
PHYSICAL REVIEW E 100, 032116 (2019)

Critical density of the Abelian Manna model via a multitype branching process
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A multitype branching process is introduced to mimic the evolution of the avalanche activity and determine the
critical density of the Abelian Manna model. This branching process incorporates partially the spatiotemporal
correlations of the activity, which are essential for the dynamics, in particular in low dimensions. An analytical
expression for the critical density in arbitrary dimensions is derived, which significantly improves the results
over mean-field theories, as confirmed by comparison to the literature on numerical estimates from simulations.
The method can easily be extended to lattices and dynamics other than those studied in the present work.
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I. INTRODUCTION

The Manna model [1] is the prototypical stochastic sand-
pile model proposed for self-organized criticality (SOC) [2].
It was reformulated by Dhar to make it Abelian [3]. The
resulting Abelian Manna model (AMM) and its variants have
been studied extensively numerically and analytically [4–9].
Numerical simulations have established that a range of other
models belong to the same universality class [[10], p. 178], in
particular the Oslo model [11,12] and the conserved lattice
gas [13,14]. The stationary density of the AMM has been
estimated with very high precision on hypercubic lattices
of dimensions d = 1 to d = 5 [9,15–18]. Yet, theoretical
understanding of the Manna model is far from complete. In
a mean-field theory which ignores all spatiotemporal correla-
tions, the avalanches can be naturally perceived as a binary
branching process (BP) [19,20] with branching ratio σ twice
the particle density ζ as a mean field. At stationarity, the
macroscopic dynamics of driving and dissipation of particles
self-organizes the branching ratio to unity, which is the critical
value, σc = 1, i.e., the branching ratio above which a finite
fraction of realizations branches indefinitely. The mean-field
value of the critical density is therefore ζc,(MF) = σc/2 = 1/2
regardless of the dimension of the system [21]. However,
numerical findings have placed the critical value ζc of the
density clearly above 1/2 in any dimension studied [9,10],
suggesting that the spatial correlations ignored by the mean-
field theory are significant. Here, we provide a theoretical
characterization of ζc in a general setting through a mapping to
a multitype branching process (MTBP), with a simple closed-
form approximation systematically improving on the mean-
field prediction. Our method incorporates only short-ranged
correlations during the avalanche and highlights the role that
particles conservation plays in regulating activity. While still
ignoring correlations in the initial state [9,22,23], we show
that taking into account even only some of the correlations
arising in the activity modifies significantly the estimate of
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the critical density. One may hope that our findings can be
reproduced to leading order in a suitable field theory.

In the following, we first introduce the AMM and its
(approximate) mapping to the MTBP mimicking (some of)
its dynamics. We then demonstrate how the critical density of
the AMM can be extracted from the BP and conclude with a
brief discussion of the results.

II. THE ABELIAN MANNA MODEL

To facilitate the following discussion, we reproduce the
definition of the AMM: The AMM is normally studied on a
d-dimensional hypercubic lattice, but extensions to arbitrary
graphs are straightforward. Each site carries a non-negative
number of particles, which we refer to as the occupation
number. A site that carries no particle is said to be empty,
otherwise it is occupied by at least one particle. A site carrying
fewer than two particles is stable, otherwise it is active. If all
sites in a lattice are stable, the system is said to be quiescent,
as it does not evolve by its internal dynamics. If the lattice has
N sites, the number of such states is 2N . Particles are added
to the lattice by an external drive. If such an externally added
particle arrives at a site that is occupied by a particle already,
an avalanche ensues as follows: Every site that carries more
than one particle topples by moving two of them to randomly
and independently chosen nearest neighbors, thereby charg-
ing them with particles. This might trigger a toppling in turn.
The totality of all topplings in response to a single particle
added by the external drive is called an avalanche.

We will refer to the evolution from toppling to toppling
as the microscopic timescale, as opposed to the macroscopic
timescale of the evolution of quiescent states. The evolution
from one quiescent state to another quiescent state by adding
a particle at a site and letting an avalanche complete is a
Markov process. Because of the finiteness of the state space
of quiescent configurations and assuming accessibility of all
states (but see Ref. [9]), the probability to find the AMM in
a particular quiescent state approaches a unique, stationary,
strictly positive value. The analysis below is concerned solely
with the stationary state of the AMM.
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For the discussion below we require the notion of occupa-
tion number pretoppling and occupation number posttoppling.
The former refers to the number of particles at a site prior to its
possible toppling; the latter refers to the number of particles
at a site immediately after possibly shedding (a multiple of)
two particles and yet prior to it receiving particles from any
other site. Committing a slight abuse of terminology, we will
refer to pre- and posttoppling occupation numbers even when
the site is stable.

