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Multifractal dimensions allow for characterizing the localization properties of states in complex quantum
systems. For ergodic states the finite-size versions of fractal dimensions converge to unity in the limit of large
system size. However, the approach to the limiting behavior is remarkably slow. Thus, an understanding of the
scaling and finite-size properties of fractal dimensions is essential. We present such a study for random matrix
ensembles, and compare with two chaotic quantum systems—the kicked rotor and a spin chain. For random
matrix ensembles we analytically obtain the finite-size dependence of the mean behavior of the multifractal
dimensions, which provides a lower bound to the typical (logarithmic) averages. We show that finite statistics
has remarkably strong effects, so that even random matrix computations deviate from analytic results (and show
strong sample-to-sample variation), such that restoring agreement requires exponentially large sample sizes. For
the quantized standard map (kicked rotor) the multifractal dimensions are found to follow the random matrix
predictions closely, with the same finite statistics effects. For a XXZ spin-chain we find significant deviations
from the random matrix prediction—the large-size scaling follows a system-specific path towards unity. This
suggests that local many-body Hamiltonians are “weakly ergodic,” in the sense that their eigenfunction statistics
deviate from random matrix theory.
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I. INTRODUCTION

Energy eigenstates are integral to the formulation of quan-
tum mechanics. Except for especially simple systems, eigen-
states usually are complicated objects, described in any basis
by a large number of coefficients. Thus, it is natural to analyze
eigenstate coefficients statistically. Statistical properties of
eigenstates were investigated already very early in the context
of transition strengths for complex nuclei [1] which can be
described by random matrix ensembles [2], and are central to
the study of quantum chaos, e.g., in quantum billiards [3–11]
and in quantum maps [11–16]. They also play a crucial role
in characterizing critical behaviors of Anderson transitions
between localized and metallic phases in disordered systems
[17]. Moreover, the properties of energy eigenstates are of
particular importance for describing the behavior of isolated
quantum many-body systems, e.g., concerning thermalization
[18–23] and many-body localization [24–31].

The statistical properties of eigenstates have been char-
acterized and studied in multiple ways. The distributions of
eigenstates have been examined directly, e.g, for quantum
billiards [4–10,32–35], for many-body systems [34,36], and
for quantum maps [11–16] and random-matrix ensembles
[37–39]. The maxima of random waves and chaotic eigen-
states have also been considered [15,40]. Eigenstate statistics
have often been characterized through the inverse participa-
tion ratio, extensively over several decades for single-particle
systems [17,41–44] and more recently also for many-body
systems [23,34,36,45–50]. Generalizing the inverse participa-
tion ratio, eigenstate statistics has also been studied through

the Shannon and Rényi entropies [45,51–57]. Closely related
to the Rényi entropies are the so-called fractal dimensions
[58,59], which are the topic of this work. Analysis of fractal
dimensions (“multifractal analysis”) is a standard tool in
the study of (single-particle) Anderson localization [17] and
has also been recently applied to eigenstates of many-body
quantum systems [29,34,57,60,61].

If the qth moment of the eigenstate coefficients scales
like N−(q−1)D∞

q as a function of the Hilbert space dimension
N , then the quantity D∞

q � 0 gives the (multi)fractal (Haus-
dorff) dimension of the corresponding support set in the limit
N → ∞. The fractal dimensions are particularly useful for
distinguishing between localized and ergodic phases for
single-particle lattice systems with disorder. The Anderson-
localized phase is characterized by zero fractal dimensions
D∞

q = 0 for q > 0, as each eigenstate is localized at a finite
number of sites. In contrast, so-called ergodic quantum eigen-
states [17] are those states for which at least a finite fraction
of the coefficients in the given basis contribute significantly,
and thus D∞

q = 1.
An important class of quantum systems are those with

a well-defined classical limit showing chaotic dynamics in
the sense that one has sensitive dependence on the initial
conditions (positive Lyapunov exponents almost everywhere)
and ergodicity (temporal averages of observables correspond
to phase-space averages for almost all initial conditions). In
such cases one expects that the statistical properties of spectra
can be described by those of corresponding random matrix
ensembles [62–64]. In contrast, many-body systems usually
do not have such a classical limit. We can define a many-body
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system as being “ergodic” or “chaotic” if the spectral statistics
or eigenfunction statistics follow those of one of the random
matrix ensembles. In either of these cases one expects in the
large-size limit that the fractal dimensions of most eigenstates
are equal to D∞

q = 1 for all q � 0.
The fractal dimensions are of particular interest in char-

acterizing multifractality, in which case D∞
q has a nontriv-

ial q dependence, in contrast to ergodic (localized) states
for which D∞

q is equal to 1 (0) for all q � 0. Multifractal
statistics appears at the Anderson localization transition for
single-particle lattice systems [17,65–71]. In addition, recent
examples have reported (multi)fractal phases extending over
a whole range of parameters [72–86]. Multifractal wave func-
tions have been found for some quantum maps [68,70,87,88].
For many-body quantum Hamiltonians with spatially local
(short-range) interaction terms the ground states have been
found to display multifractal behavior, even in cases for which
eigenstates at the center of the many-body spectrum show
random-matrix behavior [34,57,60,89–91]. Also, the question
of the existence of a multifractal phase in the vicinity of
the many-body localization transition as well as its rela-
tion to the slow dynamical phases is under active debate
[31,57,61,73,74,92–97]).

