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Heat flux direction controlled by power-law oscillators under non-Gaussian fluctuations
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Chains of particles coupled through anharmonic interactions and subject to non-Gaussian baths can exhibit
paradoxical outcomes such as heat currents flowing from colder to hotter reservoirs. Aiming to explore the
role of generic nonharmonicities in mediating the contributions of non-Gaussian fluctuations to the direction
of heat propagation, we consider a chain of power-law oscillators, with interaction potential V (x) ∝ |x|α ,
subject to Gaussian and Poissonian baths at its ends. Performing numerical simulations and addressing heuristic
considerations, we show that a deformable potential has bidirectional control over heat flux.

DOI: 10.1103/PhysRevE.100.032118

I. INTRODUCTION

Traditional concepts of equilibrium thermodynamics face
important challenges in the realm of nonequilibrium pro-
cesses. For instance, theoretical and experimental studies of
open systems have lead to review the definitions of fundamen-
tal quantities such as heat and work, circumventing apparent
violations of standard laws [1–5].

In particular, the exploration of heat conduction through
a medium connected to baths with generalized properties,
beyond Gaussian fluctuations, has revealed counterintuitive
phenomena, which called for investigation of how concepts
such as heat flux and temperature itself should be read in
this scenario [5–8]. Assuming that the source of heat is non-
Gaussian (thus described by an infinite set of cumulants as
stated by the Marcinkiewicz theorem [9]), one finds that each
cumulant can be interpreted as a source of stochasticity that
plays a role in heat flux [5]. Importantly, the role of higher-
order cumulants (beyond the second-order one) is not extrinsic
but mediated by system properties [6,10].

For a one-dimensional chain, within the classical frame-
work of Fourier’s law [11], heat flux direction is an extrinsic
property, established by the thermal baths. Namely, the flux J
is given by

J = κ�T = κ (TL − TR) , (1)

where �T is the temperature difference between the left
and right baths (see Fig. 1), and only the conductance κ

is characteristic of the propagation medium. The validity
of Fourier’s law in one-dimensional systems has been a
constant matter of debate [3,4,12–19], concerning anoma-
lous temperature profiles and divergence of the conductivity
in the thermodynamic limit, even in equilibrium Gaussian
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scenarios. When plugging athermal (nonequilibrium) baths,
exhibiting non-Gaussian statistics, still more drastic apparent
violations of Fourier’s law can emerge. As a matter of fact,
non-Gaussianity allied to nonlinear coupling of the chain
elements was shown to break down the classical picture for the
direction of heat flow producing counterintuitive heat transfer
from colder to hotter reservoirs [6,10]. A granular motor, as
previously studied in Refs. [20,21], is a concrete example of
a system that exhibits non-Gaussian features, being a suitable
candidate for a nonequilibrium bath [22,23]. For this case, the
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FIG. 1. (a) Chain of oscillators coupled at its ends to Gaussian
and Poissonian baths at standard temperatures TL and TR, respec-
tively, but in the Poissonian case there are additional sources of
stochasticity. Parameters k and α control the intensity and nonlin-
earity of the interactions, respectively, and the variable xi measures
the displacement of the ith particle from its equilibrium position.
(b) Visual abstract of the main results on heat transport, representing
the consequences of subharmonic (α < 2), harmonic (α = 2), and
superhamonic (α > 2) potentials to heat flux direction in the absence
of temperature gradient.
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collisions between bath particles and system contact can be
modeled as a Poisson shot noise.

In a broad view of the problem, this coupling produces
an effective temperature difference defined by a complex
interplay between the system and the surrounding baths. It
has been previously shown that in the particular case of a
chain of particles coupled via the Fermi-Pasta-Ulam-Tsingou
(FPUT) potential V (x) = 1

2 k1x2 + 1
4 k3x4, with k1 � k3 > 0,

subjected to baths at each end obeying Poisson shot noise and
Gaussian statistics, respectively, there is a correction to the
flux through the chain with respect to the Gaussian-Gaussian
case [6,10]. This correction is unidirectional, from the Poisson
to the Gaussian bath (see Fig. 1), reflecting the interplay
between nonlinearity and non-Gaussianity. Nevertheless, a
systematic investigation of the general role of nonlinearity in
mediating the contributions of non-Gaussian fluctuations in
heat transport is still lacking.

