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Universality of the local persistence exponent for models in the directed Ising class in one dimension
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We investigate local persistence in five different models and their variants in the directed Ising (DI) universality
class in one dimension. These models have right-left symmetry. We study Grassberger’s models A and B. We
also study branching and annihilating random walks with two offspring: the nonequilibrium kinetic Ising model
and the interacting monomer-dimer model. Grassberger’s models are updated in parallel. This is not the case
in other models. We find that the local persistence exponent in all these models is unity or very close to it. A
change in the mode of the update does not change the exponent unless the universality class changes. In general,
persistence exponents are not universal. Thus it is of interest that the persistence exponent in a range of models
in the DI class is the same. Excellent scaling behavior of finite-size scaling is obtained using exponents in the DI
class in all models. We also study off-critical scaling in some models and DI exponents yield excellent scaling
behavior. We further study graded persistence, which shows similar behavior. However, for a logistic map with
delay, which also has the transition in the DI class, there is no transition from nonzero to zero persistence at the
critical point. Thus the accompanying transition in persistence and universality of the persistence exponent hold
when the underlying model has right-left symmetry.
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I. INTRODUCTION

Understanding the critical phenomena in equilibrium sys-
tems is an important triumph of theoretical physics in the
past century. There have been attempts to extend a similar
theory to nonequilibrium systems. We can observe a variety
of phases and phase transitions in nonequilibrium systems.
They range from synchronization of birds and the transition
between different patterns in chemical reactions to the tran-
sition to turbulence in fluids. It is fair to say that studies in
this fascinating range of phase transitions have only started.
The most investigated phase transition in this respect has been
the transition to an absorbing state in the various systems.
Nonequilibrium systems need not obey detailed balance and
it is possible for the system to be trapped in an absorbing
state. Jensen and Grassberger conjectured that when there is
a unique absorbing state and certain conditions are satisfied,
the continuous transition is in the directed percolation (DP)
universality class. The conditions are that it should have no
quenched disorder and no additional symmetries, but it should
have short-range interactions and a positive one-component
order parameter which distinguishes between fluctuating and
unique absorbing states.

Directed percolation is the most-studied universality class
in nonequilibrium systems. However, there are few other
reported universality classes for the transition to the absorbing
state and related transitions. The parity-conserving universal-
ity class [1–3], the voter universality class [4,5], dynamical
percolation [6–8], compact directed percolation [9,10], and
the Manna universality class [11] have been reported [12].
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In the parity-conserving universality class, the local dynamics
has a certain parity and the number of particles or kinks is con-
served modulo 2. At least in one dimension, it clearly shows
exponents different from DP and the upper critical dimension
is estimated to be 4

3 [2]. This is also known as a branching
and annihilating random walk (BARW) or directed Ising (DI)
university class [13]. In the voter model, each site is assigned
one of, say, two opinions initially. The update consists of
randomly choosing a site and assigning it the opinion of one of
its randomly chosen neighbors [4,5]. In dynamic percolation,
we study the generalization of directed percolation including
the effect of immunization. The same universality class is
obtained in models with partial immunization where the im-
mune site can be reinfected with a lower probability than the
susceptible site [14–16]. In compact directed percolation, if all
neighbors of a certain site are infected, the site is infected with
probability one [9,10]. This model has two absorbing states,
one in which all sites are infected and the other in which there
are no infected sites. In the Manna model, a given site can
have an unlimited number of particles. All sites occupied by at
least two particles are considered active and all particles from
active sites are redistributed randomly and independently to
neighboring sites. This a locally particle-conserving model.
The active particle density reaches a certain value after a
transient. The active particle density is an order parameter
and the particle density is a control parameter. Below the
critical density, the order parameter vanishes in the steady
state [11,17]

Other classes include pair contact process introduced by
Jensen [18]. This is a model which has infinitely many ab-
sorbing states. A pair of sites on a d-dimensional lattice is
randomly selected. If they are occupied, branching or annihi-
lation occurs with a certain probability. Either both particles
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are annihilated with probability p or a site neighboring the
selected pair is chosen and a particle is created if the site is
empty with probability 1 − p. It is clear that all configurations
which do not have a pair of particles are frozen states where
no further evolution can occur. Now it is fairly established
that even though the Janssen-Grassberger conjecture does
not apply here, this process is in the DP universality class.
Another version of the above process is known as the pair
contact process with diffusion. It has been subjected to several
investigations [19–22]. In this process, particles are allowed to
diffuse and two possible absorbing states, namely, an empty
lattice and a solitary diffusing particle, exist in this model.
There is a special case known as tricritical directed percolation
[23,24], in which there are points where the first-order and
second-order transitions meet. The transitions show a different
critical behavior, which is reported in dimension d > 1. [In
a one-dimensional (1D) system, the surface tension does not
depend on the domain size and first-order transitions to a
fluctuating state do not occur.]

