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Jamming and tiling in fragmentation of rectangles
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We investigate a stochastic process where a rectangle breaks into smaller rectangles through a series of
horizontal and vertical fragmentation events. We focus on the case where both the vertical size and the horizontal
size of a rectangle are discrete variables. Because of this constraint, the system reaches a jammed state where all
rectangles are sticks, that is, rectangles with minimal width. Sticks are frozen as they cannot break any further.
The average number of sticks in the jammed state, S, grows as S � A/

√
2π ln A with rectangle area A in the

large-area limit, and remarkably, this behavior is independent of the aspect ratio. The distribution of stick length
has a power-law tail, and further, its moments are characterized by a nonlinear spectrum of scaling exponents.
We also study an asymmetric breakage process where vertical and horizontal fragmentation events are realized
with different probabilities. In this case, there is a phase transition between a weakly asymmetric phase where
the length distribution is independent of system size and a strongly asymmetric phase where this distribution
depends on system size.
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I. INTRODUCTION

Fragmentation processes where large objects break into
smaller ones underlie an ever growing number of physical
and natural phenomena [1–7]. In particular, fragmentation
occurs in soft matter systems such as polymers [8], active
matter [9,10], granular media [11,12], and brittle materi-
als [13–15].

Experimental and theoretical studies of fragmentation gen-
erally focus on the distribution of fragment size. Typically, this
distribution is self-similar throughout the breakage process,
and it is characterized by a single quantity, for example,
the average fragment size [16–18]. Self-similarity extends
to discrete fragments and continuous ones, one-dimensional
fragments and multi-dimensional ones [19]. However, while
the fragment size is a fluctuating quantity throughout the
breakage process, the fragment size becomes deterministic in
the final state as all fragments have the same size. In this sense,
the final state can be trivial.

Recently, non-trivial final states have been reported in
a multi-dimensional fragmentation process [20–23] which
models martensitic phase transformations [24–26]. The sys-
tem reaches a jammed state where the two-dimensional frag-
ments are characterized two sizes: one size is a deterministic
quantity, but the second size is a stochastic quantity. Here,
we study this planar fragmentation process analytically, and
we present a comprehensive statistical analysis of the jammed
state.

We study fragmentation of rectangles with discrete hor-
izontal and vertical sizes (Fig. 1). A rectangle can break
vertically or horizontally into two smaller rectangles. Due to
discreteness, rectangles with minimal vertical or horizontal
size can not break, and hence, are frozen. We refer to these
frozen rectangles as “sticks.” Through a sequence of random
fragmentation events, the system which initially consists of a

single rectangle, reaches a jammed state where all rectangles
are sticks (Fig. 2).

We find that, up to a logarithmic correction, the average
number of frozen sticks in the jammed state, S, grows linearly
with the area A,

S � A√
2π ln A

. (1)

Interestingly, this asymptotic behavior is universal as it applies
regardless of aspect ratio. We also study the distribution of
stick length and find that this distribution has a power-law tail.
Further, this length distribution exhibits multiscaling asymp-
totic behavior as its moments are characterized by a nonlinear
spectrum of exponents.

We also investigate an asymmetric process where horizon-
tal and vertical cuts are realized with different probabilities.
We find a phase transition at a critical value of the asymmetry
parameter. In the weakly asymmetric phase, the length distri-
bution does not depend on system size, while in the strongly
asymmetric phase, this distribution does depend on system
size.

The rest of this paper is organized as follows. In Sec. II, we
introduce the fragmentation process and develop the theoreti-
cal techniques used throughout this investigation to obtain the
leading asymptotic behavior in the large system-size limit. We
first analyze the average number of sticks and then consider
the length distribution of sticks. In Sec. III, we generalize the
results to the case where horizontal and vertical fragmentation
occur at different rates. Next, in Sec. IV, we analyze a closely
related process of fragmentation into four, rather than two,
rectangles. In this case, the outcome of a fragmentation event
is deterministic, and we can also address the total number
of jammed configurations. We conclude with a discussion in
Sec. V. Details of several technical derivations are presented
in the Appendix.
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FIG. 1. Illustration of the fragmentation process Eq. (2). Initially,
the system consists of a single rectangle. Through a series of hor-
izontal and vertical cuts, the system reaches a jammed state where
fragmentation is no longer possible.

II. FRAGMENTATION OF RECTANGLES

Initially, the system consists of a single rectangle with
horizontal size m, vertical size n, and hence, area A = mn.
Both the horizontal size and the vertical size are integer. It
is convenient to envision a square grid with (m − 1)(n − 1)
internal grid points embedded within the rectangle (Fig. 1).
In each fragmentation event, an internal grid point is selected,
and then a cut is made along the horizontal or the vertical
direction. As a result, the rectangle breaks into two smaller
ones,

(m, n) →
{

(i, n) + (m − i, n) with prob. 1/2,

(m, j) + (m, n − j) with prob. 1/2.
(2)

The grid point with 1 � i � m − 1 and 1 � j � n − 1 is
chosen at random, as is the fragmentation direction. Of course,
the total area is conserved.

Fragmentation requires an internal grid point. Therefore,
rectangles with m > 1 and n > 1 are active, and otherwise,
rectangles with m = 1 or n = 1, referred to as sticks, are
frozen. The fragmentation process Eq. (2) is repeated for
every active rectangle until the system reaches a jammed state
with sticks only (Fig. 2). In this study, we focus on the jammed
state.

Let S(m, n) be the average number of sticks in the jammed
state when the initial rectangle has dimensions m × n. This
average is taken over all realizations of the random breakage
process. Since the fragmentation process Eq. (2) is symmetric

FIG. 2. A jammed state in a system of size 50 × 50. The jammed
state consists of rectangles of size 1 × k or k × 1.

with respect to the horizontal and the vertical direction, we ex-
pect S(m, n) = S(n, m). The average number of frozen sticks
obeys the recursion [26]

S(m, n) = 1

m − 1

m−1∑
i=1

S(i, n) + 1

n − 1

n−1∑
j=1

S(m, j) . (3)

The first term on the right-hand side accounts for the m − 1
possible cuts in the vertical direction, and similarly, the second
term accounts for the n − 1 possible cuts in the horizontal
direction. The recursion equation is subject to the boundary
conditions

S(m, 1) = S(1, n) = 1 (4)

for all m � 1 and n � 1. Each fragmentation event involves
a single rectangle, and accordingly, the governing equation
is linear. We emphasize that the governing Eq. (3) is exact:
since there are no two-body interactions, our theoretical treat-
ment makes no mean-field assumptions regarding two-body
correlations.