In this paper, we examine the finite-size dependence of
fractal dimensions [N dependence of Dq(N )] for eigenstates
of random matrices and of nominally chaotic systems. The
eigenstates of these systems are expected to be at least weakly
ergodic. Ergodic states are considered to be less exotic than
multifractal states, since the large-N limit is simple. However,
we will present highly nontrivial scaling behaviors: Dq(N )
approaches unity extremely slowly and with large eigenstate-
to-eigenstate fluctuations. We will first present analytical and
numerical results for the case of random-matrix ensembles,
namely, the circular orthogonal (COE) and unitary (CUE) en-
sembles. These results will then be compared to two physical
systems which are expected to have ergodic behavior. The first
is a paradigmatic model from quantum chaos: the quantum
kicked rotor whose corresponding classical dynamics is given
by the standard map. We will show that the multifractal
properties of the quantized standard map with strongly chaotic
classical dynamics follow the CUE predictions very closely.
We then consider a nonintegrable quantum spin chain. In this
case the comparison is substantially more subtle because only
the center of the many-body spectrum (“infinite-temperature”
states) is expected to behave ergodically. We present numer-
ical evidence that the behavior of many-body eigenstates is
only “weakly ergodic,” in the sense that Dq(N ) approaches
unity for N → ∞ but follows a different system-specific path
compared to the COE case.

The paper is structured as follows. We introduce the
fractal dimensions in Sec. II, in particular the mean and
typical averages. In Sec. III we present analytic derivations
for the random matrix ensembles and compare with numer-
ical calculations for COE and CUE ensembles. In Sec. IV
we present calculations of Dq(N ) for the chaotic quantum
map and also compare with random matrix results Sec. V
treats as example of a many-body quantum system a spin
chain in the chaotic regime, and an analysis of Dq(N ) is
presented. In Sec. VI we summarize and point out open
questions.

II. FRACTAL DIMENSIONS

To characterize the properties of a given state |� j〉 consider
its expansion coefficients c( j)

i in some (finite) orthonormal
basis {|ψi〉}, i.e., |� j〉 = ∑N

i=1 c( j)
i |ψi〉. Based on the moments

Iq( j, N ) =
N∑

i=1

∣∣c( j)
i

∣∣2q
(1)

one defines the (finite-N) fractal dimensions for the given state

Dq( j, N ) = − 1

q − 1

1

ln N
ln Iq( j, N ) (2)

= − 1

q − 1

1

ln N
ln

(
N∑

i=1

∣∣c( j)
i

∣∣2q

)
. (3)

For fixed N the fractal dimensions are monotonically decreas-
ing functions of q with 0 � Dq(N ) � 1 for q � 0. In the limit
q → 1 one gets by l’Hôpital’s rule the Shannon information
dimension

D1( j, N ) = − 1

ln(N )

N∑
i=1

∣∣c( j)
i

∣∣2
ln

∣∣c( j)
i

∣∣2
. (4)

One may now consider an average over an ensemble of states,
which is denoted by

Dq(N ) = 〈Dq( j, N )〉 ≡ − 1

q − 1

1

ln N
〈ln Iq( j, N )〉. (5)

Finally, the fractal dimensions D∞
q are defined in the limit

N → ∞ [98],

D∞
q ≡ lim

N→∞
Dq(N ). (6)

If D∞
q depends on q > 0 in a nontrivial way, the states

are multifractal. For constant D∞
q < 1 the states are fractal,

ergodic behavior corresponds to D∞
q = 1, and localized states

correspond to D∞
q = 0.

Thus the fractal dimensions D∞
q describe the asymptotic

scaling behavior of the moments of typical eigenstates as
N → ∞,

〈Iq( j, N )〉typ ≡ exp[〈ln Iq( j, N )〉] N→∞∼ N−D∞
q (q−1). (7)

Numerically, D∞
q can only be estimated by extrapolating the

results of finite-N computations using Eq. (5).
The leading size dependence of Dq(N ) is often of the form

Dq(N ) ∼ D∞
q − fq/ ln N, (8)

so that using Eq. (5) the moments can be written as

〈Iq( j, N )〉typ = N−Dq (N )(q−1) � cqN−D∞
q (q−1), (9)

with cq = e(q−1) fq . When the finite-size correction to D∞
q is

not exactly or solely of the form proportional to 1/ ln N , the
prefactor cq acquires a weak dependence on N .

Random matrix theory allows for a universal description
of the statistical properties of ergodic eigenstates in many
different situations. Thus it should also provide a prediction
for the finite-N scaling of Dq(N ), where the average in Eq. (5)
is performed over a suitable random matrix ensemble. How-
ever, an analytical computation of the ensemble average in
Eq. (5) over the logarithm of the moments is a daunting task.
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Thus instead we will use the ensemble-averaged moments
Ĩq(N ) ≡ 〈Iq( j, N )〉 and take the logarithm afterwards,

D̃q(N ) = − 1

q − 1

1

ln N
ln Ĩq(N ). (10)

By Jensen’s inequality D̃q(N ) provides a lower bound to
Dq(N ),

D̃q(N ) � Dq(N ) (11)

as the logarithm is a concave function. In particular D̃q(N )→1
implies Dq(N ) → 1.

III. RANDOM MATRIX PREDICTIONS

As specific random matrix ensembles we consider the
circular unitary ensemble (CUE) of complex unitary matrices,
describing systems without any antiunitary symmetries and
the circular orthogonal ensemble (COE) of real orthogonal
matrices, describing systems with one antiunitary symmetry,
e.g., time reversal. Note that the results for the eigenvector
statistics of the CUE and COE also apply to the Gaussian uni-
tary ensemble (GUE) and the Gaussian orthogonal ensemble
(GOE), respectively.