The universality classes are identified by critical exponents
which are characteristic of a given class of phase transitions.
They depend only on dimensionality and symmetries, and
the same exponents have been found in seemingly disparate
systems. Absorbing phase transitions are characterized by
four (or three in the presence of certain symmetry) critical
exponents.

Recently, another exponent, known as the persistence ex-
ponent, related to the first-passage time has been reported.
This a non-Markovian quantity and the local persistence
exponent θl (denoted by θ in this work) is obtained by
finding the number of sites which have not deviated from the
initial state even once until a certain time. Another quantity,
the global persistence exponent θg, is also defined and it
is obtained by measuring configurations in which the order
parameter has not crossed its average value until a certain
time [25]. This exponent is found to satisfy the relation-
ship θgz = λ − d + 1 − η/2, where η is the static and λ the
autocorrelation exponent. This relationship can be derived
under the assumption that the dynamics of the global order
parameter is Markovian [26]. Thus θg can be expressed in
terms of other exponents, while no such relationship has been
found for θl . There are numerous counterexamples to show
that θl is not universal (see [19]). These examples will be
discussed in the next section. We study the parity-conserving
universality class in one dimension, which has more than one
absorbing state linked by symmetry. This is known as the
directed Ising class [13]. Apart from completing the study of
the local persistence exponent in the directed Ising class, our
work shows reasonable evidence that the persistence exponent
is universal and has value unity or very close to it in a range
of models.

The models in the DI universality class can be broadly
classified according to the mode of the update. The update rule
is a parallel update for Grassberger’s models A and B, while it
is a random sequential update for branching and annihilating
random walks and interacting monomer-dimer models. For
the nonequilibrium kinetic Ising model, sites from the even
sublattice are chosen randomly and updated followed by a
random sequential update of sites from the odd sublattice.
We also consider a variant in which all sites of the even

lattice are updated followed by the entire odd sublattice. These
models will be defined in detail in the next section. Finally,
we consider a logistic map with a delay which is found to
have the transition in the DI universality class. In this case,
the update is carried out in a deterministic sequential manner
from left to right in typewriter mode [27]. In this case, there
is no transition in persistence from a nonzero to a zero value
at the critical point. Thus there is no well-defined persistence
exponent in this case.

II. MODELS

A. Probabilistic cellular automata models A and B

Grassberger et al. [28,29] studied two 1D models of cellu-
lar automata in which the number of kinks between ordered
states is conserved modulo 2. Each site is in a state 0 or 1.
The value of the central site evolves according to its value as
well as that of its nearest neighbors. Model A evolves with
rule number 94 in the notation of Wolfram [30], except for the
110 and 011 configurations, where the central spin 1 flips to 0
with probability p and remains unchanged otherwise. Model
B evolves with Wolfram’s rule number 50, except for the 110
and 011 configurations, where the central spin 1 does not
change value with probability p and flips otherwise. Histor-
ically, these are first instances of models which are clearly not
in the DP universality class. There are two equivalent absorb-
ing states in both models. The states (1010 . . .) and (0101 . . .)
are absorbing states in both models. In model A they are
frozen absorbing states while in model B the asymptotic state
is periodic with period 2 and we observe oscillations between
the (1010 . . .) and (0101 . . .) states asymptotically. For clarity,
we have tabulated the governing rules for models A and B in
Table I. This absorbing phase transition is unambiguously in a
different universality class than DP and this universality class
is known as the DI universality class.