Equations (3) and (4) yield the average number of frozen
sticks for small rectangles,

S(2, 2) = 2, S(2, 3) = 5
2 , S(2, 4) = 17

6 ,

S(3, 3) = 7
2 , S(3, 4) = 17

4 , S(4, 4) = 97
18 . (5)

Moreover, for ladders (m = 2), Eq. (3) simplifies to S(2, n) −
S(2, n − 1) = 1

n−1 and therefore,

S(2, n) = 1 + Hn−1, (6)

where HN = ∑
1�i�N i−1 is the harmonic number. For long

ladders, S(2, n) � ln n + 1 + γ , where γ = 0.57721 is the
Euler constant. It is also possible to show that as long as m
is finite, the leading asymptotic behavior remains logarithmic,

S(m, n) � (ln n)m−1

(m − 1)!2
, (7)

in the limit n → ∞.
Our main interest is the behavior for large rectangles,

and specifically, the leading asymptotics when m → ∞ and
n → ∞. Hence, we treat m and n as continuous variables, and
replace the sums in Eq. (3) with integrals. The average number
of sticks satisfies the integral equation

S(m, n) = 1

m

∫ m

1
di S(i, n) + 1

n

∫ n

1
d j S(m, j), (8)

within this continuous framework. Next, we multiply this
integral equation by the area mn and then differentiate the
resulting equation with respect to m and n. That shows the
quantity S(m, n) satisfies the partial differential equation

∂m∂n[mnS(m, n)] = ∂m[mS(m, n)] + ∂n[nS(m, n)]. (9)

We emphasize that the continuum approach yields the leading
asymptotic behavior for large n and m exactly, but it is not
expected to give the leading correction. To illustrate this,
we take for example the recursion above Eq. (6), which in
the continuum approach translates to the differential equation
dS(2, n)/dn = 1/n. Indeed, this equation yields the leading
asymptotic behavior exactly, S(2, n) � ln n, but it does not
produce the correction which involves the Euler constant.
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Hereinafter, we use ∂m = ∂
∂m and ∂n = ∂

∂n to denote partial
derivatives. Further simplification can be achieved by intro-
ducing the logarithmic variables

μ = ln m, ν = ln n . (10)

With this transformation, Eq. (9) reduces to a partial differen-
tial equation with constant coefficients,

∂μ∂νS(μ, ν) = S(μ, ν), (11)

that should be solved subject to the boundary conditions
S(μ, 0) = 1 and S(0, ν) = 1.

The central quantity throughout our analysis is the double
Laplace transform

Ŝ(p, q) =
∫ ∞

0
dμ e−pμ

∫ ∞

0
dν e−qν S(μ, ν) . (12)

It is obtained by multiplying both sides of the governing
Eq. (11) by e−pμ−qν and then integrating over the logarith-
mic variables μ and ν. By using the boundary conditions
S(μ, 0) = 1 and S(ν, 0) = 1, we find that double Laplace
transform is remarkably compact,

Ŝ(p, q) = 1

pq − 1
. (13)

Therefore, the average number of sticks in the jammed state,
S(μ, ν), equals the inverse Laplace transform

S(μ, ν) =
∫ i∞

−i∞

d p

2π i

∫ i∞

−i∞

dq

2π i

epμ+qν

pq − 1

=
∫ i∞

−i∞

dq

2π i

1

q
eνq+μ/q . (14)

We perform the inversion first with respect to the conjugate
variable p and then with respect to the conjugate variable q.
The inversion with respect to p is immediate as the integrand
in the first line has a pole at p = q−1.

The integral over the variable q in Eq. (14) has the form

I =
∫ i∞

−i∞

dq

2π i
F (q) eν f (q) . (15)

The exponential dominates the integrand in the limit ν → ∞.
Further, the function f (q) is maximal at the saddle point q∗
which is determined from f ′(q∗) = 0, and in the vicinity of
this saddle point we have

f (q) � f (q∗) + 1
2 (q − q∗)2 f ′′(q∗) . (16)

The integration contour in Eq. (15) can be along any line
that parallels the imaginary axis in the complex plane as long
as Re(q) is greater than the real part of any singularity the
integrand may have. We conveniently choose a line parallel to
the imaginary axis that passes through the saddle point q∗.
With the transformation of variables q = q∗ + iy/

√
f ′′(q∗),

the integral Eq. (15) reduces to a Gaussian integral. As long
as Re(q∗) exceeds the real part of the singularities of F (q), we
have

I � F (q∗) eν f (q∗ )

√
2πν f ′′(q∗)

. (17)

Here, we used
∫ ∞
−∞ exp(−y2/2)dy = √

2π .
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FIG. 3. The quantity S
√

2π ln A /A versus (ln A)−1. The dashed
line shows results of a fourth-order polynomial fit to the data, and
the intercept agrees with the theoretical prediction of unity to within
0.1%. The quantity S was obtained by numerical iteration of the
recursion Eq. (3), subject to the boundary condition Eq. (4).

First, we discuss squares, μ = ν, for which S(ν, ν) = I
with I given in Eq. (15). The quantities F (q) = q−1 and

f (q) = q + q−1 (18)

specify the integral Eq. (15). The saddle point is q∗ = 1, and
furthermore, f (q∗) = f ′′(q∗) = 2 and F (q∗) = 1. By substi-
tuting these values into the general expression Eq. (17), we
obtain the leading asymptotic behavior

S(ν, ν) � e2ν

√
4πν

. (19)

Equation (1) expresses this behavior in terms of the area
A = e2ν . Results of numerical evaluation of the recursion
Eq. (3) are in excellent agreement with the theoretical predic-
tion, and we conclude that the continuum framework yields
exact results for the leading asymptotic behavior (Fig. 3).

We now consider rectangles of arbitrary size for which
S(μ, ν) = I with f (q) = q + (μ/ν)q−1 and F (q) = q−1. It is
straightforward to repeat the steps leading to Eq. (19), and
obtain the general behavior

S(μ, ν) � e2
√

μν√
4π

√
μν

. (20)

As expected, the average number of sticks is symmetric,
S(μ, ν) = S(ν, μ), and moreover, the quantity ν in Eq. (19)
is now replaced with the geometric average

√
μν. In the

limit m → ∞ and n → ∞ with the aspect ratio r = m
n kept

fixed, we have
√

μν � (μ + ν)/2. In this limit, the leading
asymptotic behavior Eq. (20) is identical to Eq. (19). Inter-
estingly, the average number of jammed sticks is universal in
the large-area limit—all rectangles with the same area behave
similarly. The only requirement is that the aspect ratio is finite.
In view of this universality, we henceforth quote results for
squares without loss of generality.