Thus, we consider an interaction potential of the power-law
form

Vα (x) = k
|x|α
α

, (2)

where k � 0 and α is a real parameter, yielding the force

Fα (x) = −k|x|α−2x. (3)

We consider α ∈ [1,+∞), which includes two classes of
nonlinearities: for α > 2 (α < 2) the force is super(sub)-linear
with the displacement x, while the harmonic interaction is
given by α = 2.

Equation (2) allows us to scan between the paradigmatic
cases of triangular potential, whose periodic extension (saw-
tooth) is used in ratchet modeling (α = 1) and infinite square
well (α → ∞), including the harmonic and quartic anhar-
monicities. Generic values of α, not necessarily integer, can
mimic realistic scenarios beyond simple harmonic oscilla-
tions, emerging due to nonlinear responses, at the macro-
scopic or atomic level [24–27].

The relevant features that we will discuss occur around
α = 2, for which the stiffness, kα (x) = k|x|α−2 [such that
Fα (x) = −kα (x)x], goes to zero (α > 2) or diverges (α < 2)
at the origin. We restrict our study to the region α � 1 in
order to avoid a divergent force at the origin. Actually, if
there were interest in investigating the region α < 1, like in
the case α → 0 (logarithmic potential), studied in the context
of optical lattices [28], the potential given by Eq. (2) can be
regularized [see Eq. (17)].

Our results reveal that the role of higher-order cumulants is
critically determined by the potential shape, which promotes
negative corrections (for α > 2), as reported for the case
of FPUT chains [6] or positive ones (for α < 2). Thus, a
deformable potential can fully control the flux direction. By
investigating the heat flux statistics, we show in detail that the
effect arises from the competition between frequent (small)
and rare (large) flux fluctuations, which is ruled by α.

We begin by defining the system in the following section
(Sec. II). Next, in Sec. III we present the numerical results for
the statistics of heat flux, which are accompanied by analytical
considerations discussed in Sec. IV. Last in Sec. V we address
final remarks.

II. SYSTEM

We consider a one-dimensional chain of nonlinear oscilla-
tors coupled to Gaussian and Poisson baths at each extremity.
A pictorial representation of the system is given in Fig. 1(a).

The Hamiltonian of the chain is

H =
N∑

i=1

[
1

2m
p2

i +
N−1∑
i=1

Vα (xi+1 − xi )

]
, (4)

where xi and pi represent the displacement and momentum
of the ith particle in the lattice, respectively, and the potential
Vα . Therefore, the equations of motion for the central particles
(2, . . . , i, . . . , N − 1) are

m ẍi = Fα (xi − xi+1) + Fα (xi − xi−1) , (5)

where m is the mass of the oscillators. The equations for the
particles in contact with the baths read

m ẍ1 + γ ẋ1 = Fα (x1 − x2) + ξL(t ) , (6)

m ẍN + γ ẋN = Fα (xN − xN−1) + ξR(t ) , (7)

where γ is the friction coefficient, and ξL and ξR are noises
that mimic the injection of stochasticity by the baths.

On the left end of the chain, we connect a standard
delta-correlated thermal bath G with Gaussian statistics.
Therefore, its cumulants are given by 〈ξL(t1) · · · ξL(tn)〉c =
K (L)

n

∏n
i=2 δ(ti − ti−1), where

K (L)
n =

{
2γ TL, n = 2 ,

0, n 	= 2 .
(8)

On the right end, a generalized bath, with an infinite
number of cumulants, is introduced. It is implemented by a
Poissonian symmetric shot noise P , set up by a series of
delta-correlated instantaneous (negative and positive) force
pulses with exponentially distributed amplitude �i and time
lag τi = ti+1 − ti, such that

ξR(t ) =
∑

i

�iδ(t − ti ) , (9)

with

pt (τi ) = λe−λτi and p�(�i ) = �̄−1e−|�i|/�̄ , (10)

where λ is the shot rate and �̄ is the average absolute value
of the amplitude. Under this definition, the cumulants are
〈ξR(t1) · · · ξR(tn)〉c = K (R)

n

∏n
i=2 δ(ti − ti−1), where

K (R)
n =

{
λn!�̄n, even n � 2 ,

0, otherwise .
(11)

