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In the present study of the nonequilibrium athermal random-field Ising model we focus on the behavior of the
critical disorder Rc(l ) and the critical magnetic field Hc(l ) under different boundary conditions when the system
thickness l varies. We propose expressions for Rc(l ) and Hc(l ) as well as for the effective critical disorder
Reff

c (l, L) and effective critical magnetic field H eff
c (l, L) playing the role of the effective critical parameters

for the L × L × l lattices of finite lateral size L. We support these expressions by the scaling collapses of the
magnetization and susceptibility curves obtained in extensive simulations. The collapses are achieved with the
two-dimensional (2D) exponents for l below some characteristic value, providing thus a numerical evidence
that the thin systems exhibit a 2D-like criticality which should be relevant for the experimental analyses of thin
ferromagnetic samples.
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I. INTRODUCTION

Study of nonequilibrium model systems with an avalanche-
like response to external perturbations has been one of the
most prominent issues in statistical physics during the last
few decades [1–3]. This is because such response lies in
the root of many of natural phenomena (e.g., earthquakes
[4], motion of domain walls in ferromagnetic materials [5],
neuronal activities in brain [6,7], and avalanches in wood
samples treated under mechanical pressure [8]), making the
studies of the related models of great practical as well as
conceptual importance. One such model is the random-field
Ising model (RFIM), which was extensively studied in a
variety of its versions [9–12]. Thus, in the equilibrium version
of the model recent progress offered some important answers
on the universality principles [13,14], dimensional reduction
[15], and supersymmetry [16]. In this paper a particular focus
is on the nonequilibrium athermal (NEA) version that enables
studies of the evolution in time of the spin systems that are not
affected by the thermal fluctuations and are slowly driven by
the external magnetic field through its nonequilibrium states.

Former theoretical and/or numerical studies of the NEA
RFIM were dominantly performed on the spin systems sit-
uated on the equilateral cubic lattices in which case it was
shown that the model exhibits a nontrivial critical behavior in
dimensions 2 � d � 5 [17–21] and the mean-field criticality
for d � 6 [22–25]. Recently this limitation in scope has been
lifted due to a growing scientific and technological interest
regarding the behavior of thin systems. Physics of magnetism
was not an exception because many experiments were per-
formed on thin systems (e.g., ribbons and films) with one
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dimension (thickness) significantly smaller than the other two
[26–32].

So far, the RFIM in thin systems was studied in very
few papers mainly on the grounds of an equilibrium model
[33–37]. One exception is the study of nonequilateral systems
[38], where it was shown how the critical disorder of the sys-
tems having finite thickness and infinite lateral sides changes
with thickness on the crossover from three-dimensional (3D)
to two-dimensional (2D) case, as well as how the effective
critical disorder of finite systems behaves when the thickness
and/or lateral sizes of these systems change. To continue
this work, in this paper we study how the critical field of
the systems with infinite base and finite thickness, and the
effective critical field of finite nonequilateral systems, changes
when the size of the system varies.

A well-known result regarding the model behavior on
equilateral lattices is that it becomes independent of the choice
of boundary conditions in the thermodynamic limit (i.e., when
the system size increases to infinity), since the percentage
of the spins affected by the different boundary conditions
decays [39,40]. This, however, ceases to be true in the case
of systems having finite thickness (and infinite lateral sides),
because in the case of finite thickness the same percentage
of spins is affected by the change of boundary conditions
no matter how big the other two dimensions are. In this
paper we show that the differences caused by the two most
important types of boundary conditions imposed on finite
nonequilateral systems (i.e., open or closed along thickness
and closed in the remaining two directions) are retained in the
thermodynamic limit, and that these differences become more
and more pronounced as the systems get thinner and thinner
so the fraction of the spins affected by the choice becomes
large.

The paper is organized as follows: the model is de-
scribed in the Sec. II, whereas the main results (theoretical
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predictions and the numerical results regarding the effective
critical disorder and the effective critical field) are given in
Sec. III. Collapses of the magnetization and susceptibility
curves are presented in Sec. IV, overall discussion in Sec. V,
and conclusions in Sec. VI.