In the jammed state, the original rectangle is covered with
rectangles of size 1 × k or k × 1 with k � 2, and we now
analyze the distribution of stick length k. Let Sk (m, n) be the
average number sticks of length k when the initial rectan-
gle has dimensions m × n. Similar to S(m, n), the quantity
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Sk (m, n) is an average over all realizations of the random
breakage process Eq. (2) resulting in the jammed state. For
example, for a rectangle of size 3 × 2, according to Eq. (2),
with probability 1

2 , the jammed state has two sticks of length
three and with an equal probability, the jammed state has three
sticks of length two. Hence, S2(3, 2) = 3

2 and S3(3, 2) = 1.
The quantity Sk (m, n) satisfies two sum rules,

S(m, n) =
∑
k�2

Sk (m, n), A =
∑
k�2

kSk (m, n) . (21)

Let 〈k〉 = ∑
k kSk/

∑
k Sk be the first moment of the nor-

malized quantity Sk (m, n)/S. Equation (21) implies that
〈k〉 = A/S, and hence, this quantity grows logarithmically
with area, 〈k〉 � √

2π ln A. Such behavior is independent of
the aspect ratio in the large-area limit.

For all k, the quantity Sk (m, n) satisfies the recursion
Eq. (3), although the boundary condition does depend on
length

Sk (m, 1) = δm,k Sk (1, n) = δn,k . (22)

With the boundary condition Sn(1, n) = 1, the recursion
Eq. (3) implies Sn(m, n) = 1 for all m < n, and it is also
possible to show that Sn(n, n) = 2.

The linear Eq. (3) which governs S(m, n) and Sk (m, n)
is exact. It is still useful to compare its predictions with
results of numerical Monte Carlo simulations of the break-
age process. In the simulations, we start with a rectangle
of size m × n and perform the fragmentation step Eq. (2)
repeatedly until all rectangles are sticks. We then tally
the number of sticks of a given length, and the quantity
Sk (m, n) equals this tally, divided by the number of indepen-
dent realizations of the random process. For example, for a
square of size 5 × 5 we were able to validate the theoretical
predictions S2(5, 5) = 95

32 , S3(5, 5) = 235
144 , S4(5, 5) = 25

24 , and
S5(5, 5) = 2 to within 10−6 using 1012 independent realiza-
tions. Indeed, the linear recursion Eq. (3) yields the average
number of sticks of length k exactly. Since the quantity
Sk (m, n) measures the abundance of sticks of length k, we
define Sk (m, n)/S(m, n) as the distribution of stick length
throughout this paper. We emphasize that this distribution
corresponds to the aforementioned measurement procedure in
numerical simulations.

For large rectangles, we utilize the continuum approach
once again. As a function of the logarithmic variables defined
in Eq. (10), the average number of frozen sticks with a
given length Sk (μ, ν) satisfies the partial differential Eq. (11),
subject to the boundary conditions

Sk (μ, 0) = e−μδ(μ − ln k),

Sk (0, ν) = e−νδ(ν − ln k) . (23)

To obtain these boundary conditions, we first rewrite Eq. (22)
as Sk (m, 1) = δ(m − k) and Sk (1, n) = δ(n − k) and then
perform the transformation of variables Eq. (10) by using
δ[F(x)] = δ(x − x0)/|F ′(x0)|.

Next, we repeat the steps leading to Eq. (13), using the
partial differential Eq. (11) which also governs Sk (μ, ν) and
the boundary condition Eq. (23), and arrive at

Ŝk (p, q) = pk−1−p + qk−1−q

pq − 1
. (24)
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0

Φ
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A=1.6x107

Eq. (28)

FIG. 4. The scaling function �(x) versus the scaling variable
x. Results from three different system sizes are compared with the
theoretical prediction. To evaluate �(x), the quantity Sk (m, n) was
obtained by numerical iteration of the recursion Eq. (3), subject to
the boundary condition Eq. (22).

We note that this double Laplace transform is symmetric,
Ŝk (p, q) = Ŝk (q, p), as the two terms in the numerator are
equivalent. Since the continuum approximation is exact only
asymptotically, that is, in the limit k → ∞, the resulting
Laplace transform does not necessarily satisfy the normal-
ization

∑
k Ŝk (p, q) = Ŝ(p, q) (see also Appendix A). For

squares, μ = ν, it suffices to invert only one of these terms.
We thus perform the inverse Laplace transform of the term
qk−1−q/(pq − 1) first with respect to p and then with respect
to q, thereby leading to Sk (ν, ν) = I with I given by Eq. (17).
The integrand is specified by F (q) = 2 and

f (q) = q + q−1 − (1 + q)x, x = ln k

ln n
. (25)

The saddle point is q∗ = 1/
√

1 − x, and by substituting
f (q∗) = 2

√
1 − x − x and f ′′(q∗) = 2(1 − x)3/2 into the gen-

eral formula Eq. (17), we obtain

Sk (ν, ν) � exp[ν(2
√

1 − x − x)]√
πν(1 − x)3/2

. (26)

The distribution of frozen sticks with length k is defined
by Pk (ν) = Sk (ν, ν)/

∑
k Sk (ν, ν), and we reiterate that the

quantities Sk are obtained as averages over all realizations of
the random breakage process Eq. (2). This quantity is normal-
ized,

∑
k�2 Pk = 1, and its first moment is 〈k〉 = ∑

k�2 kPk .
By using Eqs. (19) and (26) we find that the length distribution
adheres to the scaling form

ln
(

1
2 Pk

)
ln n

� �

(
ln k

ln n

)
, (27)

with the scaling function

�(x) = 2(
√

1 − x − 1) − x . (28)

Equation (27) constitutes an unusual scaling form as the
scaled logarithm of the length distribution Pk is a universal
function of the scaled logarithm of the length k. As a result,
the convergence toward the ultimate asymptotic behavior is
extremely slow as it involves logarithm of system size (Fig. 4).
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FIG. 5. The length distribution Pk versus k. Numerical results
for three system sizes are compared with the theoretical prediction.
To evaluate Pk , the quantity Sk (m, n) was obtained by numerical
iteration of the recursion Eq. (3), subject to the boundary condition
Eq. (22). Not displayed is the anomalous data point Pn = 2/S(n, n)
corresponding to the largest possible stick which shows a sharp jump
as Pn � 2

√
2π ln A A−1 (see also Ref. [26]).

The scaling behavior Eqs. (27) and (28) describes the
distribution at large length scales, that is, ln k = O(ln n). Still,
the small-x behavior �(x) � −2x − 1

4 x2 yields the behavior
at smaller length scales,

Pk � 2k−2 exp

[
− (ln k)2

4 ln n

]
. (29)

Therefore, the length distribution decays as a power-law,
Pk � 2k−2 [26], at sufficiently small length scales, ln k 
√

ln n. Beyond this length scale, the power-law tail is sup-
pressed by a log-normal term. We also note that log-normal
distributions naturally arise in multiplicative random pro-
cesses [27,28], and that the fragmentation process Eq. (2)
can be formulated as such, for example, (m, n) → (mx, n) +
(m(1 − x), n) with x = i/m, in the first line of Eq. (2).