Of particular importance to the following consideration is
the occupation density ζ , that is, the expected total number of
particles divided by the number of sites.

The multitype branching process

One paradigm of the AMM and SOC in general is the
(binary) BP [24]. The population of that process at any given
time is thought to represent those sites that become active as
a result of receiving a particle. As they topple, the particles
arriving at nearest-neighboring stable sites might activate
those, depending on whether they were previously occupied
by a particle or not. Any empty site that is charged with only
one particle becomes occupied but remains stable. Any stable
site charged with two particles is guaranteed to become active.
As active sites are sparse, they are rarely charged. However,
the Abelian property of the AMM means that the arrival of
one additional particle at a site leads to a further toppling only
if the parity of its occupation number is odd. If two particles
arrive at a site, its parity will not change, but the site is bound
to topple (once more).

If a neighboring site becomes active in response to a
charge, this corresponds in the BP to an offspring in the next
generation. If two such offspring are generated, this corre-
sponds to a branching that increases the population size. If
a neighboring site turns from empty to occupied, no offspring
is produced.

The spatiotemporal evolution of an avalanche may thus
be thought of as a BP embedded in space and with strong
correlations of branching and extinction events as the lattice
occupation dictates whether and where these events take
place. Ignoring the lattice and the history of previous and
ongoing avalanches, one is left with a plain binary BPs, as it is
commonly used to cast the AMM and SOC models generally
in a mean-field theory [21,25–27]. Field theoretic treatments
of any such processes always involve branching as a basic
underlying process [28,29].

In general BPs, the branching ratio is exactly unity at
the critical point of the process, above which the probability
of sustaining a finite population size indefinitely is strictly
positive. We therefore identify the critical point of the BP with
that of the lattice model.

The MTBP considered in the following is based on a map-
ping of the types (or species) of the BP to the active motives
of the AMM, as shown in Fig. 1 for the one-dimensional case.
These motives indicate the occupation number of the central
site pretoppling (i.e., prior to the central site toppling) and
the occupation of the neighboring sites posttoppling (i.e., after
they may have toppled themselves, which leaves their parity
unchanged, but prior to the central site toppling). Defining the
motives this way, we can disregard toppling sites charging

α0 α1 α2

β0 β1 β2

FIG. 1. The six different active motives of the one-dimensional
AMM. The central site carries either three (αi for i = 0, 1, 2) or two
particles (βi for i = 0, 1, 2) and is to topple in the next microscopic
time step. The occupation number of sites neighboring the central
site are representative only in as far as their parity is concerned, with
i indicating the number of sites that carry an odd number. Their
occupation number is posttoppling (after they may have toppled
themselves, but prior to the central site toppling), whereas the central
site is shown pretopping (before it topples). The configurations differ
in whether neighboring sites may or may not topple themselves due
to being charged by the toppling site. Although we may picture
the configurations being situated on a one-dimensional lattice, their
spatial orientation is irrelevant, and so we do not distinguish left and
right neighbors.

active neighboring sites. We effectively keep track only of
the change of parity of the neighboring sites, which is due
to charges they receive but does not change when they topple
themselves. Within a time step in the MTBP process all cur-
rently active motives undergo toppling, which corresponds to
parallel updating on the microscopic timescale of the AMM.

The species labels in Fig. 1 of the form σi characterize the
configuration as follows: σ = α indicates that the active site
carries three particles, σ = β indicates that it carries two. The
index i indicates the number of neighboring sites carrying a
single particle posttoppling. In general, i ∈ {0, . . . , q} where q
is the coordination number. Henceforth, we restrict ourselves
to regular lattices with constant coordination number q. These
may be thought of as d-dimensional hypercubic lattices with
q = 2d .