A. Circular orthogonal ensemble

For the COE the eigenvectors can be chosen to be real and
the only requirement for the coefficients c( j)

i is the normaliza-
tion

N∑
i=1

(
c( j)

i

)2 = 1. (12)

This condition implies that the probability density of one
(rescaled) component N (c( j)

i )2 to have a specific value η is
given by [1, Eq. (7.5)]

PCOE
N (η) = 1√

πNη

�(N/2)

�[(N − 1)/2]
(1 − η/N )(N−3)/2. (13)

The corresponding eigenfunction moments (1) calculated
from this distribution are

ĨCOE
q (N ) = N√

π

�(N/2)�(q + 1/2)

�(q + N/2)
. (14)

For large N one gets

ĨCOE
q (N ) � �(q + 1/2)(2e)q

√
π

N−(q−1)

×
(

1 − 2

N

) N−1
2

[
1 − 2(q − 1)

N

]q+ N−1
2

(15)

� �(q + 1/2)2q

√
π

N−(q−1) + O(N−q ) (16)

∼ N−(q−1). (17)

Note that one obtains from (13) in the limit of large N the
so-called Porter-Thomas distribution [99]

PCOE(η) = 1√
2πη

exp(−η/2). (18)
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FIG. 1. Fractal dimensions (a) Dq(N ) of typical and (b) D̃q(N )
of mean eigenstate moments for the COE for N = 400, 2000, 10 000
(black circles, blue squares, red crosses) in comparison with
D̃COE

q (N ), Eq. (20), dashed lines. The inset in panel (a) shows
the standard deviation σ (q) of the fluctuations of Dq( j, N ) around
Dq(N ).

Based on the moments (14), inserted in Eq. (10), one gets
the COE prediction for the finite-N scaling of the fractal
dimensions

D̃COE
q (N ) = − 1

(q − 1) ln N
ln

[
ĨCOE
q (N )

]
(19)

= − 1

(q − 1) ln N
ln

[
N�(N/2)�(q + 1/2)√

π�(q + N/2)

]
(20)

� 1 − 1

(q − 1) ln N
ln

[
�(q + 1/2)2q

√
π

]
. (21)

For q = 1 this gives D̃COE
1 (N ) = 1 − [ln 2 + ψ (3/2)]/ ln N ,

with the digamma function ψ (x) = �′(x)/�(x) [100, 5.2.E2].
The fractal dimensions approach D̃COE

q (N ) → 1 with logarith-
mic corrections ∼1/ ln N . For the prefactor cq introduced in
Eq. (9), this gives

cCOE
q � �(q + 1/2)2q/

√
π. (22)

Figure 1(a) shows Dq(N ) for N = 400, 2000, and 10 000,
each computed from one realization of the COE, numerically
generated as described in [101]. The curves are still very far
from Dq = 1, but a slow logarithmic approach with increasing
N is clearly seen. The analytical result D̃COE

q (N ), Eq. (20),
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provides according to the inequality (11), a lower bound.
This bound even gives a good approximation up to some
value of q, which increases with increasing N . In Fig. 1(b)
we show D̃q(N ) for the COE, i.e., for one realization the
moments ĨCOE

q (N ) are computed and then Eq. (10) is used.
The agreement with the analytical result D̃COE

q (N ), Eq. (20),
is much better. However, for larger values of q, there are still
prominent deviations from the analytic predictions. We will
discuss the origin of these deviations in Sec. III C.

The inset in Fig. 1(a) shows the standard deviation σ (q)
of the fluctuations of Dq( j, N ) around Dq(N ). For fixed N ,
the state-to-state fluctuations increase with increasing q, and
appear to eventually saturate. Larger values of N lead to
smaller fluctuations.

B. Circular unitary ensemble

For the CUE the eigenvectors are complex, fulfilling the
normalization condition

N∑
i=1

∣∣c( j)
i

∣∣2 = 1. (23)

This implies that the probability density of one (rescaled)
component N |c( j)

i |2 to have a specific value η is given by [14]

PCUE
N (η) = (1 − 1/N )(1 − η/N )N−2. (24)

The corresponding eigenfunction moments (1) calculated
from this distribution are

ĨCUE
q (N ) = q!N!

(N + q − 1)!
. (25)

For large N one gets

ĨCUE
q (N ) � q!eqN−(q−1)

×
(

1 − 1

N

)N− 1
2
(

1 − q − 1

N

)q+N− 1
2

(26)

� q!N−(q−1) + O(N−q) (27)

∼ N−(q−1). (28)

Note that one obtains from Eq. (24), in the limit of large N ,

PCUE(η) = exp(−η). (29)

Based on the moments (25), inserted in Eq. (10), one
gets the CUE prediction for the N-dependence of the fractal
dimensions

D̃CUE
q (N ) = − 1

(q − 1) ln N
ln

[
NĨCUE

q (N )
]

(30)

= − 1

(q − 1) ln N
ln

[
q!N!

(N − 1 + q)!

]
(31)

� 1 − ln(q!)

(q − 1) ln N
. (32)

For q = 1 this gives D̃CUE
1 (N ) = 1 − (1 − γ )/ ln N , where

γ � 0.577216 is Euler’s constant. Clearly, as N → ∞ the
fractal dimension approaches D̃CUE

q (N ) → 1 with logarithmic
corrections ∼1/ ln N , as in the COE case. For the prefactor cq
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FIG. 2. Fractal dimensions (a) Dq(N ) of typical and (b) D̃q(N )
of mean eigenstate moments for the CUE for N = 400, 2000, 10 000
(black circles, blue squares, red crosses) in comparison with
D̃CUE

q (N ), Eq. (31), dashed lines. The inset in panel (a) shows
the standard deviation σ (q) of the fluctuations of Dq( j, N ) around
Dq(N ).

introduced in Eq. (9), this gives

cCUE
q � q!. (33)

Figure 2(a) shows a comparison of Dq(N ) for the CUE with
the lower-bound D̃CUE

q (N ), Eq. (31) for N = 400, 2000 and
10 000, each using one realization. Similarly to the case of the
COE one finds an overall slow logarithmic approach towards
Dq = 1 with increasing N . The deviations from the lower
bound D̃CUE

q (N ), Eq. (31) start for larger q with increasing
N than for the COE. Also for D̃q(N ) for the CUE, shown in
Fig. 2(b), the agreement with the analytical result D̃CUE

q (N ),
Eq. (31) is better, however, again with unexpected prominent
deviations for larger q.