II. MODEL

In the athermal nonequilibrium random-field Ising model
studied in this paper, ferromagnetically coupled classical Ising
spins Si (i.e., spins that can take only the values +1 or
−1) are located at a 3D cubic lattice having sizes (L, L, l )
along the (x, y, z) directions, respectively, with thickness l �
L. As the thermal fluctuations are neglected, spins interact
only magnetically. Each spin Si interacts with the external
homogeneous magnetic field H having energy −HSi in this
field. Next, each Si is ferromagnetically coupled via exchange
interaction −Ji jSiS j with all of its nearest neighbors S j and, in
the simplest case (e.g., the case presented here), the exchange
coupling constant is the same for each pair of nearest neigh-
bors, Ji j = J . Finally, in (all versions of) the RFIM it is taken
that there is a local magnetic field hi at each lattice site i giving
additional coupling −hiSi of Si with hi. For all the foregoing
reasons, the Hamiltonian of the system reads

H = −J
∑
〈i, j〉

SiS j − H
∑

i

Si −
∑

i

hiSi, (1)

where the summation
∑

〈i, j〉 runs over all distinct pairs of
nearest neighboring spins. Regarding the local field, it varies
randomly from site to site taking the values from some
zero-centered distribution. In this paper it is the Gaussian
distribution

ρ(h) = 1√
2πR

exp

(
− h2

2R2

)
, (2)

and its standard deviation R is called disorder as it measures
the amount of disorder in the system. From this distribution
the values of the local field are chosen not only randomly but
also independently at different sites, implying that 〈hi〉 = 0
and 〈hih j〉 = R2δi j , where 〈·〉 denotes averaging over all pos-
sible local field configurations {hi}N

i=1 taken at N = L × L × l
sites in the system, and δi j is the standard Kronecker function.
Furthermore, in the athermal version, each configuration of
the local field is quenched (i.e., frozen), meaning that is not
altered throughout the system’s evolution in time.

Unlike in the equilibrium version [41] (in which the system
traverses solely throughout the equilibrium states correspond-
ing to a given sequence of values taken by the external
magnetic field H), in the nonequilibrium version of the model
the evolution of the system in time proceeds following the
local relaxation rule stating that the spin Si is stable as long
as its sign is the same as the sign of the effective field

heff
i = J

∑
〈 j〉

S j + H + hi (3)

at its site. The rule implies that all spins that are unstable at the
moment t will flip at the next moment t + 1 of discrete time
and therefore affect their neighbors. Those of neighbors that
become unstable will flip in the next next moment of time, and
in this way an avalanche of spin flipping is created lasting as
long as there are unstable spins in the system.

Once the system becomes stable the only way to create
new avalanches is to drive the system by changing the ex-
ternal magnetic field. Here one can distinguish between dif-
ferent possible driving regimes, like the finite-driving regime
[42–48], in which the external field is incremented by a fixed
amount in each new moment of time, and the quasistatic
regime in which the external field is kept constant during any
avalanche and afterwards incremented by a fixed amount until
creation of new avalanche(s). The zero-limit case of both of
these regimes is the adiabatic regime, studied in this paper. In
this regime, the external field is, like in the quasistatic regime,
kept constant during the ongoing avalanche and afterwards
changed not infinitely slowly but, for the increased efficiency,
in a single step so as to flip exactly the least-stable spin,
permitting in this way only a single avalanche at a time.

Finally, to fully describe the model, one has to specify the
boundary conditions as well as the initial and final condi-
tions. The boundary conditions are described and discussed
in the next section, while as initial conditions we use H =
−∞ and all Si = −1 (for other possible initial conditions
see Refs. [47,49,50]). Then the external field is adiabaticaly
increased until all spins become Si = 1, meaning that our
simulations are done along the rising branch of the hysteresis
loop. To such a choice of initial and driving conditions, we
have limited ourselves in this paper because they are mostly
analyzed in the past and therefore have to be first studied in the
initial phase of research of the current topic while the studies
under different initial conditions and/or driving regimes are
left for the future series of studies.

In our study we take J = 1 and for each chosen value of
disorder R we performed many simulations, each for a dif-
ferent configuration {hi}N

i=1 of the random field. In every sim-
ulation we registered the sequence of the external magnetic
field values flipping the (next) least stable spin and recorded
the subsequent avalanche as a time sequence of the number nt

of spins flipped at the moment t (running from t = 0 at the
avalanche start up to t = T at the avalanche end). We used
the data thus obtained to form the distributions of avalanche
parameters averaged over all employed configurations of the
random field corresponding to the chosen value of disorder.