B. Branching annihilating random walk with two offsprings

The branching annihilating random walk was introduced
by Bramson and Gray [31]. We will be studying the two-
offspring BARW (BARW2). (The universality class depends
on the number of offsprings.) In this model, a site is picked at
random. If the site is occupied, it undergoes nearest-neighbor
diffusion with probability p and it may branch with the
rate 1 − p. Nearest-neighbor diffusion occurs in a random
direction. If the target site is occupied, both particles are
annihilated. Similarly, if a branching attempt is selected, the
unoccupied nearest neighbors are occupied. If a newly created
particle is placed on a previously occupied site, both particles
are removed.

C. Interacting monomer-dimer model

The interacting monomer-dimer (IMD) model is a gen-
eralization of the simple monomer-dimer model [32–34]. A
monomer A is deposited on a random site i of the lattice
provided its nearest neighbors i + 1 or i − 1 do not contain
A. Similarly, a dimer B2 is deposited on a pair of vacant sites i
and i + 1 provided its nearest neighbors i + 2 or i − 1 do not
contain B. The simulation proceeds as follows. A monomer A
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TABLE I. Grassberger’s models A and B. Here prob. denotes probability.

Model A Model B

t t + 1 t t + 1

111 0 111 0
101 0 101 1
010 1 010 0
100 1 100 1
001 1 001 1
011 0 with prob. p, 1 with prob. 1 − p 011 1 with prob. p, 0 with prob. 1 − p
110 0 with prob. p, 1 with prob. 1 − p 110 1 with prob. p, 0 with prob. 1 − p
000 0 000 0

is adsorbed at a random site on the 1D lattice with probability
(1 − s)p and a dimer B2 with probability (1 − s)(1 − p). With
probability s, a single B located at that site from the lattice is
removed. (If there is another B on the nearest site, we remove
it as well. Allowing removal of a single B is essential so
that the absorbing state does not change.) We choose s = 0.5.
Note that the rules allow for A to be deposited near B and
vice versa. There are no nearest-neighbor restrictions here.
However, whenever A is deposited near B or one B of the
dimer B2 is deposited near A, the dimer B2 dissociates and
the AB product immediately leaves the lattice. It is clear
that (A0A0 . . .) or (0A0A . . .) are absorbing states of this
system. These states have the only monomer at the odd- or
even-numbered lattice sites and vacancy otherwise. No pair of
adjacent vacant sites exists in this state, so a dimer cannot be
adsorbed. Furthermore, all vacant sites have A as a neighbor,
so a monomer cannot be adsorbed either. These are absorbing
states where no further deposition is possible.

D. Nonequilibrium kinetic Ising model

The nonequilibrium kinetic Ising model (NEKIM) was
proposed by Menyhard [35]. It combines spin-flip dynamics
at T = 0 and spin-exchange dynamics at T = ∞. The spin-
flip part is applied using two sublattices updating and is
followed by an exchange of neighboring spins with proba-
bility pex which is fixed at 0.3. A spin flip is carried out
alternately at even and odd sublattices with certain probabil-
ity. This probability depends on the spin values at a given
site and its nearest neighbors. When a central spin has the
same value as neighboring spins the probability of the spin
flip is given by psame. When both neighbors have opposite
spin, it is given by poppose. When neighbors have opposite
signs, it is given by pindifferent. We choose their values to be
psame = �(1 + δ)(1 − γ )/2, poppose = �(1 + δ)(1 + γ ), and
pindifferent = �(1 − δ)/2, where � = 0.35, δ = −0.395, and
γ = 1, as in the original formulation. Note that psame = 0.
Thus the state with all up spins or the state with all down spins
is an absorbing state. (The probability psame is the probability
of the creation of kink pairs inside the ordered domains at
T �= 0.) From the above description, it is clear that a kink
separating two domains can carry out random walks with
probability 2pindifferent and two kinks getting into neighboring
positions will annihilate with probability 2poppose.

We note that the behavior of global persistence has been
studied in this model. The exponent for global persistence

is found to be 0.67. Menyhárd and Odor have shown that
finite-size scaling at the critical point for the NEKIM has the
same exponent 1.75 as the one for the order parameter [25].

E. Nonequilibrium kinetic Ising model with parallel update

In the above model, first, N/2 sites on the even sublattice
are randomly chosen and updated, which is followed by an up-
date of N/2 randomly chosen sites on the odd sublattice. Thus
certain lattice sites may not be updated at all. Now we consider
a variant in which all sites on the even sublattice are updated
followed by an update of all sites on the odd sublattice. The
critical value of δ is now given by δ = −0.249. We have kept
other values fixed. At the critical value, the order parameter
decays with exponent δ = 0.28(3). Thus the transition is still
in the DI universality class. We will discuss the persistence
exponent of all the above models in the next section.