In Figs. 1(a) and 2(a), we have presented Dq(N ), which
is the average of Dq( j, N ) over N states. However, there is
quite a variation in the values of Dq( j, N ) themselves. This
is already indicated by the standard deviation σ (q), as shown
in the insets Fig. 1(a) and Fig. 2(a) but better seen in the full
distribution of Dq( j, N ). Figure 3(a) shows the histograms for
Dq( j, N ) for the CUE for N = 10 000 and q = 2, 5, 10, 20.
With increasing q, the mean decreases while the variance
increases. This can also be understood intuitively, as larger
values of q correspond to higher moments of the eigenstate
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FIG. 3. (a) Distributions P[Dq( j, N )] for one realization of the
CUE for N = 10 000 and q = 2, 5, 10, 20. (b) Semilogarithmic
representation.

coefficients which therefore emphasizes the tails of the distri-
bution of the coefficients. The semilogarithmic representation
in Fig. 3(b) shows that the tails towards smaller Dq become
approximately a straight line, i.e., show exponential behavior,
while the tails towards larger Dq are close to a Gaussian decay.

Based on the properties of the distributions P[Dq( j, N )]
one can draw several conclusions about the behavior of Dq(N )
and D̃q(N ): (1) The fact that P[Dq( j, N )] has a rapid decay in
both directions ensures that the values of Dq(N ) and D̃q(N )
have similar orders of magnitude, as observed in Figs. 1
and 2. (2) However, for larger q the numerically computed
D̃q(N ) are always above the analytical results D̃COE

q (N ) and
D̃CUE

q (N ); see Figs. 1(b) and 2(b). The origin for this is
the skewness of the distributions P[Dq( j, N )] towards lower
values of Dq( j, N ) together with the monotonic decay of the
function N−(q−1)Dq with Dq at q > 1. Indeed, the analytical
results D̃COE

q (N ) and D̃CUE
q (N ) can also be obtained by the

integral

N−(q−1)D̃q (N ) =
∫

P(Dq)N−(q−1)Dq dDq, (34)

where the integrand is more skewed to the left in comparison
with P(Dq), but still decays rapidly. The numerically sampled
D̃q(N ) is governed by the most probable values around the
maximum of the integrand in (34). Thus it deviates to larger
values from D̃COE

q (N ). (3) The shape of the distribution of
P(Dq) appears to stabilize with increasing q; see for example
the q = 10 and q = 20 distributions in Fig. 3. This corre-

sponds to the saturation of the standard deviation σ (q) at large
q, seen in the insets of Figs. 1(a) and 2(a).

C. Finite-statistics corrections

In this section we consider corrections to the moments
Ĩq(N ) and fractal dimensions Dq(N ) and D̃q(N ) due to finite
statistics. This allows to estimate the value of q above which
the numerical calculations deviate from analytic predictions.

We consider a situation where one obtains the data from
a finite number Nr of eigenstates, which may be from one
or several (e.g., disorder) realizations. Statistical errors come
into play because of the finiteness of Nr . We can characterize
these errors by considering how the distribution P(N |c( j)

i |2 =
η) ≡ P(η) is numerically approximated by a histogram. The
histogram is normalized by Nr and has bin sizes 	η. We first
consider the bin sizes 	η to be independent of η. At the edge
of the distribution, i.e., for larger values of η, the number of
counts per bin is smaller, and hence statistically less reliable.
When there are only a few counts, C ∼ O(1), statistical errors
become significant. The bin at which this occurs, i.e., the value
η = η∗, is given by the condition

NrP(η∗)	η � C. (35)

For the CUE case, using the exponential (29) as large-N
approximation, one obtains the condition

η∗(Nr ) � ln

[
Nr	η

C

]
= ln N̄r, (36)

where N̄r ≡ (Nr	η/C).
For the COE case, the large-N approximation is the Porter-

Thomas distribution (18). For this we cannot solve Eq. (35)
for η∗ in closed form, but approximating iteratively, we obtain

η∗(Nr ) � 2 ln N̄r + ln η (37)

= 2 ln N̄r + ln[2 ln N̄r + ln η] = · · · . (38)

In the iterative solution for the COE case, the corrections to
the leading term are either constant or multiple-logarithmic
functions of N̄r ; for our estimate we neglect these weakly
varying functions and keep only the leading (2 ln N̄r) term.
Thus we get

η∗(Nr ) � 2

β
ln N̄r � 2

β
ln Nr, (39)

up to O(1) constants and additive weaker functions of Nr .
Here β = 1 for the COE and β = 2 for the CUE.

Note that there is no fundamental reason for the binning
to be linear, i.e., for 	η to be independent of η. If one uses
logarithmic binning, 	η ∝ η, one obtains corrections to the
above estimate which are of double-logarithmic form, and
hence can be neglected as done above.

