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Fractional Brownian motion is a widely used stochastic process that is particularly suited to model anomalous
diffusion. We focus on capturing the mean and variance of fractional Brownian motion reflected at level 0. As
explicit expressions or numerical techniques are not available, we base our analysis on Monte Carlo simulation.
Our main findings concern closed-form approximations of the mean and variance, with a near-perfect fit.

DOI: 10.1103/PhysRevE.100.032120

I. INTRODUCTION

Owing to its ubiquitous applicability, diffusion is one of
the core concepts in a broad range of scientific disciplines. It
was initially intended to describe the trajectory of a moving
particle [1], with evident applications in, e.g., physics and
biology. In its conventional form, it is a zero-mean Gaussian
process (also known as Brownian motion) with stationary
independent increments, entailing that the mean-square dis-
placement (MSD) of the moving particle, 〈x2

t 〉, grows linearly
in t .

In many relevant systems, backed by extensive experimen-
tal observations, however, 〈x2

t 〉 behaves sub- or superlinearly,
which case is usually referred to as anomalous diffusion. In
this respect we mention, without attempting to provide an ex-
haustive list, the overviews [2] (including a historic account)
and [3] and references therein. A convenient framework that
covers sub- and superdiffusions is that of fractional Brownian
motion (FBM), a zero-mean Gaussian process with stationary
(but not independent) increments. For FBM the MSD grows
(in time t) as a power law: 〈x2

t 〉 ∼ tα , for α ∈ (0, 2]. For
α < 1 (the subdiffusive case) the increments are negatively
correlated, whereas for α > 1 (the superdiffusive case) they
are positively correlated. The special case of α = 1 corre-
sponds to conventional Brownian motion. FBM is self-similar,
meaning that xt has the same distribution as tα/2x1. In the
literature α/2 is often referred to as the Hurst parameter H .

Anomalous diffusion has been observed in a broad variety
of systems, including ultra-cold atoms [4] and single-particle
movements in cytoplasm [5]. The subdiffusive case in partic-
ular is relevant in the context of, e.g., the motion of tracer par-
ticles in living biological cells [6], whereas the superdiffusive
case occurs, e.g., in the presence of active motion in living
biological cells [7]. Apart from the fields mentioned above,
FBM has found widespread use in the modeling of, e.g., traffic
in communication networks [8], hydrology [9], and finance
[10,11].

FBM has attracted substantial attention in the mathematical
literature [12,13], but despite this research effort there are still
many open questions. In particular the case that the FBM
is reflected at a boundary is poorly understood, the most
prominent example being the case that the FBM is enforced
to take non-negative values only. As we will point out below,

FBM reflected at zero can be interpreted as a queueing system
with FBM input [14]. Virtually all results for queues with
FBM input are in terms of tail asymptotics of the correspond-
ing probability distribution [15–19]. Perhaps surprisingly, no
explicit results are available even for the mean mα (t ) and
variance vα (t ) of the position of a reflected FBM (RFBM) at
time t ; the only generally applicable computational approach
known is Monte Carlo simulation. Recently, in the interesting
contribution [20], bounds have been established for mα (t ):
positive constants �� and �u are identified such that, across
all α ∈ (0, 2],

��√
α

� mα (t )

tα/2
� �u√

α
. (1)

The fact that the constants �� and �u are a factor 81.5 apart,
and the lack of results for vα (t ), motivate the search for ac-
curate approximations for mα (t ) and vα (t ), covering both the
sub- and the superdiffusive regime. Our main findings concern
approximations m̄α (t ) and v̄α (t ) with a nearly perfect fit, as
confirmed by extensive simulation experiments. Remarkably,
m̄α (t ) is not of the form � tα/2/

√
α (for some � > 0), as

would be suggested by (1). Our paper can be viewed as a
continuation of the recent work [21], where the focus is on a
simulation-based analysis of the distribution of the position of
RFBM at a given point in time; cf. also Refs. [22,23]. One of
the key findings of Ref. [21] was that this distribution is highly
non-Gaussian, with intrinsically different behavior for α < 1
and α > 1: in the latter case particles tend to stick close to the
barrier 0 (so that the corresponding density blows up close to
0), whereas in the former case values close to 0 are unlikely
(so that the density goes to zero in this region).