The data presented in this paper correspond to the systems
containing from 256 × 256 × 2 = 131 072 to 8192 × 8192 ×
64 ≈ 4.3 billion spins and are obtained in simulations using
the sorted list algorithm detailed in Ref. [51]. This algorithm
efficiently finds the next most unstable spin and the value of
the external field flipping that spin once the avalanche is over.
In this way the simulation time per single run was greatly
reduced, which enabled a large number of runs (from 200 for
the largest up to 64 000 for the smallest systems) necessary to
collect reliable statistics.

III. EFFECTIVE CRITICAL PARAMETERS

The athermal RFIM is characterized by the three criti-
cal parameters, namely, the critical disorder Rc, the critical
field Hc, and the critical magnetization Mc, so that the in-
finite RFIM spin systems behave as ferromagnets for disor-
ders R < Rc and as paramagnets for R > Rc [18,20]. In the
paramagnetic phase the magnetization curve MR(H ) is a
smooth function of the external field H , whereas in the
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ferromagnetic phase this curve is also smooth except at some
transition value Hj (R) of the external field at which the
system experiences a first-order phase transition manifested
in a jump of magnetization �M(R) that is caused by infinite
avalanche(s). Both Hj (R) and �M(R) depend on disorder R,

and, when R tends to Rc from below, the transition field Hj (R)
tends to Hc, while the magnetization jumps decrease to zero,
giving the critical magnetization curve MRc (H ), which is a
smooth function of H everywhere except at the critical field
Hc where its first derivative dM/dH is infinite. The critical
parameters Rc, Hc, and Mc ≡ MRc (Hc) are nonuniversal, i.e.,
their values depend on the dimension d of the system and on
the type of lattice at which the spins are situated [18,52,53].
Furthermore, different types of interactions may either move
the model to different [54–56], or leave it in the same [57],
universality class.

The foregoing behavior of infinite systems is to a certain
extent also exhibited by the finite systems, but with some
important differences. Thus, the role of the infinite avalanches
is taken by the spanning avalanches, i.e., the large avalanches
that span the finite system along at least one of its directions
[19,58]. These avalanches are likely to appear at low and be
absent at high disorders. The low- and high-disorder regions
are separated by a narrow transition region of disorder in
which the average number of spanning avalanches per single
run gradually decreases from 1 to 0 when R increases. The
center of this transition region is taken as an effective critical
disorder Reff

c . Its values depend on the type and size of the
underlying lattice and in the thermodynamic limit (i.e., when
the lattice of the given type becomes infinite) tend from above
to the critical disorder Rc; in the same limit the width of the
transition region of disorder tends to zero [58].

Next, let us name as the spanning field each value Hsp of
external field triggering a spanning avalanche at finite lattice
[58]. For each value of disorder at the chosen lattice type,
there is not a single value of Hsp, but instead a disorder-
dependent distribution of its values concentrated in a rather
narrow region of H . At the mode H eff

c (R) of this distribution
the susceptibility χ = dMR/dH of the magnetization curve
MR(H ), averaged over the random-field configurations with
disorder R, has its maximum. So one could rightly call H eff

c ≡
H eff

c (Reff
c ) (i.e., the value of this mode taken at the effective

critical disorder Reff
c ) as the effective critical field for the

finite lattice of the chosen type because in finite systems it
is the closest analog of the critical field Hc obtained in the
thermodynamic limit for this lattice type.

In this paper we study the RFIM spin systems located at
3D cubic latices of type L × L × l having the thickness l � L,
where L is the (larger) linear size of the lattice along the re-
maining two lateral dimensions; the effective critical disorder
and the effective critical field for such lattices we denote by
Reff

c (l, L) and H eff
c (l, L), respectively. In the thermodynamic

limit, obtained when L → ∞ and constant l , these lattices
promote a family of infinite 3D cubic lattices of different
(finite) thickness l . For each l , the infinite RFIM spin system,
located at such a lattice, exhibits a critical behavior described
by the critical disorder

Rc(l ) = lim
L→∞

Reff
c (l, L), (4)

the critical field

Hc(l ) = lim
L→∞

H eff
c (l, L), (5)

and the critical magnetization

Mc(l ) = lim
L→∞

Meff
c (l, L), (6)

together with the corresponding set of critical exponents hav-
ing the values that may also vary with the thickness l; see
Ref. [59] for the variation of the effective exponents (e.g., the
size exponent τ ), which is of considerable importance for the
analysis of thin ferromagnets experimental data.