At any point during the evolution of an avalanche, those
sites whose occupation information is not captured by the
active motives are occupied independently with density ζ . The
active sites we consider carry only ever two or three particles;
i.e., we do not keep track of multiple topplings. In Fig. 2

α1

occ.
w.p.ζ

w.p.1/2
w.p.1/2 w.p. ζ/4

β2

FIG. 2. Example of a toppling on a one-dimensional lattice.
The initial state α1 goes over into state β2 with probability (w.p.)
ζ/4, which is the joint probability of three independent events: the
independent toppling of two particles to one side (w.p. 1/4) and the
occupation of a next-nearest -neighboring site (w.p. ζ ). The latter
assumption ignores spatial correlations.
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TABLE I. Branching probabilities of active motives on a regular
lattice with constant coordination number q. The only form of
branching occurs is when two independent copies of βk are gener-
ated, indicated by 2βk . The symbol ∅ indicates that no offspring is
produced.

Parent Branching probability Offspring

α j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
q2 Bin(k, q − 1; ζ )

(2 j+1)(q− j)
q2 Bin(k, q − 1; ζ )

j( j−1)
q2 Bin(k, q − 1; ζ )

(q− j)(q− j−1)
q2 Bin(k, q − 1; ζ )

αk+1

βk+1

2βk+1

∅

β j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
q2 Bin(k, q − 1; ζ )

(2 j+1)(q− j)
q2 Bin(k, q − 1; ζ )

j( j−1)
q2 Bin(k, q − 1; ζ )

(q− j)(q− j−1)
q2 Bin(k, q − 1; ζ )

αk

βk

2βk

∅

we illustrate how the toppling of motive α1 in one dimension
gives rise to the motive β2.

In the interest of clarity, we summarize our key assump-
tions: (1) In each time step during an avalanche, the substrate
sites (sites whose occupation information is not captured in
the active motives) are assumed to be occupied independently
with probability ζ , which is a fixed model parameter. This
is where we ignore correlations. (2) No occupation number
posttoppling exceeds unity, and no active site carries more
than three particles. This is a significant restriction only in one
dimension, where multiple toppling is known to play a sig-
nificant role [30]. (3) No site receives particles toppling from
different sites simultaneously. (4) All sites are considered bulk
sites; i.e., there is no boundary. Each site has therefore the
same number q of neighbors.

The time in the BP progresses by all individuals attempting
branching in each parallel time step, which corresponds to the
microscopic time in the AMM. The branching itself mimics
the toppling dynamics: In each toppling two particles are
redistributed to the same neighbor with probability (w.p.) 1/q
and to different neighbors w.p. 1 − 1/q. For a configuration
of type σ j , a randomly chosen neighbor of the active, toppling
site is occupied (has odd parity) w.p. j/q. The active site itself
will be left occupied if σ = α and empty if σ = β. The next
nearest neighbors of any active site are treated as substrate
sites, occupied w.p. ζ and empty w.p. (1 − ζ ). An illustrative
example of a branching path on a one-dimensional lattice is
shown in Fig. 2, where the motive α1 is shown to turn into β2

w.p. ζ/4. The probabilities of all branching paths on regular
lattices with constant q are listed in Table I. The MTBP is
initialized by a single node of type β j , which is drawn with
probability

Bin( j, q; ζ ) =
(

q

j

)
ζ j (1 − ζ )q− j, (1)

reflecting the fact that an avalanche in the AMM is initialized
by a single site driven to active by the external drive from a

quiescent configuration. To make the expressions below well
defined, we define Bin( j, q; ζ ) = 0 for j > q.

III. CRITICAL DENSITY

The MTBP defined above approximates the population
dynamics of the activity in an avalanche of the AMM on
an infinite lattice. Activity performs a (branching) random
walk on the lattice, as active sites topple and produce active
offspring sites [31]. For avalanches on finite lattices with
open boundaries, when the density is subcritical, the activity
is expected to extinguish before particles reach any of the
boundaries, and as a result, the occupation density ζ increases
under the external drive. When supercritical, the activity with
large probability persists until incurring dissipation at the
boundaries, which decreases the density accordingly [30].
On the other hand, large ζ will generally lead to larger
avalanches, and small ζ to small avalanches. Nevertheless,
under this apparent self-organization [32,33], the fluctuations
of ζ decrease with system size, and in the thermodynamic
limit, the stationary density approaches a particular value
generally referred to as the critical density (even when there
may be more than one [34]). We identify the critical density
as the smallest density ζc at which the MTBP has a finite
probability to evolve forever, i.e., its critical point, when the
branching ratio is unity.