We may consider a variant in which all sites are updated
synchronously. This model belongs to a different universality
class. The order parameter decays with the exponent 0.5 and
the persistence decays with the exponent 0.38, which is very
close to 3

8 . This is a Glauber-Ising universality class [36–38].
We have found that changing the mode of the update may
result in a change of the universality class to the Glauber-Ising
class in models other than the NEKIM such as coupled maps
and Grassberger’s models. Obviously, this results in a change
of exponents. Though a change in universality class due to a
change in the mode of update is an interesting topic in itself, in
this work we focus and present results only on systems which
show a transition in the DI class (see also [39]).

III. PERSISTENCE IN DIRECTED ISING MODELS

The persistence problem is an analog of first-passage prob-
lems in the stochastic system and the exponent thus obtained
is a critical exponent unrelated to previous critical exponents.
It is rather difficult to compute analytically even in the sim-
plest cases such as the diffusion equation. The reason is that it
depends on the entire history and is a non-Markovian quantity.
Various definitions of persistence such as local persistence,
global persistence, and block persistence have been proposed.
Though initial studies have been in discrete systems such
as spin systems, suitably modified generalizations have been
proposed in systems with a continuous-variable value such
as coupled maps. The most widely studied quantity is the
local persistence probability P(t ) [also denoted by Pl (t ) in the
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FIG. 1. (a) Plot of ρ(t )t δ as a function of time t with δ = 0.285
at the critical point pc = 0.1237 for Grassberger’s model A. The
inset shows the order parameter ρ(t ) as a function of time t at the
critical point. (b) Order parameter ρ(t )t δ with δ = 0.295 plotted as a
function of time t at the critical point pc = 0.5425 for Grassberger’s
model B. The inset shows the order parameter ρ(t ) as a function of
time t at the critical point. We carry out simulations for N = 1 × 106

sites and average over 1 × 103 configurations.

literature]. It is defined as the probability that a local variable
at a given point in space has not changed its state until time
t during stochastic evolution. It is observed that, in several
systems, at the critical point, the local persistence probability
decays algebraically as

P(t ) ∼ t−θl . (1)

The exponent θl is known as a local persistence exponent. (We
will refer to it as the persistence exponent θ in this work).
In spin systems, the local persistence at time t , P(t ), is the
fraction of sites which did not change their initial spin state
at all times t � T . It may show a power-law decay at zero
temperature for Ising- or Potts-type systems. A similar expo-
nent is defined for nonequilibrium models such as directed
percolation. The persistence exponents themselves are not
universal and depend on the delicate details of evolution.

FIG. 2. (a) Plot of P(t )t θ as a function of time t with θ = 0.99(4)
at the critical point pc = 0.1237 for Grassberger’s model A. The inset
shows P(t ) as a function of time t at the critical point. (b) Plot of
P(t )t θ as a function of time t using θ = 1.00(0) at the critical point
pc = 0.5425 for Grassberger’s model B. The inset shows P(t ) as a
function of time t at the critical point. We carry out simulations for
N = 1 × 106 sites and average over 1 × 103 configurations.

Models in the same universality class have the same
persistence exponent in some cases, but not necessarily so.
The persistence exponent of widely different models such
as the 1D Ising model, coupled logistic maps, and the Sz-
najd model is 3

8 [38,40,41]. Similarly, it has been observed
that the persistence exponent in 1D DP models such as the
Domany-Kinzel model [42], Ziff-Gulari-Barshad model [43],
site percolation [44], and 1D coupled circle maps is the
same, i.e., 3

2 or very close to it [45]; however, later studies
established that the persistence exponents can widely differ
for models in the same universality class. The exponent is
not universal. (The value of exponents ranges from 1.5 to
2.24 for models in the 2D DP universality class.) Despite
its nonuniversality, the precise value may be of interest from
the viewpoint of detailed dynamics. We argue that even if
the persistence exponent is not universal, it can help in find-
ing other universal exponents. Again, if a large fraction of
models in a given universality class has the same persistence
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FIG. 3. (a) Plot of P2(t )t θ as a function of time t with θ =
1.00(0) at the critical point pc = 0.1237 for Grassberger’s model
A. The inset shows P2(t ) as a function of time t at the critical
point. (b) Plot of P2(t )t θ as a function of time t with θ = 1.00(5)
at the critical point pc = 0.5425 for Grassberger’s model B. The
inset shows P2(t ) as a function of time t at the critical point. We
carry out simulations for N = 1 × 106 sites and average over 1 × 103

configurations.