II. REFLECTED FBM AND ITS DISCRETE COUNTERPART

Let xt denote the FBM at time t , and qt its reflected coun-
terpart RFBM. The reflection is at level 0, and it concerns re-
flection from below, which entails that qt attains non-negative
values only. A common way to construct the process qt from
the process xt is by solving a so-called Skorokhod problem
([24], Sec. 9.2). This effectively means that two conditions are
imposed on the way the FBM xt is mapped onto its reflected
version qt , and then it is shown that this leads to a unique
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solution ([24], Proposition 9.2.2) for the process qt in terms
of the process xt .

More concretely, the two conditions imposed in the
Skorokhod approach are the following: (1) Given a path of xt ,
its reflection qt can be written as xt + �t , where �t (typically
referred to as the regulator) is increasing in t . (2) The process
�t increases only when the value of the RFBM equals 0, in the
sense that, for any T > 0,∫ T

0
qt d�t = 0. (2)

The regulator makes sure that qt does not become negative.
When q0 = 0, Ref. ([24], Proposition 9.2.2) states that the
unique solution to this Skorokhod problem (i.e., satisfying the
requirements (1) and (2) that we imposed above) is

�t = − inf
0�s�t

xs, qt = sup
0�s�t

(xt − xs). (3)

One could alternatively say that qt is the workload level at
time t of a queue (also sometimes called a storage system)
with FBM input that has started empty at time 0 [14].

There is a convenient duality relation between the dis-
tribution of a reflected process (in our case the RFBM qt )
at time t on one hand, and the maximum value attained by
the nonreflected process (in our case the FBM xt ) over the
interval [0, t] on the other hand. To this end, first observe that,
due to time reversibility, xt − xs is distributed as xt−s. This
implies that the supremum over s ∈ [0, t] of xt − xs has the
same distribution as the supremum over s ∈ [0, t] of xs. We
thus obtain the following relation between xt and the running
maximum of xt :

P (qt � u) = P

(
sup

0�s�t
xs � u

)
. (4)

The right-hand side of the relation (4) can be simplified
further, by making the dependence on t explicit. Applying
the self-similarity that is inherent to FBM, we obtain that (4)
equals

P (qt � u) = P

(
sup

0�s�1
xs �

u

tα/2

)
(5)

= P
(

q1 � u

tα/2

)
. (6)

This means that, in order to analyze qt for some t � 0, it
suffices to consider q1 only; cf. Ref. [21, Equation (4)]. In
this paper our goal is to analyze mα (t ) = 〈qt 〉 and vα (t ) =
〈q2

t 〉 − 〈qt 〉2 for t � 0. However, noting that (6) implies that

mα (t ) = tα/2mα (1), vα (t ) = tαvα (1), (7)

without loss of generality we restrict ourselves to studying
mα (1) = 〈q1〉 and vα (1) = 〈q2

1〉 − 〈q1〉2. In other words, due
to the self-similarity it suffices that we succeed in capturing
the mean and variance of RFBM at time 1.

In our approach we first accurately estimate mα (1) and
vα (1) (as functions of α) using Monte Carlo simulation. The
second step in our procedure is to fit explicit functions of α

to these simulation-based curves. To simulate q1, we work
with a discrete-time counterpart q̄1 [25], obtained by using

a time grid consisting of n points (for n large enough to
make sure that the error is sufficiently small; we get back
to this issue in detail later in this paper). In this discrete-
time framework, the reflection is usually not expressed as the
solution to a Skorokhod problem, but rather as the solution to
the Lindley recursion ([24], Sec. III.6). More specifically, the
reflected process at time i/n can be expressed in terms of the
reflected process at time (i − 1)/n through the recursion, for
i = 1, . . . , n,

q̄i/n = max{q̄(i−1)/n + ξi, 0}, (8)

with q̄0 = 0; note that this truncation at 0 provides a natural
mechanism that enforces that the process q̄i/n does not become
negative. In the recursion the ξi are the increments of the
FBM, which means that ξi is a sequence of zero-mean random
variables such that