On the course towards the thermodynamic limit the aspect
ratio l/L of the L × L × l lattices decreases to zero because
the thickness l is kept constant and the lateral size L in-
creases to infinity. In a consequence, it is likely that even
the avalanches of the linear size comparable to l span the
system along its thickness (say, z) direction. Therefore, it
turned out to be appropriate to consider the avalanche as a
spanning one if it spans the system along at least one of its
lateral (say, x and y) directions and to take into account only
such spanning avalanches in the determination of the effective
critical parameters for the L × L × l lattices.

At this point, the choice of the boundary conditions
becomes relevant. Quite generally, one may consider the
periodic (i.e., closed) or nonperiodic (i.e., open) boundary
condition along any of the lattice directions. In the case of
equilateral (i.e., L × L × L) cubic lattices the thermodynamic
limit is not affected by any combination of such conditions
taken along the x, y, and z directions; however, the approach to
the limit is the fastest if the all-boundary conditions are closed
(CCC). For this reason it seems natural to choose the CCO
boundary conditions, i.e., the conditions that are closed along
both of the lateral directions and open along the thickness
for a better correspondence to the physical boundaries of the
system. With such a choice, a method for determining the
effective critical disorder Reff

c (l, L), together with its limits
Rc(l ) and the crossover behavior from the 3D to 2D systems,
is introduced in Ref. [38]. Nevertheless, at least because of
conceptual reasons, it seems meaningful to expand the study
from CCO also to CCC boundary conditions.

In what follows we expand the previous study [38] of the
effective disorder Reff

c (l, L) from the CCO to the CCC case
and reveal the behavior of the effective critical field H eff

c (l, L)
for both types of boundary conditions. These findings enable
us to establish the thermodynamic limits Rc(l ) and Hc(l ) of
the effective critical disorder or field and to investigate their
crossovers from the equilateral 3D to the 2D model realized
by thinning out the thickness l . Regarding the third critical
parameter, Mc(l ), we mention that the determination of its
value is rather difficult (e.g., in the equilateral 3D case it
is indicated only in the caption of Fig. 1 in Ref. [18]) and
therefore left for further studies.

A. Effective critical disorder for the CCC boundary conditions

As in the case of CCO boundary conditions, the distribu-
tion N (R; l, L) of the number of spanning avalanches triggered
per single run on the L × L × l cubic lattice with CCC bound-
ary conditions can be reasonably well approximated by the
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FIG. 1. Example of obtaining Reff,C
c (l, L) in the case of the CCC

boundary conditions on the cubic lattice with l = 16 and L = 2048.

model function

NR0,W (R) = 0.5 × erfc[(R − R0)/W ]; (7)

cf. Fig. 1. Here erfc(v) ≡ (2/
√

π )
∫ ∞
v

e−t2
dt is the comple-

mentary error function of v = (R − R0)/W with the inflection
point centered at R = R0 and the width W of the transition
region of disorder, i.e., the region of R in which erfc(v)
falls from (roughly) 3/4 to (roughly) 1/4. For a constant
thickness l , the estimated values of both parameters R0 and
W depend on the lateral lattice size L so that when L in-
creases they monotonically decrease: W to zero and R0 to
its L → ∞ limit. Furthermore, as R0 separates the region of
disorders in which the presence of the spanning avalanches is
more likely than their absence, we take it, like in the CCO
boundary conditions case, as our estimate for the effective
critical disorder Reff,C

c (l, L) on the L × L × l cubic lattices

FIG. 2. Symbols present our numerical data for the effective crit-
ical disorder Reff,C

c (l, L) in the CCC case (i.e., the closed boundary
conditions imposed in all three directions of the L × L × l cubic
lattice). The data are shown against the system thickness l and lateral
linear size L together with the surface (10) that fits the Reff,C

c (l, L)
data with 0.07 maximum residual for l � 8 and 0.21 for l = 4 when
A′ = 1.17 ± 0.22 and ν ′ = 6.29 ± 0.17; see Fig. 9 and Discussion.