To find the critical point of the MTBP, it suffices to deter-
mine the density ζc when the largest eigenvalue λ1 of the mean
offspring matrix M introduced below is unity [[35], Theorem
2, V.3].

The mean offspring matrix is the matrix M = {mσ,τ }, with
mσ,τ the mean number of offspring of type τ produced as
an individual of type σ undergoes multitype branching, i.e.,
an update. The types σ and τ are any of the states α j

and β j with j ∈ {0, 1, . . . , q}, as exemplified in Fig. 1. The
individual elements mσ,τ of the matrix are easily determined
from Table I:

mα j ,α0 = 0, (2a)

mα j ,αk = j

q2
Bin(k − 1, q − 1; ζ ) for k > 0, (2b)

mα j ,β0 = 0, (2c)

mα j ,βk = (2 j + 1)q − 3 j

q2
Bin(k − 1, q − 1; ζ ) for k > 0,

(2d)

mβ j ,αk = j

q2
Bin(k, q − 1; ζ ), (2e)

mβ j ,βk = (2 j + 1)q − 3 j

q2
Bin(k, q − 1; ζ ). (2f)

Because mα j ,αk+1 = mβ j ,αk and mα j ,βk+1 = mβ j ,βk , the matrix M
has some very convenient symmetries, which, after ordering
states according to (α0, . . . , αq, β0, . . . , βq ), may be written
as

M =
(

0q+1, a
⊗

B 0q+1, b
⊗

B
a

⊗
B, 0n+1 b

⊗
B, 0q+1

)
(3)
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TABLE II. The theoretical estimate of the critical density ζc in the d-dimensional AMM derived here compared to the numerical values
reported in the literature for the stationary density of the AMM.

Dimension 1 2 3 5

ζc (numerically) 0.94882(1) [9] 0.7170(4) [17] 0.622325(1) [18] 0.559780(5) [9]
ζc (present work) 0.750 0.625 0.583 0.550

with vectors

a = (a j )0� j�q with a j = j/q2, (4)

b = (b j )0� j�q with b j = (2 j + 1)/q − 3 j/q2, (5)

B = (Bk )0�k�q−1 with Bk = Bin(k, q − 1; ζ ), (6)

and 0q+1 is a column of q + 1 zeros. For example, the matrix
for the one-dimensional AMM is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1
2 B0

1
2 B1

0 1
4 B0

1
4 B1 0 3

4 B0
3
4 B1

0 1
2 B0

1
2 B1 0 B0 B1

0 0 0 1
2 B0

1
2 B1 0

1
4 B0

1
4 B1 0 3

4 B0
3
4 B1 0

1
2 B0

1
2 B1 0 B0 B1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

using B0 = Bin(0, 1; ζ ) = 1 − ζ , B1 = Bin(1, 1; ζ ) = ζ , and
B2 = Bin(2, 1; ζ ) = 0.

Upon factorization, the characteristic polynomial of M
obtains a surprisingly simple form:

det(λI − M)

= λ2q−2

(
λ2 − 1

q3

)[
λ2 − 2(q − 1)2ζ + q + 1

q2
+ 1

q3

]
.

(7)

Since q = 2d � 2, the largest root λ1 equals unity if and only
if ζ = q+1

2q . It exceeds unity if and only if ζ exceeds q+1
2q . Our

estimate of the critical density is thus

ζc = q + 1

2q
. (8)

This is the central result of the present work. Writing this
result in a more suggestive form, with q = 2d for hypercubic
lattices we obtain ζc = 1/2 + 1/(4d ); i.e., the correction to
the mean-field result ζc,(MF) = 1/2 is 1/(4d ). Table II shows
a comparison between this result and the numerical values
found by simulations [9,17,18] on lattices in dimensions
d ∈ {1, 2, 3, 5}. While our estimate Eq. (8) underestimates ζc

as found numerically by about 21% in one dimension, this
deviation drops to about 2% in five dimensions. We would
expect that incorporating a larger number of nearest neighbors
would improve the estimate further [6].