In a finite system, the power-law tail holds over a lim-
ited range (Fig. 5). Further, the log-normal term is relevant
at length scales k2 determined by ln k2 ∼ √

ln n. Similarly,
there is a series of length scales kb that are specified by
ln kb ∼ (ln n)(b−1)/b. For k ∼ kb, the bth term in the Taylor
expansion of �(x) affects the length distribution. For instance,
when k ∼ k4 we have

Pk � 2 exp

[
−2 ln k − (ln k)2

4 ln n
− (ln k)3

8(ln n)2
− 5(ln k)4

64(ln n)3

]
.

Ultimately, at sufficiently large scales, the entire scaling func-
tion Eq. (28) characterizes the length distribution (Fig. 4).

In Appendix A, we derive the exact length distribution

Pk = 2

k(k + 1)
, (30)

which is realized in the limit n → ∞. This distribution is
properly normalized,

∑
k�2 Pk = 1, and its power-law tail

Pk � 2k−2 agrees with the asymptotic behavior Eq. (29). We
stress that Eq. (30) is exact for all k � 2, whereas Eq. (29) is
only asymptotically exact, yielding the leading behavior in the
limit k → ∞. Furthermore, results of numerical evaluation of

100 101 102 103 104 105 106 107100

101

102

103

104

105
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107

108

M2
M3
M4

2A1/4

2A2/3

2A9/8

FIG. 6. The normalized moments Mh versus square area A for
h = 2, 3, 4. Also shown as a reference are the corresponding theoret-
ical predictions.

the recursion Eq. (3) with the boundary condition Eq. (22) are
in excellent agreement with this theoretical prediction (Fig. 5).
Moreover, we numerically validated the theoretical prediction
P2 = 1

3 to within 0.1% using the extrapolation described in the
caption to Fig. 3. The exact length distribution Eq. (30) can be
expressed as a ratio of � functions, the discrete counterpart of
a power law. It can be derived by treating the variables m and
n as discrete, in contrast with the continuum analysis leading
to Eq. (29).

Finally, we investigate the moments of the quantity Pk ,
defined by 〈kh〉 = ∑

k�2 khPk . It is convenient to normalize
these moments by 〈k〉,

Mh = 〈kh〉
〈k〉 , (31)

with h > 1. By using the definition Pk = Sk/S and the second
sum rule in Eq. (21), we can express the normalized moments
through Sk (n, n),

Mh = n−2
∑
k�2

khSk (n, n) . (32)

We now substitute Eq. (26) into this expression and convert
the sum over the discrete variable k into an integral over the
continuous variable x by using k = eνx. With this transforma-
tion of variables, the moments are given by

Mh �
√

ν

π

∫ 1

0
dx (1 − x)−3/4 eνφ(x), (33)

with φ(x) = �(x) + (h + 1)x. The exponential term domi-
nates the integral in the limit ν → ∞. The function φ(x)
is maximal at the saddle point, x∗ = 1 − h−2, and from
the quadratic behavior φ(x) = φ(x∗) + 1

2φ′′(x∗)(x − x∗)2, we
deduce the leading asymptotic behavior (Fig. 6),

Mh � 2 Aμ(h) with μ(h) = (h − 1)2

2h
. (34)

Results of numerical evaluation of low-order moments are in
excellent agreement with this theoretical prediction.

The scaling exponent μ is a nonlinear function of the index
h, and therefore, the scaling behavior of the first moment does
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FIG. 7. The scaling exponents μ and μnonjam versus the moment
index h.

not characterize high-order moments. Hence, the moments
exhibit multiscaling asymptotic behavior.

It is interesting to compare the behavior with that found
for a counterpart of the fragmentation process Eq. (2) where
any point inside a rectangle may be selected at random, and
consequently, the horizontal and vertical sizes of rectangles
are not restricted to integers. In this case, the number of
fragments grows linearly with the number of fragmentation
events t , and conversely, the average area of a fragment,
〈a〉, is inversely proportional to this quantity, 〈a〉 ∼ t−1. In
contrast with the behavior discussed above, the fragmentation
process never stops and the system does not reach a jammed
state [25,30].

To compare the two cases, we note that the aspect ratio
of a frozen rectangle r equals its length, r = k. For the
nonjamming process, the normalized moments of the aspect
ratio, Mh = 〈rh〉/〈r〉, also exhibit multiscaling asymptotic be-
havior Mh ∼ (A/〈a〉)μnonjam , where 〈a〉 is the average area of a
rectangle and

μnonjam =
√

h2 + 1 −
√

2 (35)

is the nonlinear scaling exponent [25,30]. Notably, the two
spectra of exponents are different, μ �= μnonjam although both
become linear at high orders, 2μ � μnonjam � h as h → ∞.
Figure 7 shows that multiscaling is more pronounced in the
present case.

III. ASYMMETRIC FRAGMENTATION

We now generalize the fragmentation process Eq. (2) and
consider the case where the probabilities of horizontal and
vertical cuts may differ [26]. The asymmetric fragmentation
process can be represented schematically as

(m, n) →
{

(i, n) + (m − i, n) prob. (1 − α)/2,

(m, j) + (m, n − j) prob. (1 + α)/2.
(36)

The parameter α controls the degree of asymmetry, and with-
out loss of generality, we assume 0 � α � 1. The fragmen-
tation process Eq. (36) reduces to Eq. (2) when there is no
asymmetry, α = 0, and it becomes one-dimensional, when the
asymmetry parameter is maximal, α = 1.

In the completely asymmetric case, the jammed state con-
tains n identical sticks of length n. Hence, the number of sticks
is not proportional to the area, and also, there is no logarithmic
dependence on system size, unlike Eq. (1). Below, we show
that the logarithmic dependence on system size disappears
when the asymmetry parameter exceeds the critical value

αc = 1√
2

. (37)

The average number of frozen sticks obeys

S(m, n) = 1 − α

m − 1

m−1∑
i=1

S(i, n) + 1 + α

n − 1

n−1∑
j=1

S(m, j), (38)

subject to the boundary condition Eq. (4). This recurrence
reduces to Eq. (3) when the asymmetry parameter vanishes.