exponent, it is an interesting subclass. In this work, persistence
in 1D DI models is studied and the persistence exponent is
close to unity in all cases. We believe that this nontrivial
exponent sheds further light on the detailed dynamical nature
of phase transitions. There can be cases when the order
parameter is not easily identified. The scaling behavior of
persistence can shed light on other exponents in the system.
We give examples and make a detailed argument in the next
section.

Fuchs et al. defined a quantity graded persistence Pk (t )
which is a fraction of sites activated less than k times until
time t . We compute this quantity in a few models. The
exponent obtained in this case is almost the same as the
persistence exponent and has similar scaling properties [44].
If the exponent is the same, ratios Pk (t )/P(t ) can help us to
find the error in the persistence exponent.

FIG. 4. (a) Plot of ρ(t )t δ as a function of time t using δ =
0.28(5) at the critical point pc = 0.5108 for the BARW2 model.
The inset shows the order parameter ρ(t ) as a function of time t at
the critical point. (b) Plot of P(t )t θ as a function of time t using
θ = 1.00(5) at the critical point pc = 0.5108 for the BARW2 model.
The inset shows P(t ) as a function of time t at the critical point. We
carry out simulations for N = 2 × 104 sites and average over 8 × 103

configurations.

IV. SIMULATION AND RESULTS

In Grassberger’s models, the initial state is chosen to be 0
or 1 with equal probability. In the NEKIM, it is chosen to be
spin up or down with equal probability. In the IMD model,
we start with a flat surface, while in the BARW2 model, sites
are empty or occupied with equal probability in the beginning.
For Grassberger’s models A and B, Grassberger has estimated
critical points as pc = 0.13 ± 0.02 and 0.5403 ± 0.0013, re-
spectively. We estimate pc as 0.1237 and 0.5425 for models
A and B, respectively. For these values, the order parameter
decays as t−δ , with δ = 0.285 and 0.295 for models A and
B, respectively. The behavior of the order parameter ρ(t ) as
well ρ(t )t δ is shown in Figs. 1(a) and 1(b) at the critical
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FIG. 5. (a) Plot of ρ(t )t δ as a function of time t using δ =
0.27(0) at the critical point δc = 0.395 for the NEKIM. The inset
shows the order parameter ρ(t ) as a function of time t at the critical
point. (b) Plot of P(t )t θ as a function of time t using θ = 1.02(9)
at the critical point δc = 0.395 for the NEKIM. The inset shows
P(t ) plotted as a function of time t at the critical point. We carry
out simulations for N = 2 × 106 sites and average over 2 × 102

configurations.

point and an excellent power law is obtained over six decades.
This value of δ is in close agreement with values for the DI
class, where it is estimated to be 0.27–0.29. The simulations
are carried out for system size N = 106 and are averaged
over 103 configurations. At the critical point, we compute the
persistence as well as graded persistence for the above models.
For model A, the persistence exponent is found to be 0.99(4)
[Fig. 2(a), inset], while for model B, it is found to be 1.00(0)
[Fig. 2(b), inset]. These exponents are found by fitting the
power laws using standard software such as ORIGIN. They are
further confirmed by plotting P(t )t θ as a function of t . We find
a clear flat line asymptotically in this graph. The behavior of
persistence P(t ) as well as for P(t )t θ is shown in Figs. 2(a)
and 2(b) for both models A and B.

FIG. 6. (a) Plot of ρ(t )t δ as a function of time t using δ =
0.28(3) at the critical point pc = 0.249 for the parallel update
NEKIM. The inset shows the order parameter ρ(t ) as a function of
time t at the critical point. (b) Plot of P(t )t θ as a function of time
t using θ = 1.00(6) at the critical point pc = 0.249 for the parallel
update NEKIM. The inset shows P(t ) plotted as a function of time t
at the critical point. We carry out simulations for N = 1 × 106 sites
and average over 1 × 103 configurations.