FIG. 3. Numerical data for the effective critical field H eff,O
c (l, L)

in the CCO case (i.e., boundary conditions that are closed in two
lateral directions and open in the thickness direction of the L × L × l
cubic lattice). The numerical data, presented by dots, are shown
against the system thickness l and lateral linear size L together with
the theoretical surface (15) that best fits the H eff,O

c (l, L) data for B =
0.20 ± 0.07 with 0.01 maximum residual for all of the employed
thicknesses; see Fig. 9 and Discussion.

with CCC boundary conditions. Consequently, we take the
limits RC

c (l ) = limL→∞ Reff,C
c (l, L) as the critical disorders for

the infinite cubic lattices of thickness l with a closed boundary
condition along their thickness.

Formally speaking, the values of the effective critical disor-
der Reff,C

c (l, L), taken as a function of two discrete quantities
l and L, may be viewed as the points lying at a surface in
a 3D space with coordinates (l, L, R). In order to predict the
shape of this surface we have started from the following two
hypotheses:

RC
c (l ) − R3D

c

RC
c (l )

= �

l1/ν3D
(8)

FIG. 4. The same as in Fig. 3, but for the effective critical field
H eff,C

c (l, L), and the theoretical prediction (19) with constant B′ =
2.32 ± 0.19 in the CCC case. Here the maximum residual is 0.09 for
l � 8 and 0.8 for l = 4; see Fig. 9 and Discussion.
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FIG. 5. Scaling collapses in the CCO case of the magnetization curves shown in insets. The collapses are achieved using the values from
the 2D model for the critical exponents, and the magnetization curves are obtained for different disorders given in the legends for systems with
thicknesses (a) l = 2, (b) l = 4, (c) l = 8, and (d) l = 16. Note that for the sake of simpler notation we omitted l in Hc(l ) and r(l ) in the titles
of the axes of the abscissa.

and

Reff,C
c (l, L) − RC

c (l )

Reff,C
c (l, L)

= (A′ − �)l1/ν ′

(l1/ν3D − �)L1/ν ′ , (9)

which are both supported by the results of our simulations and
qualitatively justified in Appendix A. The first one, hypothesis
(8), is the same as hypothesis (10) in Ref. [38], so R3D

c = 2.16
is the critical disorder for the ordinary 3D RFIM [3] (i.e.,
the model situated at the cubic lattice that is infinite along all
three directions), � ≡ 1 − R3D

c /R2D
c ≈ −3 where R2D

c = 0.54
is the critical disorder for the ordinary 2D model on the infinite
quadratic lattice [20,21], and ν3D is the correlation length ex-
ponent describing the divergence ξ ∼ r−ν3D of the correlation
length ξ with the reduced disorder r = (R − R3D

c )/R in the
proximity of the critical point of the ordinary 3D model.

The second hypothesis, hypothesis (9), is a modified hy-
pothesis (11) from Ref. [38] as it contains a new exponent ν ′
(instead of ν2D) and a different constant A′ in the expression

A′(l ) ≡ (A′ − �)l1/ν ′

l1/ν3D − �

for the amplitude A′(l ) in the CCC case reflecting the dif-
ferences in avalanche propagation caused by the different
boundary conditions. Thus, while the avalanches are halted
at each of the open system boundaries in the CCO case (so

the large avalanches are sandwiched between these boundaries
and effectively propagate as 2D avalanches), there are no
boundary limits for the avalanche propagation in the CCC
case, causing larger values of the effective critical disorder,
which becomes more and more pronounced as the lattice
thickness decreases.

Following the same procedure as in Ref. [38], and taking
into account the two special cases l = 2 and l = L, we derive
the theoretical prediction

Rth,C
c (l, L) = R3D

c

[
1 − �

l1/ν3D
− (A′ − �)l1/ν ′

L1/ν ′ l1/ν3D

]−1

(10)

for the shape of the surface on which should lie the values
of the effective critical disorder for the RFIM spin systems
situated at the cubic lattices of type L × L × l with closed
boundary conditions along all directions.