To obtain an estimate for the value q∗ of q at which
statistical errors become significant, we have to to relate q to
η. Writing the qth moment (1) as

Nq−1〈Iq( j, N )〉 =
∫ N

0
dη ηqP(η) (40)

=
∫ N

0
dη eq ln η+ln P(η), (41)
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FIG. 4. Plot of the moment q�(N ) from which on RMT predic-
tion and data begin to differ by more than f = 0.009; COE (black
circles) and CUE (red squares).

we use the saddle point approximation to note that the main
contribution comes from the value of η that maximizes the
exponent:

0 = d

dη
[q ln η + ln P(η)] = q

η
+ d ln P(η)

dη

= q

η
− β

2
+ β − 2

2η
. (42)

Thus the main contribution to the qth moment comes from
η(q) = (2q + β − 2)/β. When q gets so large that this η(q)
exceeds η∗, statistical errors become significant. Thus the
value of q beyond which statistical errors are significant is

q�(Nr ) = β

2
η�(Nr ) + 1 − β

2
� ln Nr . (43)

This estimate neglects O(1) constants and weaker (double-
logarithmic) dependencies on Nr . In addition, the argument
relies on some constants that cannot by nature be firmly
specified, such as the bin count C at which we consider
statistical errors to become significant. Finally, the deviation
between numerical and analytical predictions, seen in Figs. 1
and 2, gradually increase with q and do not start at a sharply
defined value of q∗. For all these reasons, we do not expect the
estimate to be quantitatively accurate.

Figure 4 shows numerical estimates of q�(N ) as a function
of ln N . This gives an idea of how well the data for Dq(N )
and D̃q(N ) for one realization of the CUE and the COE are
described by D̃CUE

q (N ), Eq. (20), and D̃COE
q (N ), Eq. (31),

respectively. We determine q�(N ) as the lowest value of q
for which Dq(N ) or D̃q(N ) differ from the random matrix
prediction by more than f = 0.009,∣∣Dq(N ) − DRMT

q (N )
∣∣ � f for q < q�(N ). (44)

Here f = 0.009 approximately corresponds to the vertical
extent of the symbols in Figs. 1 and 2. Of course, this estimate
will depend on the choice of f , which is arbitrary. Despite
this uncertainty and those discussed above, an approximate
straight-line dependence is observed,

q�(N ) ∼ ln N, (45)

in agreement with the theoretical expectation (43) for Nr = N .
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FIG. 5. Fractal dimensions Dq(N ) for the quantized standard
map for N = 400, 2000, 10 000 (circles, squares, crosses) in compar-
ison with D̃CUE

q (N ), Eq. (31), dashed lines. Also shown are the CUE
results of Fig. 2(a) as gray circles. The inset shows 1000 iterates of
the standard map (47).

IV. CHAOTIC QUANTUM MAP

For quantum systems whose corresponding classical dy-
namics is fully chaotic one expects that the statistics of eigen-
values and eigenstates can be described by random matrix
theory. Still, even if the spectral statistics, e.g., for the level-
spacing distribution, follow the corresponding random matrix
results, this need not hold equally well for the statistics of
eigenstates. Thus we now investigate, starting with a single-
particle system, how well the results for the scaling of the
fractal dimensions are fulfilled for different types of chaotic
quantum systems. In particular deviations may reveal inter-
esting physics.

As a prototypical example of a system with chaotic classi-
cal dynamics we consider a time-periodically kicked system
whose Hamiltonian readspt

H (x, p, t ) = 1

2
p2 + V (x)

∞∑
n=−∞

δ(t − n). (46)

Here the sum describes a periodic sequence of kicks with
unit time as kicking period. For V (x) = K

4π2 cos(2πx) one
obtains the so-called kicked rotor. Its stroboscopic dynamics
considered before consecutive kicks, gives the area-preserving
standard map [102], (x, p) → (x′, p′),

x′ = x + p′, (47)

p′ = p + K

2π
sin(2πx), (48)

for which we consider x, p ∈ [0, 1[ with periodic boundary
conditions so that the phase space is a two-dimensional torus.
For sufficiently large kicking strength K the standard map is
strongly chaotic [102,103]. As example we use K = 9, see the
inset in Fig. 5, for which numerically no regular islands on any
relevant scales have been found.

Quantum mechanically, the torus phase space leads to a
finite Hilbert space of dimension N ; see, e.g., Refs. [104–108].
The effective Planck constant is h = 1/N and N → ∞
corresponds to the semiclassical limit. The quantum time
evolution between consecutive kicks is given by a unitary
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FIG. 6. Fractal dimensions (a) Dq(N ) and (b) D̃q(N ) for q = 0.5, 1, 2, 4, 8, 16 for the quantized standard map (red squares) vs 1/ ln N . The
full lines show D̃CUE

q (N ), Eq. (31). The gray circles show the corresponding random matrix results for one realization of the CUE.

time-evolution operator which can be represented in position
space by a matrix with elements

U (n′, n) = 1

N
exp

[
−iN

K

2π
cos

(
2π

N
(n + α)

)]

×
N−1∑
m=0

exp

[
−π i

N
(m + β )2

]

× exp

(
2π i

N
(m + β )(n − n′)

)
, (49)

where n, n′ ∈ {0, 1, . . . , N − 1}. Thus one gets the eigenvalue
problem

U |ψ j〉 = eiϕn |ψ j〉, (50)

with eigenphases ϕn ∈ [0, 2π [ as all eigenvalues lie on the
unit circle due to the unitarity of U .

The quantum phases β and α in Eq. (49) determine the
boundary conditions due to the periodicity in position and mo-
mentum, respectively. Choosing (α, β ) = (0.2, 0.24) ensures
that both time reversal symmetry and parity are broken, so that
the consecutive level spacing distribution of this quantized
standard map follows the prediction for the CUE.