Once again, we employ the continuum approach. In terms
of the logarithmic variables Eq. (10), the quantity S ≡ S(μ, ν)
satisfies the partial differential equation

∂μ∂νS = S + α(∂μS − ∂νS) . (39)

We now repeat the steps leading to Eq. (13) and find that the
double Laplace transform, defined in Eq. (12), is given by

Ŝ(p, q) = 1 + α(p−1 − q−1)

pq + α(q − p) − 1
. (40)

Since the governing Eq. (39) is no longer symmetric in the
variables μ and ν, the Laplace transform Eq. (40) is not
symmetric when α �= 0. We thus reiterate that results are
quoted only for squares.

To invert the Laplace transform Eq. (40), we split
the numerator 1 + α(p−1 − q−1) into q−dependent and
p−dependent terms: 1 − α q−1 and α p−1. Due to asymmetry,
these two are no longer equivalent, and the average number of
sticks in the jammed state S ≡ S(ν, ν) is given by

S = I + J . (41)

The quantity I ≡ I (ν, ν) is obtained by inverting (1 −
α q−1)/[pq + α(q − p) − 1] first with respect to the conjugate
variable p and then with respect to the conjugate variable q.
Similarly, the quantity J ≡ J (ν, ν) is obtained by inverting
α p−1/[pq + α(q − p) − 1] first with respect to q and then,
with respect to p.

To compute the first term in Eq. (41), we follow the calcu-
lations in the symmetric case, and find that I is an integral of
the form Eq. (15), specified by F (q) = q−1 and

f (q) = q − α + β2

q − α
, β =

√
1 − α2 . (42)

The saddle point is simply q∗ = β + α, and from the general
formula Eq. (17) we obtain

I � β

β + α

e2βν

√
4πβν

. (43)

This asymptotic behavior resembles Eq. (1) in that the leading
exponential behavior is suppressed by a logarithmic term.
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The second quantity in Eq. (41) is analogous in form to
Eq. (15): it is given by an integral over p, rather than q,

J =
∫ i∞

−i∞

d p

2π i
G(p) eνg(p), (44)

with the functions

G(p) = α

p(p + α)
, g(p) = p + α + β2

p + α
. (45)

However, the saddle point of the function g(p) is different,
p∗ = β − α. To evaluate the integral J , we simply replace
F (q∗), f (q∗), and f ′′(q∗) in Eq. (17) with G(p∗), g(p∗), and
g′′(p∗), respectively, to find

J � α

β − α

e2βν

√
4πβν

. (46)

Therefore, the two terms in the sum Eq. (41) are proportional
to each other, and by adding Eqs. (43) and (46), we arrive at

S � C
e2βν

√
4πβν

, C = 1

2
(
α2

c − α2
) , (47)

with the critical point αc given in Eq. (37). The constant
C diverges as α ↑ αc, thereby indicating that Eq. (47) is
valid only when the asymmetry is sufficiently weak, α < αc.
Indeed, the integrand in Eq. (44) has two simple poles: one
at p = −α and another at p = 0. The first pole is located to
the left of the saddle point p∗, irrespective of α. However, the
second pole is located to the left of the saddle point only when
α < αc, and consequently, Eq. (46) holds only in this regime.

To evaluate the integral J when α > αc, we deform the
integration contour so that it consists of a line parallel to
the imaginary axis which passes through the saddle point p∗
and a small circle enclosing the origin, p = 0. The residue at
the origin gives the dominant contribution, J � eν/α , which
is valid when the asymmetry is sufficiently strong, α > αc.
In this regime, the quantity I in Eq. (43) is negligible, and
consequently, S(ν, ν) � eν/α .

In summary, the number of sticks in the jammed state
grows algebraically with area A:

S � U Aγ , with γ =
{√

1 − α2 α � αc,

1/(2α) α � αc .
(48)

As long as there is some asymmetry, the growth is sublinear:
γ < 1 when α > 0. The exponent γ is continuous at the
critical point, but its first derivative is discontinuous at that
point. Furthermore, the exponent γ is concave when α < αc

but it is convex when α > αc. The critical value is γc = αc,
and the convergence toward the leading asymptotic behavior
is slower near the critical point (Fig. 8).

The prefactor U in Eq. (48) depends logarithmically on
area in the weakly asymmetric phase, but it is independent
of the area in the strongly asymmetric case. This prefactor is
given by

U =
⎧⎨⎩C/

√
2πβ ln A α < αc,

Uc α = αc,

1 α > αc .

(49)

The constant C is quoted in Eq. (47). Hence, there is loga-
rithmic correction in the weakly asymmetric phase, but the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

0.6

0.7

0.8

0.9

1

γ

numerical evaluation
Eq. (48)

FIG. 8. The exponent γ given by Eq. (48) versus the asymmetry
parameter α. Also shown are results of numerical evaluation of
the recursion equations with A = 108. To estimate the power-law
exponent, we took into account the logarithmic correction in the
weakly asymmetric phase, according to Eq. (49). The critical point
Eq. (37) is indicated by the dashed vertical line.

logarithmic correction disappears in the strongly asymmet-
ric phase. Numerically, we estimate the critical prefactor
Uc = 0.40 ± 0.01.

The length distribution decays algebraically

Pk � V k−σ , with σ = 1 + β − α, (50)

for k � 1. This behavior is derived in Appendix B. The
power-law tail Eq. (50) generally holds for infinitely large sys-
tems. However, for finite systems, this behavior holds in the
range ln k 
 √

ln n, as discussed above. Generally, the expo-
nent σ decreases monotonically as α increases, and it vanishes
in the completely asymmetric case (Fig. 9). Therefore, as the
asymmetry parameter becomes smaller, the tail of the length
distribution decays more sharply (see also Ref. [26]).

Interestingly, the exponent σ which characterizes the tail
of the length distribution has the same form Eq. (50) in the
weakly asymmetric phase, α � αc and the strongly asymmet-
ric phase α � αc. Yet, the prefactor V in Eq. (50) depends
algebraically on area in the strongly asymmetric phase, but it
is independent of the area in the weakly asymmetric phase.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

σ

FIG. 9. The power-law exponent, given in Eq. (50), versus the
asymmetry parameter α.
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FIG. 10. The scaling exponent, given in Eq. (52), versus the
moment index h for various values of the asymmetry parameter α.

This prefactor is given by

V =

⎧⎪⎨⎪⎩
2β

(
α2

c − α2
)

α < αc,√
β/(2πU 2

c ln A) α = αc√
β/(2π ln A) Aβ−1/(2α) α > αc .

(51)

Therefore, the length distribution depends on system size in
the strongly asymmetric phase, but it is independent of system
size in the weakly asymmetric phase. Numerical integration
of the recursion equations confirms all A-dependencies in
Eqs. (48)–(51), including in particular the exponent γ , as
shown in Fig. 8. However, the amplitudes U and V in Eqs. (49)
and (51) differ from the values obtained by numerical inte-
gration, and hence, for the asymmetric case, the continuum
approach yields leading asymptotic behaviors only up to a
numeric factor.

