing that

qk Ĝ(2)
act (k, q, t ) = − 1

σ 2
xvs

(t )
q

∂

∂q
Ĝ(2)

act (k, q, t )

− q2 σ 2
vsvs

(t )

σ 2
xvs

(t )
Ĝ(2)

act (k, q, t ), (A2)

(as can be checked straightforwardly by direct substitution),
we have that Eq. (A1) can be rewritten as

(
∂

∂t
+ k

∂

∂q

)
Ĝ(2)

act (k, q, t )

= −
[

f (t )q
∂

∂q
+ g(t ) qk + h(t )q2

]
Ĝ(2)

act (k, q, t ), (A3)

whose inverse Fourier transform directly leads to the Fokker-
Planck equation (16), with f (t ), g(t ), and h(t ) as given in
Eqs. (17).
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