Figure 5 shows a comparison of Dq(N ), computed from
one realization of the quantized standard map for different
N = 400, 2000, and 10 000, with the lower-bound D̃CUE

q (N ),

Eq. (31). The agreement with the CUE results of Fig. 2(a) is
quite good, and improves with increasing N . Thus overall one
can conclude from Fig. 5 that the multifractal moments of the
eigenvectors of the quantized standard map with fully chaotic
dynamics are very well described by the corresponding ran-
dom matrix computations. For the CUE and the quantized
standard map, the D̃q(N ) show similar deviations from the
analytical prediction (31).

To analyze the scaling of Dq(N ) and D̃q(N ) towards 1
in the limit N → ∞, Fig. 6 shows the fractal dimensions
versus 1/ ln N . The comparison with D̃CUE

q (N ), Eq. (31),
and the results for the CUE, displayed in Fig. 6(b), show a
similar scaling. For larger values of q the fluctuations become
more pronounced. For Dq(N ), displayed in Fig. 6(a), there is
good agreement with the lower bound provided by D̃CUE

q (N ),
Eq. (31) when q is small. However for larger values of q there
are clear deviations of the fractal dimensions. With increasing
N , i.e., decreasing 1/ ln N , the data approach the lower bound
(31) from above. Moreover the numerical results show that
the finite-size corrections both for Dq(N ) and D̃q(N ) for the
quantized standard map are similar to those for the CUE.

V. MANY-BODY SYSTEMS

We now turn to another class of systems for which random-
matrix theory is often applied: many-body systems which are
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neither integrable nor many-body-localized. We will present
results for a specific spin chain (the XXZ chain with nearest-
neighbor interactions) for two different choices of parameters.
In addition we have performed similar calculations for other
many-body lattice Hamiltonians, and found the overall mul-
tifractality properties to be very similar. We thus believe the
results presented here to be qualitatively generic.

A. Hamiltonian

We consider a disorder-free XXZ Heisenberg chain, con-
sisting of L sites and one spin-1/2 particle on each site, with
both nearest-neighbor (NN) and next-nearest-neighbor (NNN)
interactions:

H = J1

L−1∑
i=1

(
S+

i S−
i+1 + S−

i S+
i+1 + 	1Sz

i Sz
i+1

)
+ J2

L−2∑
i=2

(
S+

i S−
i+2 + S−

i S+
i+2 + 	2Sz

i Sz
i+2

)
. (51)

Here S±
i = Sx

i ± iSy
i with Sx

i = h̄
2 σ x

i , Sy
i = h̄

2 σ
y
i , and Sz

i = h̄
2 σ z

i ,
using the Pauli-matrices acting only on the ith site. The sum-
mations in (51) are over the site index. The XXZ chain with
NNN interactions is a canonical example of a nonintegrable
many-body system. As such, the midspectrum eigenstates
and the dynamics of this model and its variants have been
studied from several perspectives in recent years (see, e.g.,
Refs. [34,109–119]). Of course, the equilibrium (low-energy)
properties of such models have been considered extensively,
already in earlier decades, but these are less relevant to the
present work.

In order to avoid reflection symmetry, we have omitted
the NNN coupling between sites 1 and 3 (the summation
starts from i = 2 instead of i = 1). The NNN coupling breaks
integrability; to keep away from an integrable point we use
J2 = J1. We also set both couplings J1,2 to unity, i.e., energies
are measured in units of J1.

The XXZ chain (51) conserves the total Sz = ∑L−1
i=1 Sz

i , or
equivalently, the number of up-spins or “particle number” M.
For M up-spins in L sites, the Hilbert space dimension is N =(L

M

)
. As parameters we use (	1,	2) = (2.0, 0.0) throughout

the text, apart from Fig. 9, where in addition (	1,	2) =
(0.8, 0.8) is used.

We have checked that the system shows the correct GOE
level spacing statistics for either of these parameter sets, e.g.,
the average 〈r〉 of the ratio of successive consecutive-neighbor
level spacings [25,120] is near the value (≈0.53) expected for
the GOE. The average ratio 〈rCN〉 of the spacings between
two closest levels [121] is also near the GOE value (≈0.57).
For example, for (L, n↑) = (17, 8) we get 〈r〉 ≈ 0.536 and
〈rCN〉 = 0.573, using 1000 eigenenergies around the center
of the spectrum. Of course, the result depends on the system
size and parameters, and also slightly on how many (if any)
eigenenergies from the top or bottom of the spectrum are
omitted. However, in no case have we found more than a 2%
deviation from the GOE expectation.

B. Overview: Various parts of the spectrum

We first consider the fractal dimensions of all eigenstates
for the XXZ spin chain (51) in the ergodic regime. Eigenstates

0.0
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−0.6 0.0 0.6
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Eα/L
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FIG. 7. Fractal dimensions Dq( j, N ) for q = 2 vs the scaled
eigenenergies, Eα/L, for the XXZ spin-chain. for (L, n↑) = (9, 4),
(13, 6), (17, 8) (black circles, red diamonds, green squares). The
corresponding Hilbert space dimensions are N = 126, 1716, 24 310.
For one realization of the GOE with N = 24 310 the fractal dimen-
sions D2 are shown as small gray dots versus the energies (rescaled
to approximately the same bandwidth as the spin-chain).

at the very low-energy and very high-energy edges of the
spectrum are multifractal. Indeed, for the lowest and the
highest eigenstates D∞

q �= 1 for q �= 0 [34,60]. For noninte-
grable systems, it is widely expected that the eigenstates in
the middle of the many-body spectrum behave at least like
random-matrix eigenstates; in fact this expectation may be
considered the basic idea behind the eigenstate thermalization
hypothesis [18–23,117,122–125]. Thus, we expect that the
middle of the spectrum is at least weakly ergodic in the sense
that the corresponding wave functions occupy a finite fraction
of the Hilbert space and, thus, Dq(N ) approaches 1 in the
N → ∞ limit.