The discrete character of the bath generates an infinite
set of cumulants that constitute, as previously demonstrated
[5,6,29], sources of stochasticity that have been associated
to the concept of higher-order temperatures, namely, T (n)

R ∝
K (R)

n = λn!�̄n [8]. In particular, the canonical temperature is
given by TR ≡ T (2)

R = K (R)
2 /(2γ ) = λ�̄2/γ . This constitutes a

fluctuation-dissipation relation, analogous to Eq. (8).
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FIG. 2. Average flux 〈J〉, for a three-particle chain with �T = 0
and T = TL = TR (indicated in the figure), considering Gaussian
(left) and Poissonian (right) baths, for different values of α in Eq. (2).
The “×” symbol represents the harmonic case for which 〈J〉 = 0.
The solid colored line highlights flux direction for the T = 1 case,
according to Fig. 1. Horizontal lines highlight the zero flux level
(dotted) and the infinite-well limit (dashed) for T = 1. Results for the
regularized potential in Eq. (17), with x0 = 0.1†, 1.0�, are also shown
for comparison. The inset shows the excess flux with respect to the
infinite-well limit (obtained numerically by a scaling procedure),
putting into evidence an exponential decay (solid black line) towards
the limit level.

III. NUMERICAL RESULTS

We integrate the equations of motion by means of a
stochastic Runge-Kutta scheme [30], setting m = γ = k =
1. As initial conditions, particles are at their equilibrium
positions with zero velocities, that is, xi = pi = 0. We use
�̄ = 1/2 and λ = γ TR/�̄2 for the Poisson bath. We restrict
our present study to the case where the standard temperatures
at the ends coincide (TR = TL), in order to highlight the phe-
nomena that emerge when nonharmonicity and generalized
bath properties are put together.

Heat transport is analyzed by means of the average flux
that passes through the chain. In the long-time regime, when a
steady state is attained, the injected and rejected heats are the
same. Thus, the flux that leaves the system can be written as

J = Fα (xN − xN−1)(vN + vN−1)/2 , (12)

and its time-averaged value is

〈J〉 = lim
t→∞

1

t

∫ t

0
J (t ) dt . (13)

Figure 2 displays the behavior of the mean current as a
function of α exponent, when �T = 0. For the harmonic
confinement (α = 2), there is no flux, while transport occurs
otherwise, as a result of the intertwining between system and
bath properties.

For α > 2, the flux becomes negative (i.e., heat flows from
right to left), as if the effective temperature of the Poisson bath
were larger than TR given by its second cumulant, due to the
effect of the higher-order ones. Contrastingly, for α < 2, the
role of this set of higher-order cumulants is reverted, reducing
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FIG. 3. Average flux magnitude |〈J〉|, for a three-particle chain
with �T = 0 as a function of T = TL = TR [varying λ; see Eq. (11)],
considering Gaussian (left) and Poissonian (right) baths, for α corre-
sponding to the sub- and superharmonic cases, in Eq. (2). The dashed
lines are guides to the eye.

the effective temperature and hence the flux direction. Thus, a
deformable potential (around α = 2) has bidirectional control
over heat transfer.

In Fig. 2 we show in detail that this nonlinear control is
robust against the temperature level T (= TL = TR) to which
the chain is subjected, but its impact is maximized for an
intermediate value of T , as depicted in Fig. 3.

These results put into evidence the impact of the type of
confinement in heat flux direction. However, it is not yet clear
which are the regulatory mechanisms for the emergence of
this interplay. We will show that, in the present scenario,
flux direction is controlled by a competition between rare
(large-scale) and frequent (short-scale) heat transport events,
controlled by α.

The probability density function (PDF) p(J ) of the instan-
taneous heat flux was obtained numerically and is presented in
Fig. 4(a), for different values of α, chosen to illustrate cases
yielding positive (α = 1), null (α = 2), and negative (α = 3)
fluxes. In the inset, we show that the ratio p(J )/p(−J ), which
measures asymmetry, obeys a reversibility relation [31], de-
caying exponentially in the limit of large fluxes. Notice that
small (large) negative fluxes are less (more) likely than posi-
tive ones.