〈ξi ξi+ j〉 = σ 2

2 nα
(| j − 1|α − 2| j|α + | j + 1|α ). (9)

The recursion (9) can be solved iteratively. Performing one
step yields

q̄i/n = max{max{q̄(i−2)/n + ξi−1, 0} + ξi, 0} (10)

= max{q̄(i−2)/n + ξi−1 + ξi, ξi, 0}. (11)

Continuing along these lines, after i steps one arrives at (with
�i := ∑i

k=1 ξk and using q̄0 = 0), in self-evident notation,

q̄i/n = max
j∈{1,...,i}

⎧⎨
⎩

i∑
k= j

ξk, 0

⎫⎬
⎭ = max

j∈{0,...,i}
(�i − � j ). (12)

Observing the similarity with the solution qt of the
continuous-time Skorokhod problem as given by (3), we
conclude that this discrete-time framework can be considered
as the natural counterpart of the continuous-time framework
that we introduced above.

As before, we can make use of time reversal, to conclude
that we can represent the quantity of our interest, q̄1, as
follows:

q̄1 =d max
i∈{0,...,n}

xi/n, xi/n := �i =
i∑

k=1

ξk, (13)

with “=d” denoting equality in distribution; here the empty
sum is defined as 0. Summarizing, the challenge that we are
facing is to estimate mα (1) and vα (1) by simulating the partial
sum process of the increments of a discrete-time version of
FBM and recording its maximum value. In our approach we
split the unit interval into n small intervals of length n−1; we
remark, however, that due to the self-similarity our procedure
is conceptually equivalent to sampling a (properly rescaled
version) of our FBM over a long period of time (namely, the
time units 1 up to n). We refer to Fig. 1 for a simulated path of
a free and reflected FBM; the top panel corresponds to the case
that the increments are negatively correlated (α < 1), whereas
in the bottom panel they are positively correlated (α > 1). The
graphs show the effect of the truncation at 0.

We conclude this section with a few remarks related to the
simulation of the discrete-time version of FBM. In the first
place, we mention that Ref. [26] discusses various approaches
to simulating the increment process ξi. We have used the
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FIG. 1. Simulation of free FBM (xt ) and reflected FBM (qt ) on
an equidistant grid with 28 points, for (a) α = 0.6 and (b) α = 1.6.

circular approach [27], which provides an exact sample of q̄1

(in the sense that its distribution exactly matches with that of
q̄1). Without losing any generality, in the sequel we rescale
space such that σ 2 = 1.

In the second place, it has been shown that when n is
large q1 and q̄1 are provably close. More concretely, the
difference between q1 and q̄1 is bounded by δ

√
log n/nα/2 for

some positive constant δ [20]. This justifies the use of the
above discretization procedure. Later in this paper we assess
how large n should be to make sure that the gap is guaranteed
to be below some predefined bound.

III. APPROXIMATIONS

In this section we first treat results for three boundary cases
and then set up our approximations m̄α (1) and v̄α (1). The
main results of our papers are closed-form approximations
with a nearly perfect fit.