From the length distribution Pk , it is also possible to
evaluate the moments Mh defined in Eq. (31). We find that
the moments grow algebraically with the area as in Eq. (34),
Mh ∼ Aμ. For asymmetric fragmentation, the spectrum of
scaling exponents is given by

μ = β2

2(h + α)
+ h + α

2
− 1 . (52)

This spectrum reduces to Eq. (34) when fragmentation is
symmetric, but in contrast, the scaling exponents are linear,
μ = h−1

2 , when fragmentation is completely asymmetric.
Figure 10 demonstrates how multiscaling becomes less pro-
nounced as the asymmetric nature of the fragmentation pro-
cess becomes stronger.

IV. FRAGMENTATION INTO FOUR RECTANGLES

The fragmentation process Eq. (2) incorporates two
stochastic elements as both the fragmentation point and the
fragmentation direction are selected at random. The latter
element can be eliminated by generating four rectangles,
rather than two, in each fragmentation event (Fig. 11). A
continuous version of this planar fragmentation process and
related variants were analyzed in a number of studies [29–34].

We now address this natural counterpart of the fragmen-
tation process Eq. (2) where first an internal grid point is

FIG. 11. Illustration of the fragmentation process Eq. (53). Ini-
tially, the system consists of a single rectangle. Through a series of
random fragmentation events, the system arrives at a jammed state
where all rectangles are sticks with minimal horizontal or vertical
size.

selected at random, and then, two simultaneous cuts are
made, one in the horizontal direction and one in the vertical
direction. As a result, each fragmentation event generates four
rectangles (Fig. 11),

(m, n) → (i, j) + (m − i, j) + (i, n − j) + (m − i, n − j),
(53)

with randomly selected 1 � i � n − 1 and 1 � j � m − 1.
In contrast with Eq. (2), once the grid point is selected, the
outcome is deterministic. Again, rectangles with m > 1 and
n > 1 are active and otherwise, rectangles with m = 1 or
n = 1 are frozen. Starting with a single m × n rectangle, the
system eventually reaches a jammed state where all rectangles
are sticks, including minimal 1 × 1 rectangles (Fig. 12).

The average number of frozen sticks in the jammed state,
S(m, n), satisfies the recursion equation

S(m, n) = 4

(m − 1)(n − 1)

m−1∑
i=1

n−1∑
j=1

S(i, j), (54)

subject to the boundary conditions Eq. (4). For small rect-
angles, the recursion equation gives S(2, 2) = 4, S(3, 3) = 7,
S(4, 4) = 32

3 , and so on. In contrast with the fragmentation
process Eq. (2) where the average number of sticks for
narrow but long rectangles diverges logarithmically, these
quantities are now finite, and for example, S(2, n) = 4 and
S(3, n) = 10 − 6

n−1 . In general, we find the limiting values

lim
n→∞ S(m, n) = m(m + 1)(m + 2)

6
, (55)

FIG. 12. A jammed configuration in a system of size 50 × 50.
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FIG. 13. The quantity S
√

2π ln A/A versus (ln A)−1. The dashed
line shows results of a fourth-order polynomial fit to the data. Results
of numerical evaluation of the recursion Eq. (54) agree with the
theoretical prediction for the leading asymptotic behavior to within
0.1%.

from the recursion Eq. (54).
For large rectangles, the recursion Eq. (54) turns into the

partial differential equation

∂m∂n[mnS(m, n)] = 4S(m, n) . (56)

Using the logarithmic variables Eq. (10), we transform this
equation into a partial differential equation with constant
coefficients, ∂μ∂νS + ∂μS + ∂νS = 3S. By repeating the steps
leading to Eq. (13), we obtain the Laplace transform

Ŝ(p, q) = 1

pq

(p + 1)(q + 1) − 1

(p + 1)(q + 1) − 4
. (57)

Next, we rewrite this expression as a sum of two terms:
(2−1 + q−1)/(pq + p + q + 3) and (2−1 + p−1)/(pq + p +
q + 3). For squares, these two terms are equivalent and it
suffices to perform the inverse Laplace transform of the first
term with respect to p and then, with respect to q. We thus
obtain S(ν, ν) = I where I is given by the general integral
Eq. (17). The integrand is specified by the functions

F (q) = q + 2

q(q + 1)
and f (q) = q − 1 + 4

q + 1
. (58)

From the condition f ′(q∗) = 0 we notice that the saddle point
remains q∗ = 1, and by using Eq. (17), we find the leading
asymptotic behavior of the number of frozen sticks in the
jammed state (Fig. 13)

S � 3A√
4π ln A

. (59)

In comparison with Eq. (1), the average number of frozen
sticks is now 3/

√
2 ≈ 2.12132 times larger. Results of nu-

merical evaluation of the recursion Eq. (54) are in excellent
agreement with the theoretical prediction Eq. (59). As was
the case for stochastic fragmentation, the average number of
jammed rectangles Eq. (59) extends to all rectangles with a
finite aspect ratio in the large-area limit.

FIG. 14. Illustration of the fragmentation process Eq. (53). The
first fragmentation event can always be uniquely identified.

For completeness, we quote the exact distribution of stick
length

Pk = 4

3k(k + 1)
, (60)

for k > 1 and P1 = 1
3 . This form, which is realized in the

limit n → ∞, can be obtained using the method outlined
in Appendix A. Sticks with k � 2 are doubly degenerate
compared with minimal 1 × 1 rectangles and hence, the quan-
tity P1 is suppressed by a factor 2. The length distribution
has a power-law tail, Pk � 4

3 k−2, which can be established
using continuum analysis used to obtain Eq. (29). For a finite
system, the power-law tail holds when 1 
 k 
 √

ln n, while
at larger length scales the distribution is strongly suppressed
by a log-normal term.

The planar fragmentation processes considered in this in-
vestigation generate special tilings of two-dimensional do-
mains. Indeed, in the jammed configuration, sticks of unit
width and variable length cover the original rectangle (Figs. 2
and 12). The jammed configurations differ from those in the
heavily studied dimer tiling [35–41] in two respects. First, the
lengths of the sticks do vary dramatically [42–45]. Second,
whereas in equilibrium problems jammed configurations have
equal weights, fragmentation is a dynamical process, and
the different tiling configurations are generally realized with
different probabilities.

The central quantity in tiling problem is the total number of
jammed configurations which typically grows exponentially
with area. For the process (53), it is straightforward to show
that T (m, n), the total number of jammed configurations for a
rectangle of size m × n, satisfies the recursion equation

T (m, n)

=
∑

1�i�m−1
1� j�n−1

T (i, j)T (m − i, j)T (i, n − j)T (m − i, n − j).