We also find graded persistence P2(t ) for model A as well
as model B. The persistence exponent for graded persistence
P2(t ) is found to be 1.00(0) for model A and 1.00(5) for model
B. Again, they are confirmed by plotting P2(t )t θ as a function
of t . The behavior of graded persistence at the critical point
for Grassberger’s model A and B is shown in Figs. 3(a) and
3(b).

We simulate branching annihilating random walks with
two offsprings. The critical point is estimated pc = 0.5054
in Ref. [1]. We simulate the BARW2 model for system size
2 × 104 and average over 103 configurations. We estimate
pc = 0.5108, at which the order parameter ρ(t ) scales as t−δ

with δ = 0.28(5). The persistence exponent is obtained as
1.00(5) for this model. The behavior of the order parameter
ρ(t ) and persistence P(t ) for the BARW2 model is shown in
Figs. 4(a) and 4(b), respectively.
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FIG. 7. Plot of P20(t )t θ as a function of time t using θ = 1.04 at
the critical point pc = 0.249 for the 20-site parallel update NEKIM.
The inset shows P20(t ) plotted as a function of time t at the critical
point. We carry out simulations for N = 1 × 106 sites and average
over 1 × 103 configurations.

The critical point of the NEKIM was estimated to be δc =
0.395 by Menyhárd and Ódor [46]. We simulate for lattice
size 2 × 106 and average over 102 configurations. The order
parameter decays as a power law with δ = 0.27(0) for δc =
0.395. At this value, the persistence exponent is obtained to
be 1.02(9), which is again very close to unity. The behavior of
the order parameter and persistence for the NEKIM is shown
in Figs. 5(a) and 5(b), respectively.

We also study persistence in the NEKIM with a parallel
update. (We study the version in which all odd sites are
updated in parallel followed by all even sites.) As mentioned
above, this model falls in the DI class. The exponent δ for
the order parameter is 0.28(3), while the persistence exponent
θ = 1.00(6) in this case [see Figs. 6(a) and 6(b)]. We note
that with a fully synchronous update, the universality class
and persistence exponent change. We also compute P20(t ) as
a function of time and it shows an exponent of 1.04, which is
very close to unity (Fig. 7).

We simulate the IMD model for 1 × 106 sites and average
over 250 configurations. The critical point of the IMD was es-
timated to be pc = 0.5325 by Park and Park [33]. We estimate
pc = 0.5330 at which the order parameter ρ(t ) decays as t−δ

with δ = 0.27(2). We obtain the persistence exponent to be
1.05(4) in this case. The behavior of the order parameter and
persistence is shown in Figs. 8(a) and 8(b).

Finite-size scaling and off-critical simulations

As mentioned above, the persistence exponent can be use-
ful in finding other exponents of the system. We have carried
out finite-size scaling and off-critical simulations in a few
cases to demonstrate the usefulness of persistence in finding
other exponents. There is reasonable numerical evidence now
that finite-size scaling and off-critical scaling of persistence
are dictated by the same exponents as that of the order
parameter.

FIG. 8. (a) Plot of ρ(t )t δ as a function of time t using δ =
0.27(2) at the critical point for the IMD model. The inset shows
the order parameter ρ(t ) as a function of time t at the critical point.
(b) Plot of P(t )t θ as a function of time t using θ = 1.05(4) at the
critical point for the IMD model. The inset shows P(t ) plotted as a
function of time t at the critical point. We carry out simulations for
N = 1 × 106 sites and average over 250 configurations.

Some examples supporting the above conjecture are as
follows. (a) Fuchs et al. studied the one-dimensional DP
transition using the contact process as the model [44]. They
obtained successful data collapse of the persistence for finite-
size scaling as well as off-critical simulations using the 1D
DP exponents ν‖ and z. (b) It is known that the transition to
spatiotemporal intermittency in coupled circle maps in one
dimension is in the DP class. Here finite-size scaling yields
an exponent which matches with standard DP values [45].
(c) Persistence in Domany-Kinzel automata was studied by
Hinrichsen and Koduvely. They noted that the persistence
obeys finite-size scaling with the same exponents as in DP
[42]. (d) Directed percolation in two dimensions has been
studied. An evolutionary model of the prisoners dilemma on
the 2D lattice has been investigated [47]. In a few variants
of this model, successful scaling collapse for off-critical
simulations has been obtained, giving the value of ν‖ which
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FIG. 9. (a) Plot of P(t ) as a function of time t at the critical
point pc = 0.1237 for different sizes of Grassberger’s model A. The
inset shows the saturation value of P(t ) for different sizes vs size
N . (b) Plot of P(t )N θz as a function of t/Nz with z = 1.74(5) at the
critical point pc = 0.1237 for Grassberger’s model A.