A. Boundary cases

The case α = 1. We start with the Brownian case; recall
that for α = 1 the increments are independent. The distribu-
tion of q1 can be explicitly computed; see, e.g., Ref. ([28], Ch.
3). It leads to

m 1
2
(1) =

√
2

π
≈ 0.79, v 1

2
(1) = 1 − 2

π
≈ 0.36. (14)

The case α ↑ 2. We proceed by analyzing the case of
“perfect positive correlation,” i.e., α = 2. In this case the path
of x is a straight line with a random slope; put differently,
an initial increment of the FBM, say, xε for some small ε,
effectively determines xt for all t � 0 and hence also q1. As a
consequence, q1 is distributed as the maximum of a standard
normal random variable and 0. Elementary calculus yields

m1(1) =
√

1

2π
≈ 0.40, v1(1) = 1

2
− 1

2π
≈ 0.34. (15)

The case α ↓ 0. This case with “perfect negative correla-
tion” has been recently considered in detail in Refs. [20,29].
There it is established that the FBM xt converges (in terms of
finite-dimensional distributions) to χt as α ↓ 0, where χt =
(ζt − ζ0)/

√
2, with ζt (for t ∈ [0, 1]) independent standard

normal random variables. We first look at the discrete-time
approximation

lim
α↓0

mα (1) ≈ lim
α↓0

〈
max

i∈{0,...,n}
xi/n

〉
, (16)

the symbol “≈” meaning that the approximation becomes
increasingly accurate as n → ∞. We thus obtain

lim
α↓0

mα (1) ≈ 1√
2
〈An〉, An := max

i∈{0,...,n}
(ζi − ζ0). (17)

Observe that

〈An〉 = 〈Bn〉, where Bn := max
i∈{0,...,n}

ζi. (18)

We now consider the corresponding variance. Denote the
variance of a random variable r by [r], i.e., [r] := 〈r2〉 − 〈r〉2.
Hence,

lim
α↓0

vα (1) ≈ 1
2 [An] = 1

2

〈
A2

n

〉 − 1
2 〈An〉2; (19)

again “≈” indicates that the approximation becomes increas-
ingly accurate as n → ∞. It is straightforward to verify that

A2
n = B2

n − 2ζ0Bn + ζ 2
0 . (20)

It thus follows that the right-hand side of (19) equals

1
2

〈
B2

n

〉 − 〈ζ0Bn〉 + 1
2 − 1

2 〈Bn〉2 = 1
2 [Bn] − 〈ζ0Bn〉 + 1

2 . (21)

It directly follows from the main result of Ref. [30] that,
remarkably,

〈ζ0Bn〉 = 1

n + 1
, (22)

so that we end up with the approximation

lim
α↓0

vα (1) ≈ 1

2
[Bn] − 1

n + 1
+ 1

2
. (23)

032120-3



ARTAGAN MALSAGOV AND MICHEL MANDJES PHYSICAL REVIEW E 100, 032120 (2019)

The next step is to approximate 〈Bn〉 and [Bn], which
we do using extreme value theory (EVT); we refer to, e.g.,
Ref. ([31], Chapter 3) for an accessible textbook treatment
of this topic. EVT is a branch of probability and statistics
that aims at describing the distribution of the maximum Mn

of a sequence of n (independent and identically distributed)
random variables, say, Z1, . . . , Zn, in the domain that n grows
large. A key result is the celebrated Fisher-Tippett-Gnedenko
(FTG) theorem [31, Theorem 3.2.3] that states that there are
sequences λn and sn such that, as n → ∞,

Mn − λn

sn
(24)

converges in distribution to a nondegenerate random variable,
say, M; this remarkable result goes back to the first half of the
previous century. The nature of the limiting random variable
M depends on the tail behavior of the underlying random
variables Z1, . . . , Zn. More particularly, there are three pos-
sible families of limiting distributions, namely, the Weibull,
Gumbel, and Fréchet distribution.