AMM on random regular graphs

In the derivation above the dimension d of the hypercubic
lattices considered enters only in as far as the coordination
number q = 2d is concerned. Hence the results equally apply
to the AMM on any graph with fixed coordination number.

To demonstrate this, we compare numerical estimates of the
critical density in random 5-regular graphs [36] (q = 5) to
our theoretical approximation. To avoid the complication of
choosing sinks or dissipation sites on graphs, we adopt the
fixed-energy version of the AMM [37] in the simulations.
For a given density, particles are initially uniformly randomly
distributed on the sites of the graph, and a random occupied
site is driven to start the avalanche. To determine the critical
density, we estimate the survival probability of the activity
after many microscopic timesteps (approximately 10 times
the size of the graph) and plot it against the particle density
for different graph sizes N (Fig. 3). The numerical estimate
of ζc ≈ 0.62 as the apparent onset of a finite probability of in-
definite survival is consistent with our theoretical approximate
ζc = 1/2 + 1/q = 0.6.

IV. DISCUSSION

In the procedure outlined above, we have cast the dynamics
of the Abelian Manna model in a multitype branching process,
whose species consist of multiple-site motives of active sites.
Upon charging a singly occupied site a BP ensues and evolves
by producing offspring according to the density of occupied
sites ζ . The critical density ζc of the AMM is identified with
the value of ζ when the BP is critical. Our main results,
Eq. (8), are in line with numerical findings in the literature

FIG. 3. Estimate of the asymptotic density in the fixed-energy
version of the AMM on random 5-regular graphs of different sizes.
The approximate critical point, identified as the onset of asymptotic
survival, at around ζc = 0.62 is very close to the theoretical predic-
tion ζc = 1/2 + 1/q = 0.6.
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(Table II). The most significant corrections are found in low
dimensions and almost perfect agreement in dimension d = 5.

The MTBP mapping we introduce keeps track only of
the parity of active sites and the total number of particles
posttoppling at their neighbors. These few motives allow us
to find a closed form estimate of the critical density on regular
lattices and more complicated graphs. Compared with other
theoretical methods which characterize the critical density of
the AMM such as real-space renormalization group [38,39]
and N-site approximations [6,40], our approach utilizes only
the local topology of the underlying graph, rendering it more
flexible and easier to generalize. In spirit, these active mo-
tives are closely related to those in the Approximate Master
Equation method [41,42] which improves significantly on
a pair approximation. The treatment of the AMM activity
here differs from that method by capturing mobile branching
motives. To our knowledge, this has not been considered in
the literature before.

The main focus of the present work is not to improve
the estimates of the critical density in one dimension, which
display the most significant deviation from the mean-field
value. Rather, we identify the key ingredients that contribute
to the deviation of the critical density from the mean-field
value and characterize the deviation analytically. The AMM
is believed to belong to the conserved directed percolation
universality class [13,37], which is different from the more
general directed percolation universality class due to the con-
servation of particles in the dynamics. Through the mapping
of AMM avalanches to a MTBP we explicitly show that the
nearest-neighbor dynamical correlations and conservation of
particles during avalanching largely capture the shift of the

critical density away from its mean-field value, as prescribed
by a simple binary BP.

Our mimicking process provides insight into the evolution
of activity in AMM avalanches. During an avalanche, activity
grows (active motives branch) at the cost of singly-occupied
sites, so that the sites receiving toppling particles are oc-
cupied with a probability less than their mean density. The
conservation of particles and their spatial correlations thus
lead to local suppression of branching. Two phenomena are
ignored in our mapping of the AMM. First, the total number of
particles in the system during avalanching may be reduced due
to dissipation at open boundaries, and the number of singly
occupied sites may decrease because of this as well as because
of growing activity. As a result, branching is suppressed
globally, yet this effect is weak, as only a few sites are affected
[9]. Second, we ignore long-ranged anticorrelations [22,23] in
the quiescent state of the AMM, which, however, appear to
be rather weak albeit algebraic [9]. Building on the mapping
we construct here, it would be interesting for future work
to establish a rigorous lower bound of the critical density
in the AMM by associating the activity with some critical
population dynamics, for example, via the coupling method
[43,44].
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