(61)

This recursion applies for all m � 2 and n � 2, and it is
subject to the boundary conditions T (m, 1) = 1 for all m � 1
and T (1, n) = 1 for all n � 1. As illustrated in Fig. 14, for any
jammed configuration, the first fragmentation event can be
uniquely identified. This first fragmentation event divides the
original rectangle to four smaller and independent rectangles,
thereby leading to the recursion Eq. (61). The same does not
hold true for the fragmentation process Eq. (2) and for this
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TABLE I. The number of jammed states for small squares.

n 1 2 3 4 5 6 7 8

T (n, n) 1 1 4 33 436 9,524 354,224 23,097,969

reason, it is not possible to write closed recursion equations
for the corresponding of number of jammed states.

A single iteration of the recursion Eq. (61) yields the
number of jammed configurations for ladders, T (2, n) =
n − 1, and a second iteration yields T (3, n) = 1

3 (n − 2)
(n2 − 4n + 15). The exact expression for T (4, n) is a seventh-
order polynomial, and T (m, n) quickly become unwieldy
when m increases.

Table I lists the number of jammed configurations for
squares with n � 7. Numerical iteration of the recursion
Eq. (61) shows that the number of jammed configurations
grows exponentially with area (see Fig. 15)

T ∼ eλA. (62)

For squares, the value λ = 0.2805 is obtained by fitting the
numerically evaluated quantity T (n, n) to an exponential.

V. DISCUSSION

In summary, we studied planar fragmentation, which can
be viewed as dual to planar aggregation [46]. We obtained
analytically several properties of the jammed state, including
the average number of rectangles and the length distribution
of rectangles. In general, statistical properties become inde-
pendent of the aspect ratio in the large-area limit. Moreover,
the length distribution of rectangles in the jammed state has
a power-law tail, and the moments of this distribution exhibit
multiscaling.

We also found a phase transition when the fragmentation
process is asymmetric. Generally, the average number of
jammed rectangles grows sublinearly with system size, and
the exponent characterizing this growth varies continuously
with the asymmetry parameter. This exponent is concave in
the weakly asymmetric phase and convex in the strongly
asymmetric phase. In addition, the length distribution is inde-

0 500 1000 1500 2000 2500100
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10200
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10300
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FIG. 15. The total number of jammed configurations for squares,
T = T (n, n), obtained by numerical iteration of Eq. (61), versus the
area A = n2.

pendent of system size in the weakly asymmetric phase, but it
does depend on system size in the strongly asymmetric phase.

Our theoretical analysis relies on recursion equations that
describe the final state of the system. Since each fragmenta-
tion event involves a single rectangle, the recursion equations
are linear. For large systems, we employed the continuum
approach and then applied the Laplace transform to obtain
the leading asymptotic behavior. Numerical evaluation of the
recursion equations support the theoretical predictions.

The recursion equations bypass the evolution toward the
jammed state and hence, directly yield statistics of the final
configuration. The fragmentation rate may be an arbitrary
function of the area, yet, as long as the fragmentation point
is selected at random, the recursion Eq. (3) holds. For specific
fragmentation rates, it is natural to study the evolution toward
the jammed state, including in particular the average jamming
time, and the distribution of jamming times.

Our analysis yields statistics of single fragments in the
jammed state such as the first moment and the length distri-
bution. Missing from our analysis, however, are statistics of
multiple fragments such as correlations between the orienta-
tions of neighboring sticks. Both sets of statistics are relevant
for characterizing the geometrical structure of planar frag-
mentation patterns found in martensitic transformations [26],
breakage of brittle objects [47,48], cracking of soils [49], and
drying of suspensions [50].

The behavior in higher dimensions can be studied as well.
In the three-dimensional generalization of Eq. (2), the jammed
state consists of rectangular plates, that is, boxes with unit
width. In this case, we find that the average number F of
frozen boxes grows as

F �
(√

3

2

)3
V

π ln V
, (63)

with V the volume of the original box. The area distribution
of jammed plates represents an interesting challenge.

The process Eq. (53) can be also generalized to d dimen-
sions. Here, each fragmentation event generates 2d boxes. The
jammed state consists of frozen boxes, each of which has
at least one minimal side. The number of frozen boxes F
grows as

F � 2d − 1√
d

V(
4π
d ln V

)(d−1)/2 . (64)

This result, which generalizes Eq. (59), is derived in Ap-
pendix C. A frozen box is characterized by d − 1 nontrivial
lengths and it is an interesting challenge to characterize the
distribution of these lengths.
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APPENDIX A: LENGTH DISTRIBUTION

To obtain the length distribution for an infinite system, we
treat m and n as discrete variables. To this end, we introduce
the generating function

S(x, y) =
∑
m�1

∑
n�1

S(m, n) xm−1yn−1 . (A1)

Here, we set S(1, 1) = 0. The generating function S ≡ S(x, y)
satisfies the partial differential equation

∂x∂yS = (1 − x)−1 ∂yS + (1 − y)−1 ∂xS . (A2)

To obtain this equation, we multiply the recursion
Eq. (3), which governs the averages S(m, n), by (m − 1)
(n − 1)xm−2yn−2 and sum over m � 2 and n � 2.
Furthermore, Eq. (A2) is subject to the boundary conditions
S(x, 0) = x/(1 − x) and S(0, y) = y/(1 − y).

We now introduce the variables

ξ = − ln(1 − x), η = − ln(1 − y) . (A3)

This transformation turns Eq. (A2) into a partial differential
equation with constant coefficients

∂ξ ∂ηS = ∂ξS + ∂ηS, (A4)

while the boundary conditions become S(ξ, 0) = eξ − 1 and
S(0, η) = eη − 1. Next, we introduce the double Laplace
transform

Ŝ(p, q) =
∫ ∞

0
dξ e−pξ

∫ ∞

0
dη e−qη S(ξ, η). (A5)

Using the governing Eq. (A4), we obtain

Ŝ(p, q) = p−1 + q−1

pq − p − q
. (A6)

We now invert the Laplace transform with respect to one of
the conjugate variables, to obtain the sum

S(ξ, η) =
∫ i∞

−i∞

dq

2π i

1

q(q − 1)
eηq+ξq/(q−1)

+
∫ i∞

−i∞

d p

2π i

1

p(p − 1)
eξ p+ηp/(p−1).