Figure 7 illustrates the N-dependence of the fractal di-
mensions by plotting D2( j, N ) for every eigenstate j of the
nonintegrable spin chain for different values of the Hilbert
space dimension N : As the system size increases, the Dq( j, N )
values for midspectrum eigenstates move up towards 1, i.e.,
the eigenstates show the expected ergodic behavior. (We will
later show that the approach to 1 is logarithmically slow.) In
contrast, for the bottom or top of the spectrum there is no
trend towards 1 which is consistent with the picture that these
eigenstates are multifractal.

In contrast, the results for a realization of the GOE show no
dependence on the energy, e.g. there is no multifractality near
the edges of the spectrum, even though the spectral density
of the GOE does depend on the energy. This is shown as
the grey points forming a straight line in Fig. 7. For the
purposes of the eigenvector statistics the results for the COE
obtained in Sec. III A are identical to those of the GOE as
only the normalization condition (12) is relevant. Also note
that the results for the spin chain (green squares) with the same
dimension N = 24 310 are well below the GOE result, even in
the middle of the spectrum. Therefore an important question,
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FIG. 8. Fractal dimensions Dq(N ) vs moments q for the XXZ spin
chain for different system sizes (L, n↑) = (13, 6), (15, 7), (17, 8)
(black circles, blue squares, red crosses) using 250 states in the mid-
dle of the spectrum. For comparison numerical results for realizations
of the GOE results are shown as dotted curves of the correspondent
colors for N = 1716, 6435, 24 310.

to be addressed in the next section, is how Dq(N ) approaches
1 for midspectrum many-body eigenstates.

It is not obvious how to decide precisely how many eigen-
states should be considered as constituting the “midspectrum”
sector. For systems with Hilbert spaces in the range 103–105,
it seems reasonable to use several hundred eigenstates for
this study. We have examined the effect of choosing various
numbers between 100 and 600, and found no appreciable
effect on the results. The results presented below are obtained
using 250 midspectrum eigenstates, except for one case in
Fig. 10. Similar numbers were used in Refs. [34,117].

C. Comparison of the fractal dimensions with the GOE

Figure 8 shows the q dependence of the fractal dimensions
Dq(N ) in the many-body system in comparison with numer-
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FIG. 9. Fractal dimensions Dq(N ) vs q for the XXZ spin chain for
(L, n↑) = (17, 8), such that N = 24 310, for (	1,	2) = (2.0, 0.0),
red crosses, as in Fig. 8, and (	1, 	2) = (0.8, 0.8), green triangles.
In both cases 250 states in the middle of the spectrum are used. The
red dotted line is the numerical result for one realization of the GOE
for the corresponding matrix size N = 24 310, as in Fig. 8.
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FIG. 10. Fractal dimensions Dq(N ) for q = 0.5, 2, 8 for the XXZ
spin-chain (red squares) versus 1/ ln N for the sequence of system
sizes (L, n↑) = (11, 5), (13,6), (15,7), (17, 8), (19, 9). The 250 states
in the middle of the spectrum are used for all sizes except the largest
one. (For (L, n↑) = (19, 9), 150 eigenstates are used). The solid
blue lines show the COE analytical prediction D̃COE

q (N ), Eq. (20).
The gray circles show the corresponding random matrix results
for one realization of the GOE for N = 462, 1716, 6435, 24 310,
92 378. The vertical bars indicate the standard deviation of the data.
The red dashed lines for each q are guides to the eye connecting
(1/ ln N, Dq(N )) = (0, 1) with the value of Dq(N ) at the largest
available system size (data point with smallest value of 1/ ln N). The
inset shows the coefficient distribution P(η) of the 250 eigenvectors
for (L, n↑) = (17, 8) in a semilogarithmic representation. Clear de-
viations from the Porter-Thomas distribution (18) of the GOE (green
dashed line) are found.

ical results for the GOE of the corresponding sizes N . We
display Dq(N ), Eq. (5), i.e., the “typical” fractal dimensions,
rather than D̃q(N ), Eq. (10); focusing on Dq(N ) helps avoid
fluctuations due to finite statistics. The overall shape and size
dependence is qualitatively similar to that in the COE, CUE,
and standard map cases studied in previous sections. However,
the departure from the random-matrix data is now much
stronger: the deviations are already significant for the smallest
moments and become more prominent with increasing q.
With increasing system size N the fractal dimensions Dq(N )
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become larger, moving towards 1, and the difference to the
random matrix results becomes smaller.

The amount of the deviations from the COE prediction are
highly system and parameter specific. Indeed, even consider-
ing the same many-body model (51) for either (	1,	2) =
(2.0, 0.0), as before, or (	1,	2) = (0.8, 0.8), reveals very
different departures from the GOE results as illustrated in
Fig. 9.

We have also examined the distribution P(Dq ) for the
many-body eigenstates (not shown). The distribution is qual-
itatively similar to the one for the COE or CUE (which is
shown in Fig. 3.)