matches with the 2D DP value. (e) The Glauber-Ising model
in one to four dimensions has been studied by Manoj and Ray.
They observed excellent finite-size scaling collapse and the
exponent matches with standard values [48]. (f) In studies
on persistence in the pair contact process with diffusion, a
limiting case of the pair contact process is known to be in
the directed percolation universality class. Matte and Gade
have carried out finite-size scaling as well as off-critical
simulations in this case. The exponents ν‖ and z match with
standard DP values in this case [19].

Apart from this empirical evidence, we present a simple
argument on why we expect finite-size scaling and off-critical
exponents for the order parameter and persistence to be the
same. Persistence saturates when the frozen state is reached
and there is no further activity. The time required to reach a
frozen state and for saturation of persistence should scale in

FIG. 10. (a) Plot of P(t ) as a function of time t at the critical
point pc = 0.5425 for different sizes of Grassberger’s model B. The
inset shows the saturation value of P(t ) for different sizes vs size N .
(b) Plot of P(t )N θz as a function of time t/Nz using z = 1.75 at the
critical point pc = 0.5425 for Grassberger’s model B.

the same manner. If the time taken to reach a frozen state for
size N scales as Nz, we expect the same time for scaling for
persistence. Similarly, if on one side of the critical point the
time required to reach the frozen state scales as |p − pc|−ν‖ ,
the time required for saturation of persistence will scale in
the same manner. The asymptotic value of persistence should
be N−zθ or |p − pc|ν‖θ . The argument does not extend to the
case when an active state is reached asymptotically. It would
be surprising if this case yields another independent exponent.
In fact, we find the same exponent even in this case.

We study finite-size scaling for persistence in all the above
models. We find an excellent match with the expected DI
value z in the range 1.73–1.75.

We obtain finite-size scaling using persistence P(t ) in mod-
els A and B. We have observed that the saturation value scales
as N−zθ ∼ N−z with z = 1.74(5) and 1.73(3) for models A
and B as we go from N = 50 to 3200 as shown in Figs. 9 and
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FIG. 11. (a) Plot of P(t ) as a function of time t at the critical point
pc = 0.5330 for different sizes of interacting monomer and dimer.
The inset shows the saturation value of P(t ) for different sizes vs
size N . (b) Plot of P(t )N θz as a function of t/Nz with z = 1.72(9) at
the critical point pc = 0.5330 for the IMD model.

10. This value is in excellent agreement with the known value
of z, which is 1.73–1.75 for the DI class [49–51].

We obtain finite-size scaling for persistence in the IMD
model. The saturation value scales as N−zθ ∼ N−z with z =
1.73 for the IMD model. The finite-size scaling for sizes
ranging from N = 50 to 1600 is shown in Figs. 11(a) and
11(b). For the BAW2 model, we plot the saturation value
of persistence from N = 50 to 800 and the saturation value
scales as N−zθ with z = 1.72(9) The scaling is shown in
Fig. 12 [49–51].

We also observed finite-size scaling using persistence P(t )
in the NEKIM. However, only surviving configurations are
considered for finite-size scaling in Ref. [52]. We subtract
the asymptotic value of persistence which will correspond to
configurations which reach the absorbing state. An excellent
scaling collapse is obtained for z = 1.73 (see Fig. 13).