In Fig. 4(b) we show how each value of α tunes the
contributions of small and large scales of J to the average flux
〈J〉 = ∫ ∞

−∞ j p( j) d j, which is decomposed as

〈J〉 =
∫ ∞

0
j w( j) d j =

∫ J0

0
j w( j) d j︸ ︷︷ ︸
A+

+
∫ ∞

J0

j w( j) d j︸ ︷︷ ︸
A−

,

(14)
where w( j) = j[p( j) − p(− j)] and J0 is the point at which
w( j) becomes negative. In all cases, while the short scales
yield a positive bias A+ (light gray), the large scales yield a
negative one A− (dark gray). The positive contribution of the
short scales indicates that the distributions are not symmetric
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FIG. 4. (a) Probability density function p(J ) for the instanta-
neous flux J = Fα (xi+1 − xi )(vi + vi+1)/2, for a three-particle chain
with TL = TR = 1, subject to Gaussian-Poisson baths, for different
values of α. Inset: asymmetry ratio vs J . (b) Contribution to the
average flux as a function of positive J , for the same parameters.
Inset: absolute value of the short-scale (A+) and large-scale (A−)
contributions.

near the origin, which goes almost unnoticed by the naked
eye. In the inset, we can see how the relative contribution of
short and large scales changes with α, being responsible for
flux inversion. While the positive contribution (light gray bars)
grows slowly with α around α = 2, the negative contribution
(dark gray bars) noticeably increases. This shows that the
occurrence of large rare events is the feature being modulated
by α that more strongly regulates flux direction. Note that,
even in the absence of net flux (for �T = 0 and α = 2),
there is a nonequilibrium signature in the asymmetry of the
PDF, as if there were a preferential positive direction given
by the more likely small J events, but which is ultimately
compensated by strong rare negative ones.

IV. HEURISTIC CONSIDERATIONS

Our numerical results showed that, depending on the
nonlinearity of the conducting medium, the role of Poisson
higher-order cumulants can change in a critical way, with
inversion of its contribution to heat flux direction. For FPUT
chains, it has been previously shown through approximate
methods that the higher-order cumulants generate a negative
correction to heat flux [6,10]. Despite the fact that these
calculations are performed under strong approximations, an
educated guess of our results about flux inversion can be
extracted as follows.

From the perspective of non-Gaussian stochastic energetics
[5], through a perturbation approach at the overdamped limit
(neglecting inertial effects), with small �T and weak nonlin-
earity, it has been shown that the heat flux is given by

J =
∑
n�2

Jn = −
∑
n�2

κn�Kn , (15)

with �Kn = K (R)
n − K (L)

n , and

κn = 1

2n!
〈V (n)(z)〉eq ≡ 1

2n!Z

∫ ∞

−∞
V (n)e−V (z)/T dz , (16)

where V (n) is the nth derivative of the potential and Z the
partition function. Equation (15) represents a generalization
of Eq. (1).

In the harmonic case, the non-Gaussian contributions are
turned off, since the series becomes truncated at n = 2 due
to null higher-order derivatives. For arbitrary α, the potential
Vα (x) in Eq. (2) is in general nonanalytic at x = 0. However,
it can be cast in the regularized form

Vα (x; x0) = k
[(

x2 + x2
0

)α/2 − xα
0

]
/α , (17)

with x0 > 0. Substitution of Vα , even in this regularized form,
into Eq. (16) leads to nonconvergent series of Borel type.
We bypass this issue, by directly checking the behavior of
the coefficients κn at the vicinity of the harmonic case, with
the purpose of obtaining an indication of flux inversion.
Then we expand the potential around α = 2 + ε (with |ε| �
1), namely, Vα (x; x0) ≈ kx2/α + k[ε/α] f (x) + O(ε2), where
f (x) is independent of α. At first order, the coefficients in
Eq. (16) become κn ∝ ε, flipping sign around α = 2 (ε =
0). The change of sign holds when summing up Eq. (15),
producing the flux inversion phenomenon, with linear depen-
dence J ∝ (2 − α), as observed in Fig. 2. Importantly, note
that the nonmonotonic dependence on temperature reported
in Fig. 3 is not captured by the overdamped (and weak
nonlinear) approximation made to obtain Eq. (16), that after
some calculations yields |J| ∼ T (for α = 4).