In our setting we are interested in Bn, which corresponds
to the maximum of independent random variables ζi that
are (standard) normally distributed. In this case, the FTG
theorem entails that the limiting distribution of (Bn − λn)/sn

(for appropriately chosen sequences λn and sn) is of Gumbel
type, which concretely means the following. We let F (x) :=
exp(−e−x ) denote the distribution function of the standard
Gumbel random variable. Then, in line with the expressions
presented in Ref. ([31], Example 3.3.29), we define

sn := 1√
2 log n

, (25)

and

λn :=
√

2 log n − log log n + log(4π )

2
√

2 log n
. (26)

In this specific case we have that the FTG result corre-
sponds to the following convergence in distribution:

P

(
Bn − λn

sn
� u

)
→ F (u) (27)

as n → ∞ (for given u). In practical terms, (27) entails that for
large n we can approximate Bn by λn + snG, with sn given by
(25), λn by (26), and G having a standard Gumbel distribution
(i.e., G has the distribution function F defined above). As
a random variable with a standard Gumbel distribution has
a mean equal to the Euler-Mascheroni constant γ ≈ 0.5772
and a variance equal to π2/6, we thus find the following
approximations for the mean 〈Bn〉 and the variance [Bn]:

〈Bn〉 ∼ λn + γ sn, [Bn] ∼ π2

6
s2

n; (28)

here gn ∼ hn means that gn/hn → 1 as n → ∞. Observe that,
as n → ∞, 〈Bn〉 → ∞ (but very slowly; roughly as

√
log n)

and [Bn] → 0 (again rather slowly; essentially as 1/ log n).
This in particular yields, using (17), (18), and (23),

m0(1) = ∞, v0(1) = 1
2 (29)

[where we note that m0(1) = ∞ already followed from the
lower bound in (1)].

FIG. 2. Estimates of (a) mα (1) and (b)
√

vα (1) as functions of α,
for α = 0.02, 0.04, . . . , 1.98, 2.00. An equidistant grid with n = 2k

points has been used, with k = 9, . . . , 17. Each estimate is based on
5 × 105 runs. The curves are essentially monotone in the number of
grid points; in (a) the top curve corresponds to 217 points and the
bottom curve to 29 points, whereas in (b) the top curve corresponds
to 29 points and the bottom curve to 217 points.

B. Fitting procedure

Figure 2 presents estimates of mα (1) and vα (1) as functions
of α, for different grids. We make the following observations.

Impact of number of sample points. Particularly for small α

the numbers of sample points n = 2k has a substantial impact
on the estimate of mα (1). This aligns with the findings in
the previous section for the case α ↓ 0. With the EVT-based
results, we see that

〈An〉√
2

≈ λn√
2

≈
√

2 log n√
2

=
√

k log 2 ≈ 0.832
√

k, (30)

which nicely matches the simulation-based estimates (i.e., the
values of the curves on the vertical axis).

Also regarding the estimates of vα (1), the number of
sample points has an impact, but it is less affected by n than
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mα (1). For large k, we observe that our estimate of
√

v0(1)
approaches the 1

2

√
2 that we found in (29).

Our simulation experiments show that from k = 17 on,
the estimates of mα (1) and vα (1) do not significantly change
anymore (for α in the interval [0.1, 2]).

Variance is not monotone. Perhaps surprisingly, vα (1) is
not monotone in α; this is in contrast with mα (1), which is
monotonically decreasing. Figure 2 shows that the variance
vα (1) attains a minimum around α = 1.86. An intuitive expla-
nation of this phenomenon is the following. For small values
of α, due to the strong negative correlation, the process xt is
“zigzagging,” causing it to frequently attain relatively large
values. When increasing α the process becomes smoother,
thus leading to a lower variance. However, when α approaches
2, it increasingly behaves as a straight line with random
slope; this effectively means that the value of the maximum
is determined by just a single random number, without any
averaging, leading to a relatively high variance.

Approximation for mα (1). Based on (1), we could first try
to approximate mα (1) by �/

√
α for some � > 0, but it turns

out that this functional form provides a poor fit. This is due
to the fact that, as was observed in Ref. [21], the shape of
the distribution of q1 when α is in the subdiffusive range
(i.e., α < 1) differs substantially from the shape when α is
in the superdiffusive range (i.e., α > 1). This motivates why
we develop separate approximations for α < 1 and α > 1.