We find persistence for values of p below and above the
critical point for very large system sizes N = 105. The persis-
tence goes to zero in the active state (p < pc) and saturates to
a finite value in the absorbing state (p > pc). Scaling collapse

FIG. 12. Saturation value of P(∞) plotted as a function of size
N at the critical point pc = 0.5108 for the BAW2 model. The fitted
line is proportional to N−z with z = 1.72(9).

of these off-critical simulations can be obtained by taking the
standard value of the DI class of ν‖ = 3.25. For Grassberger’s
model A, we average over 103 initial conditions for p < pc

and at least 2 × 104 initial conditions for p > pc for N = 105.
For model B, we average over 103 initial conditions for p < pc

and at least 2 × 104 initial conditions for p > pc for N = 106.
We plot P(t )
−θν‖ as a function of t
ν‖ where 
 = |p − pc|.
An excellent scaling collapse is obtained over a range of
values of 
. The scaling collapse is shown in Figs. 14(a)
and 14(b). For the IMD model, we average over 103 initial
conditions for p > pc and at least 2 × 104 initial conditions
for p < pc for N = 105. We plot P(t )
−θν‖ as a function of
t
ν‖ , where 
 = |p − pc|. Again, scaling collapse is obtained
for ν‖ = 3.25, which is shown in Fig. 15. In almost all plots
of persistence, a clean power law is obtained and nonlinear
corrections are very weak in persistence compared to the order
parameter. There is reasonable evidence to indicate that the

FIG. 13. Plot of P(t )N θz as a function of t/Nz with z = 1.73, at
the critical point δc = 0.395 for different sizes of the NEKIM. We
subtract P(∞) from P(t ).
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FIG. 14. (a) Plot of P(t )
−θν‖ as a function of t
θν
‖ for Grass-

berger’s model A at the critical point pc = 0.1237 for various values
of 
. (b) Plot of P(t )
−θν‖ as a function of t
θν

‖ for Grass-
berger’s model B at the critical point pc = 0.5425 for various values
of 
.

persistence exponent in all the above models belonging to the
DI class is unity or very close to it.

We propose one more way to get an idea of the
strength of nonlinear correction terms. We have found
graded persistence Pk (t ) in some cases and it behaves in
the same way as P(t ). Hence we propose the behavior
P(t ) = ct−θ (1 + dt−γ + · · · ) and Pk (t ) = ckt−θ (1 + dkt−γ +
· · · ). Now Pk (t )/P(t ) ∼ (ck/c)(1 + dkt−γ )(1 + dt−γ )−1 ∼
(ck/c)[1 + (dk − d )t−γ + · · · ]. If we plot Pk (t )/P(t ) as a
function of t , it is flat and the value of γ is almost zero. Thus
the correction is not discernible. This plot is given in Fig. 16.
In all cases above, we have also plotted P(t )t θ and the graph is
flat with a slope of the order of 10−3 with error 10−4 in most
cases. Hence we have given the persistence exponent to the
third decimal place. The nonlinear corrections are extremely
weak for persistence and its behavior is dominated essentially
by the persistence exponent.

FIG. 15. Plot of P(t )
−θν‖ as a function of t
θν
‖ for the IMD

model at the critical point pc = 0.5330 for various values of 
.

Finally, we would like to comment on a delayed logistic
map. Using a pseudospatiotemporal representation, phases
and phase transitions can be defined in this model. It was
conjectured by Lepri and later confirmed by Mahajan and
Gade that this transition is indeed in the directed Ising class
[27,53]. However, persistence (as defined above) does not
act as a good order parameter for this system and there is
no well-defined persistence exponent. The reason is simple.
The system is updated in a sequential (typewriter) mode from
left to right and has a one-sided coupling. Thus disturbances
travel from left to right. Thus persistence goes to zero rapidly.
However, for cases in which persistence acts as an alternative
order parameter, the exponent is unity or very close to it.

V. CONCLUSION

We have demonstrated that for the directed Ising model in
one dimension, the persistence exponent is universal and close

FIG. 16. Plot of Pk (t )/P(t ) as a function of t for Grassberger’s
models and the IMD model. For Grassberger’s models, NEKIM with
parallel update and the IMD model k = 2 and for the PNEKIM
k = 20.
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to unity. We have studied five different models in this context.
We have also studied a generalization of persistence known as
graded persistence, which has the same persistence exponent.
We have also studied finite-size scaling in all models. We also
studied off-critical scaling for persistence in some cases. It has
been observed that excellent scaling collapse can be obtained
using standard values for the directed Ising universality class.
Thus further numerical evidence has been provided for the
conjecture that persistence can be used as an alternate order
parameter for the partially or completely frozen case. Given
the nonuniversality of the persistence exponent in general, it

is interesting that a range of models has the same persistence
exponent. These studies may shed more light on the dynamic
process of the DI class.
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