D. Size dependence: Weak ergodicity

To systematically address the scaling limit of the fractal
dimensions in the many-body system Fig. 10 shows Dq(N )
versus the 1/ ln N (red squares), i.e., the inverse logarithm of
the Hilbert space dimension, together with GOE data (gray
circles) and the analytical prediction D̃COE

q (N ), Eq. (20), (solid
blue lines) for the corresponding matrix size N for several
moments q. The red dashed straight lines are guides to the
eye connecting Dq = 1 at N → ∞ with the many-body data
point at the largest considered system size. The error bars
are given by the standard deviation of the distribution of the
corresponding fractal dimensions Dq( j, N ).

It is clearly seen in Fig. 10 that the many-body data
approach Dq(N ) → 1 at N → ∞, however the path of this
approach is different from the one of the GOE: The fractal
dimensions Dq(N ) are smaller, while the standard deviations
(shown as error bars) are larger. This clearly suggests that
the eigenstates of a typical nonintegrable many-body system
are only weakly ergodic, i.e., that they only occupy a finite
fraction ρ of the whole Hilbert space. Indeed, this weak
ergodicity can be expressed, following Eq. (9), in terms of the
scaling of the typical moments by comparing with the GOE
result, Eq. (22),

〈Iq( j, N )〉typ = cqN−D∞
q (q−1) = cGOE

q N
−D∞

q (q−1)
eff , (52)

where Neff = ρN with fraction ρ ≡ Neff/N =
(cGOE

q /cq)1/(D∞
q (q−1)) < 1. This shows that the deviation

of cq compared to cGOE
q corresponds to an effectively reduced

fraction of the Hilbert space occupied by weakly ergodic
eigenstates, compared to ergodic ones of the GOE.

The weak ergodicity also suggests that a standard random
matrix ensemble like the GOE of GUE is not a fully correct
description of the statistical properties of the many-body
states, even in the middle of the spectrum. This can also be
seen by examining the coefficient distribution. In the inset
of Fig. 10, the distribution P(η) of the (rescaled) eigenvector
components η = N |c( j)

i |2 is shown. There are clear deviations
from the Porter-Thomas distribution (18) of the GOE. The
deviations at the tail of the distribution are highlighted here by
using a logarithmic scale. Some deviations from the random-
matrix expectation was also noted in Ref. [34].

VI. SUMMARY AND OUTLOOK

In this work we have addressed the deviations of the
eigenstate statistics from the fully ergodic result—for random

matrix ensembles, a single-particle system with chaotic classi-
cal dynamics, and chaotic many-body systems. We analyzed
the scaling behavior of the fractal dimensions Dq(N ) which
should approach one in the limit of large system size N if the
system is fully ergodic.

For the standard random matrix ensembles (COE and
CUE) we provide analytical results for the means D̃q(N )
over individual eigenstates. This provides a lower bound
for the typical Dq(N ) (logarithmic) averages of eigenstate
moments. We show that individual realizations of COE and
CUE typically match the predictions only for small q, and
deviate at larger q due to finite statistics. We have provided
an estimate of the value q∗(N ) beyond which finite-statistics
effects become important: q∗(N ) scales logarithmically with
N such that obtaining agreement at larger q would require
averaging over an exponentially large number of realizations.

For the quantized standard map with classically chaotic
dynamics, the numerical results agree well with those for
realizations of random matrices. For both random matrices
and the quantized standard map, the approach Dq(N ) → 1
with increasing system size is slow, and closely follows the
form D∞

q − fq/ ln N for small q. For larger q, there are strong
deviations from this form, and the data even show some cur-
vature when Dq(N ) is plotted against 1/ ln N . This curvature
implies an N-dependence of the quantity fq, or equivalently,
of the quantity cq = e(q−1) fq used in Eq. (9).

In contrast, the results for the many-body systems deviate
quite significantly from the COE data. We have analyzed these
deviations in Dq(N ) for different eigenstates, different values
of q, and system sizes. The fractal dimensions of the nonin-
tegrable many-body systems still approach the ergodic limit
Dq(N ) = 1 in the thermodynamic limit N → ∞. However,
the path of this approach differs from the random-matrix one
and is system-specific: writing the N dependence as D∞

q −
fq/ ln N requires cq to be larger than the GOE value cGOE

q . We
thus conclude that midspectrum many-body eigenstates are of
weakly ergodic nature and occupy only a reduced fraction,
compared to the GOE case, of the whole Hilbert space. We
speculate that this may result from the fact that midspectrum
eigenstates are forced to be orthogonal to the eigenstates at the
spectral edges, which are very special (multifractal).

The present work opens up various new questions: (1) The
curvature in the Dq(N ) versus 1/ ln N plots points to finite-
size structures in random-matrix eigenstates which deserve
further study. If we write Dq(N ) as D∞

q − fq/ ln N , then
cq = e(q−1) fq is weakly N-dependent; the form of dependence
is a nontrivial characterization of finite-size random-matrix
eigenstates which would be interesting to investigate. (2) We
have characterized multifractality properties of the quantized
standard map at large K , for which the classical counterpart is
strongly chaotic. As K is decreased, the classical dynamics
shows a mixed phase space in which regular motion and
chaotic motion coexist on arbitrarily fine scales. This will
change the behavior of Dq(N ) and could lead to weak er-
godicity or multifractality. (3) We have only examined many-
body models which are nominally chaotic. The Dq(N ) be-
haviors of midspectrum eigenstates of integrable many-body
systems remains an open issue. (4) Our results suggest that
many-body eigenstates are only weakly ergodic. This implies
that the standard random matrix classes (GOE, GUE) may
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not be the optimal random-matrix models for describing the
midspectrum eigenstates. Other random matrix classes, such
as the k-body embedded Gaussian ensembles [1,23,126–136]
and power-law-banded random matrices [17,38,98,137–140],
might be fruitful to examine as models of eigenstates of
nonintegrable many-body Hamiltonians.
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