By experimenting with the data depicted in Fig. 2, e.g.,
by using log plots and log-log plots, we concluded that in
the subdiffusive case log m̄α (1) is approximately linear in α,
whereas in the superdiffusive case log m̄α (1) is approximately
linear in log α. Based on this, for α < 1 we propose the
functional form

log m̄α (1) = x− α + y− (31)

(where the scalars x− and y− are to be estimated); for α > 1
we propose the functional form

log m̄α (1) = x+ log α + y+ (32)

(for x+ and y+ to be estimated). We estimated the coef-
ficients by ordinary least squares, each based on 50 data
points (recalling that we have estimates of mα (1) for α =
0.02, 0.04, . . . , 1.98, 2.00 to our disposal).

For α < 1 we thus obtained, based on n = 217 points,
the estimates x− = −1.4204 and y− = 1.1282, with the R2

being as high as 0.994. This leads to the highly accurate
approximation

m̄α (1) = 3.0900 e−1.4204α. (33)

Experiments with other values of the grid size n reveal that
increasing n hardly affects the approximation. We also tried
“richer” functional forms, such as

log m̄α (1) = x− αz− + y− (34)

(with x−, y−, and z− to be estimated), but this hardly improved
the R2; we therefore propose the use of the more parsimonious
form (31).

Our approximation of mα (1) for the range α < 1, being
of the form exp(x−α + y−), does not contradict the fact that
mα (1) → ∞ as α ↓ 0, as we set up our approximation to be

valid in the range [α0, 1] with α0 = 0.02. There is a natural
trade-off between the value of α0 and the goodness of the fit,
in that increasing α0 improves the fit. The value of α0 we chose
offers a good compromise: being close to 0, but still providing
a near optimal fit.

For α > 1, again based on n = 217 points, we find x+ =
−1.0054 and y+ = −0.2275, with R2 even equal to 1.000, so
that we have the near-perfect approximation

m̄α (1) = 0.7965

α1.0054
; (35)

even the elementary approximation m̄α (1) = 0.8/α is remark-
ably accurate.

Approximation for vα (1). For the variance vα (1) we follow
the same procedure. Through visual inspection of the log plots
and log-log plots, we again arrived at the functional form

log v̄α (1) = x− α + y− (36)

for α < 1 (with x− and y− to be estimated). For α = 2H > 1,
however, log plots and log-log plots do not yield an ap-
propriate functional form, mainly as a consequence of the
minimum around α = 1.86. After trying various candidates,
we concluded that in this case a good functional form is

v̄α (1) = Hx+
1 + Hx+

2 + y+ (37)

(with x+
1 , x+

2 , and y+ to be estimated).
Using the above functional forms we obtain, by performing

a least-squares estimation procedure, the approximations

v̄α (1) = 0.543 e−0.410α (38)

for α < 1 (with R2 = 0.997), and

v̄α (1) =
(α

2

)−0.380
+

(α

2

)0.451
− 1.670 (39)

for α > 1 (with R2 = 0.970). In particular, the latter curve
correctly predicts the minimum around α = 1.86. Evidently,
the fits can be improved upon at the expense of adding a
parameter in the functional form, but this hardly leads to an
increase of R2.

IV. DISCUSSION

Our major contribution is a set of highly accurate and
easily applicable approximations for the mean and variance
of the position of RFBM at a given point in time. We have
followed a Monte Carlo-based approach, as there is little hope
for obtaining exact expressions (or tight explicit bounds) for
these objects.

There are various topics that could be explored further. As
was also mentioned in Ref. [21], one of them concerns the
biased case. In this setting, for some constant c, the value of
the RFBM at time t is given by

qt,α (c) = sup
0�s�t

(xt − xs − c(t − s)). (40)

For c < 0 and large t , the value of qt will be in the same range
as that of xt , as the effect of the reflection will not be very
pronounced. In the case that c > 0, however, qt,α (c) converges
to a limiting random variable q∞