Thus far, our analysis is exact and, in particular, it applies to
all m and n. We now restrict our attention to squares, ξ = η

and further, we focus on the leading asymptotic behavior for
large systems which is captured by the leading behavior when
η → ∞. By performing the inverse Laplace transform over
the second conjugate variable, we obtain

S(η, η) � e4η

√
4πη

. (A7)

Next, we analyze the length distribution Sk (m, n). Its corre-
sponding generating function satisfies Eq. (A4), subject to the
boundary conditions Sk (ξ, 0) = (1 − e−ξ )k−1 and Sk (0, η) =
(1 − e−η )k−1. These two boundary conditions follow from
Sk (x, 0) = xk−1 and Sk (0, y) = yk−1. By repeating the steps
leading to Eq. (A6), we obtain

Ŝk (p, q) = �(k)

pq − p − q

[
(q − 1)�(q)

�(k + q)
+ (p − 1)�(p)

�(k + p)

]
.

We can verify that S(p, q) = ∑
k�2 Sk (p, q), whereas the

corresponding quantity in Eq. (24), which is obtained by
treating the variables m and n as continuous, violates this
normalization. The leading asymptotic behavior in the limit
η → ∞ is given by

Sk (η, η) � 2

k(k + 1)

e4η

√
4πη

. (A8)

The average number of sticks does not depend on as-
pect ratio and thus, we assume Sk (m, n) � PkS(m, n) at
large sizes. Then, according to the definition Eq. (A1)
and the leading asymptotic behavior Eq. (A7) we have
Sk (η, η) � Pke4η/

√
4πη. By comparing this expression with

Eq. (A8), we deduce the length distribution Pk in Eq. (30).

APPENDIX B: ASYMMETRIC FRAGMENTATION

The average number of sticks with a given length satisfies
the partial differential Eq. (3) subject to the boundary con-
ditions Eq. (23). The double Laplace transform, defined by
Eq. (12), is given by

Ŝk (p, q) = (q − α)k−1−q + (p + α)k−1−p

pq + α(q − p) − 1
. (B1)

To perform the double inverse Laplace transform, we rewrite
the numerator as a sum of the q-dependent quantity (q −
α)k−1−q and the p-dependent quantity (p + α)k−1−p. The
quantity Sk (p, q) is therefore a sum of two terms as in Eq. (41).

The first term in the sum Eq. (41) is the integral I defined
in Eq. (15) with F (q) = 1 and

f (q) = q − α + β2

q − α
− (1 + q)x. (B2)

Here, we again used the notations β = √
1 − α2 and

x = ln k/ ln n. The saddle point of the function f (q) is
q∗ = β(1 − x)−1/2 + α and with Eq. (17), we arrive at

I = exp[ν(2β
√

1 − x − x − αx)]√
4πν(1 − x)3/2/β

�
√

β√
4πν

e2βν k−(1+β+α). (B3)

By evaluating the small-x behavior of the general expression
in the first line, we obtained the large-k behavior in the second
line.

The second term in the sum Eq. (41) is the integral J
defined in Eq. (44) with G(p) = 1 and

g(p) = p + α + β2

p + α
− (1 + p)x. (B4)

The saddle point of the function g(p) is p∗ = β(1 − x)−1/2 −
α. By using the analog of the general expression Eq. (17), we
obtain

J = exp[ν(2β
√

1 − x − x + αx)]√
4πν(1 − x)3/2/β

�
√

β

4πν
e2βν k−(1+β−α). (B5)
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The large-k behavior in the second line follows from the
small-x behavior in the first line. By comparing the tails
Eqs. (B3) and (B5), we conclude that I is negligible compared
with J , and therefore Sk (ν, ν) � J for sufficiently large k. The
power-law tail Eq. (50) follows from Pk = Sk (ν, ν)/S(ν, ν).

So far, we have not differentiated between horizontal sticks
and vertical ones. When the fragmentation process is asym-
metric as in Eq. (36), we expect more horizontal sticks than
vertical ones when α > 0, and that the opposite is true when
α < 0 (see Ref. [26]). The average number of horizontal sticks
satisfies Eq. (39) with the boundary conditions Sk (μ, 0) =
e−μδ(μ − ln k) and Sk (0, ν) = 0; similarly, the average num-
ber of vertical sticks satisfies Eq. (39) with the boundary con-
ditions Sk (μ, 0) = 0 and Sk (0, ν) = e−νδ(ν − ln k). Let P+

k be
the length-distribution of sticks of the dominant orientation
and P−

k be the length-distribution of sticks of the subdominant
orientation. It is straightforward to show that the first term in
the numerator of Eq. (B1) corresponds to the subdominant
distribution, and that the second term in Eq. (B1) yields the
dominant distribution. Thus, we have

P+
k ∼ k−σ− and P−

k ∼ k−σ+ , (B6)

with σ± = 1 + β ± |α|. This tail behavior is compatible with
Eq. (50) as σ = σ−.

APPENDIX C: ARBITRARY DIMENSIONS

The process Eq. (53) can be generalized to d dimensions
where in each fragmentation event a box breaks into 2d boxes.
This elementary event is repeated until a jammed state is
reached. The recursion equation for the number of frozen
boxes is a straightforward generalization of Eq. (54) and it
includes d sums.

The multivariate Laplace transform is given by a straight-
forward generalization of Eq. (57),

Ŝ(q1, q2, . . . , qd ) =
∏d

�=1(q� + 1) − 1∏d
�=1(q� + 1) − 2d

×
d∏

�=1

1

q�

. (C1)

The inverse Laplace transform is a d-fold integral, and we first
invert this multivariate transform with respect to the conjugate
variable qd . Further, we restrict our attention hyper-cubes for
which ln n� = ν for all �, and then

S =
∫ i∞

−i∞

dq1

2π i
· · ·

∫ i∞

−i∞

dqd−1

2π i
�(q) eνφ(q). (C2)

Here, we introduced the shorthand notation q =
(q1, . . . , qd−1) and

φ(q) =
d−1∑
�=1

q� − 1 + 2d∏d−1
�=1 (q� + 1)

. (C3)

The saddle point is q∗ = (1, . . . , 1), and at this point, it is
easy to show that φ(q∗) = d and �(q∗) = (2d − 1)/2d−1. We
tacitly do not display the function �(q) because only its value
at the saddle point is needed.

To evaluate the integral Eq. (C2), we expand φ(q) near the
saddle point using q� = 1 + iu�/

√
ν, and then

φ(u) � d − U (u)

ν
, U (u) = 1

2

d−1∑
a=1

a∑
b=1

uaub. (C4)

The Gaussian integral can be computed in arbitrary dimen-
sion, ∫ ∞

−∞
du1 · · ·

∫ ∞

−∞
dud−1e−U (u) = (4π )(d−1)/2

√
d

. (C5)

The computation of the Gaussian integral relies on the
fact that the (d − 1) × (d − 1) matrix associated with the
quadratic form U (u) has eigenvalues 1

2 (d, 1, . . . , 1). The in-
tegral Eq. (C5) completes the derivation of Eq. (64).
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