Through another perturbation approach, for an FPUT-chain
interacting potential V (x) = 1

2 k1x2 + 1
4 k3x4 (with k1 � k3 >

0), it has been shown [10] that the excess current δJ generated
by the higher-order cumulants from the Poissonian bath P , at
first order in k3, is

δJ = 〈J〉G-P − 〈J〉G-G = −Ck3 , (18)

where the proportionality factor C > 0 depends on k1, γ ,
λ, and �̄. That is, the Poisson character of the bath, in-
terplaying with the quartic anharmonicity, gives a negative
contribution to the net current, as if it were at an effec-
tive temperature which is higher than TR. In our case, the
regularized potential in Eq. (17) admits a Taylor expansion
near the origin Vα (x; x0) = k xα

0
2

∑∞
n=1


(α/2)
n!
(α/2−n+1) ( x

x0
)2n =

k[ 1
2 xα−2

0 x2 + 1
8 (α − 2)xα−4

0 x4 + · · · ], which converges for
|x| < x0. When x0 → 0 (or x is large enough), the regu-
larized potential recovers Eq. (2). Consistently we observe
that the numerical results are not significantly affected by
the introduction of small x0 (see Fig. 2). However, we also
observe that, when x0 increases, smoothing the potential at
the origin, the contributions of higher-order cumulants are
reduced (see Fig. 2). This expansion allows us to identify the
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effective coefficient k3 � k(α − 2)xα−4
0 /2, that according to

Eq. (18) indicates a change of sign around α = 2. Although
the derivation of Eq. (18) implicitly assumes k3 � 0 to have
a confining potential, and the mathematical derivation in the
vicinity of k3 = 0 is expected to hold independently of the
sign of k3, while higher-order terms would be responsible for
the confinement.

In sum, from approximations developed for FPUT po-
tentials in the vicinity of the harmonic case, we extracted
information that suggests the contribution of the higher-order
cumulants to the flux, giving further support to the results
from numerical simulations.

V. FINAL REMARKS

Previous studies of heat conduction that investigated the
interplay between the cumulants of the baths and the non-
linearity of the propagation medium focused on the FPUT
model [6,8]. It was observed that the higher-order cumulants,
beyond the second-order one, generate a (unidirectional) neg-
ative contribution to the heat flux, that is, from the Poisson
to Gaussian bath. Because the contribution of the quartic
anharmonicity is one-way, only by exploiting a positive bias
of the standard temperature difference would it be possible to
produce current inversion.

Our proposal of a general power-law form for the potential,
with arbitrary values of α beyond the quadratic and quartic
cases, allows us to unveil that the nonharmonic correction to
heat flow can be either negative or positive (for super- and sub-
harmonic potentials, respectively), as pictorially represented
in Fig. 1. This effect allows a bidirectional control over heat
transfer, keeping baths properties unchanged. By deepening in
heat flux statistics, we highlight the leading role of rare events.
Furthermore, we provide heuristic considerations that support
our findings.

It is worth recall that low-dimensional momentum (and
stretch) conserving systems, subject to Gaussian (thermal)
baths, yield anomalous heat transport [15,32], particularly,
presenting deviations from the scaling predicted by Fourier’s
law, J ∼ 1/N [16,19]. This extends to our case where trans-
port is solely led by non-Gaussian fluctuations (�T = 0), but
a rigorous characterization of size dependence (not shown)
is computationally challenging and can be inconclusive even
for extremely large chains, as discussed previously for the
FPUT model under thermal baths [16]. Despite that, the main
result that we present, regarding the direction of flux for
three-particle chains, persists for N � 1. We also checked
that the introduction of an on-site potential of the quar-
tic form [33] does not affect this main feature that we
report.

At last, it is interesting to notice that a device able to switch
between interaction potentials of the sub- and superharmonic
types, or governed by a deformable potential able to undergo a
change around α = 2, can control flux direction. Beyond the
heat conduction problem, this nonlinear control might have
implications, for instance, in the performance and functioning
of thermally driven systems, like nanomachines and Brownian
motors [26,34–36].
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