α (c) as t → ∞; in queueing
lingo one says that the queue is stable. Interestingly, for any
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FIG. 3. Estimates of skewness Skα and (excess) kurtosis EKα as
a function of α. An equidistant grid with n = 217 points has been
used, with each estimate being based on 5 × 105 runs.

c > 0 we can express q∞
α (c) in terms of q∞

α (1), as follows.
Renormalizing time yields, with γ = 1/(α − 2),

q∞
α (c) = sup

t�0
(xt − ct ) = sup

t�0
(xc2γ t − cαγ t ), (41)

where the first equality is in the distributional sense, and
the second due to a time renormalization. As a consequence
of the self-similarity the latter expression is, again in the
distributional sense, equal to

sup
t�0

(cαγ xt − cαγ t ) = cαγ sup
t�0

(xt − t ) = cαγ q∞
α (1). (42)

In other words, in order to estimate q∞
α (c) for any c > 0,

we are left with analyzing just q∞
α (1). The next step is then to

define

nα (1) := 〈
q∞

α (1)
〉
, wα (1) := 〈(

q∞
α (1)

)2〉 − 〈
q∞

α (1)
〉2

(43)

and use empirical techniques (similar to those relied on in the
present paper) to assess these functions. A complication when
estimating nα (1) and wα (1) by simulation, however, is that
q∞

α (1) involves the supremum over an infinite time interval.
As it concerns a stochastic process with negative drift, in the
simulations this could be dealt with by truncating the time
interval at some sufficiently large value T . It is, however, not
a priori clear how this horizon T should be chosen.

A second topic concerns the assessment of the epoch at
which, in the unbiased model, the maximum (in the definition
of q̄1) is attained. Initial experiments reveal that its distribution
is symmetric around i = n/2. For small α, i = 0 and i = n are
the least likely values; due to the negative correlation, very
likely a value in between leads to a higher value. For high
α, i = 0 and i = n are the most likely values; the process
essentially behaves like a straight line, attaining a maximum at
i = 0 if the drift is negative, and at i = n if the drift is positive.

An intriguing feature appearing in our work concerns the
nonmonotone behavior of the variance vα (1) as a function of
α ∈ (0, 2]. There is a potential connection with the critical
value α = 3

2 of the so-called ergodicity breaking parameter;

FIG. 4. Estimates of the density f (x) of q̄1 for x � 0 and (a)
0.2 � α � 1.0 and (b) 1.0 � α � 1.8. An equidistant grid with n =
217 points has been used, with each estimate being based on 5 × 105

runs.

see Ref. [32]. In addition, one could explore other, more
detailed, features of the distribution of q̄1 (again for the
unbiased model that was the object of study in this paper).
Figure 3 provides estimates of metrics that are related to the
third and fourth moment of q̄1, namely, the skewness and
(excess) kurtosis. The skewness, defined as

Skα :=
〈[

q̄1 − m̄α (1)√
v̄α (1)

]3
〉
, (44)

is a measure of asymmetry; the graph shows that the skewness
grows in α. The (excess) kurtosis, defined as

EKα :=
〈[

q̄1 − m̄α (1)√
v̄α (1)

]4
〉

− 3, (45)

measures the distribution’s “tailedness,” which also increases
in α. Figure 4 provides insight into the shape of the den-
sity of q̄1 for a range of values of α, using kernel density
estimates with Gaussian kernels. From the graphs we observe
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that as α increases, the estimated density becomes more
skewed towards zero, in line with the findings reported in,
e.g., Ref. [21]. At the same time the density shifts its mass
more and more to zero as α increases, in line with the
increase of the (excess) kurtosis. Note that the estimates for
the skewness and (excess) kurtosis lose accuracy as α ↓ 0; this
is a consequence of the fact that these metrics correspond to
higher-order moments. To improve the accuracy, one could
obviously sample more points than the current 217, and/or
one could simulate more runs than the current 5 × 105. As

another topic for further exploration, it could be studied
to what extent in the regime α ↓ 0 the estimated skewness
and (excess) kurtosis match with those of the approximating
Gumbel random variable.
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