In Fig. 2 we show the theoretical surface (10) with A′ =
1.17 ± 0.22 and ν ′ = 6.29 ± 0.17 giving the best fit of our
Reff,C

c (l, L) data. These, as well as the all other data presented
in this paper, are gathered in simulations of 36 different
systems of type L × L × l , where l ranges from 2 to 64 and L
from 256 to 8192. To this end we ran 200 simulations for 15
different values of disorders ranging from below to above the
effective critical disorder Reff,C

c (l, L) for each of the employed
L × L × l systems. Thus, 3000 runs were needed to get each
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FIG. 6. The same as in Fig. 5, but for the CCC case.

of the presented Reff,C
c (l, L) values, giving in total 36 × 3000

runs to obtain Fig. 2. One run time lasted from few seconds for
smaller systems up to half a day for larger systems. That means
that every single point in Fig. 1 was extracted from 200 runs
with independent and different random-field configurations,
and then Reff

c (l, L) was obtained by fitting the points to the
complementary error function using the maximum likelihood
method. That method gives the error estimation as well, and
the error bars are presented by the vertical lines in Fig. 2.
For l � 8 the theoretical surface fits the points within their
error bars, and the maximum deviation of one point from the
surface is 0.07. However, for l < 8 the deviations are bigger,
which is shown in Fig. 9 and there discussed.

B. Effective critical field

The effective critical field (i.e., the value of the exter-
nal field maximizing the susceptibility of a finite system
at the effective critical disorder) depends on the bound-
ary conditions imposed on the adiabatic NEA RFIM spin
systems located at the L × L × l cubic lattices. For this
reason one has to distinguish between H eff,O

c (l, L) and
H eff,C

c (l, L), i.e., between the effective critical field in the
CCO and CCC cases, and analogously between their ther-
modynamic limits HO

c (l ) = limL→∞ H eff,O
c (l, L) and HC

c (l ) =
limL→∞ H eff,C

c (l, L), which, unlike the critical disorders,
turned out to be different.

Following the findings regarding the behavior of the effec-
tive critical field in the 2D model on quadratic lattices [21,58],

here we propose that in the CCO case

H eff,O
c (l, L) − HO

c (l ) = B(l )

L1/ν2D
, (11)

since it is expected that avalanches propagate similar to the
avalanches in the pure 2D model when the thickness l is
fixed; for more explanation of (11) see Appendix B. Here the
amplitude B(l ) is yet-to-be-determined function of thickness
l , and ν2D is the correlation length exponent in the 2D model.
Furthermore, as for l � 2 the critical field of infinite systems
of thickness l monotonically decreases when l increases,
and we expect that avalanches in those systems behave like
avalanches in equilateral 3D systems, we also propose that,
like some other critical parameters in both equilibrium and
nonequilibrium versions of the model [35,38], HO

c (l ) has a
power law approach

HO
c (l ) − H3D

c = 
l−1/ν3D (12)

to the 3D limit H3D
c . The approach is specified by the

constant 
 = 21/ν3D [HO
c (2) − H3D

c ] stemming from (12) for
the limiting thickness l = 2 [59,60]. Such a small thickness
allowed simulations of the systems with a very large base;
henceforth we obtained HO

c (2) = 1.85 ± 0.01 and calculated

 = 0.68 ± 0.07 using the known values H3D

c = 1.435 and
ν3D = 1.41 from the 3D model on equilateral lattices [18].

Equations (11) and (12) enabled us to advance to the
expression

H eff,O
c (l, L) − H3D

c = 


l1/ν3D
+ B(l )

L1/ν2D
, (13)
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FIG. 7. The same as in Fig. 5, but for the susceptibility curves in the CCO case.

containing the unknown amplitude B(l ). In order to find it we
employed that H eff,O

c (L) − H3D
c = B/L1/ν3D in the CCO 3D

model on equilateral lattices (analogously to the 2D model in
Ref. [21]), which is in fact a special case of (13) realized for
l = L. This gave us

B

l1/ν3D
= 


l1/ν3D
+ B(l )

l1/ν3D
,

implying that

B(l ) = B − 


l1/ν3D
l1/ν2D , (14)

which eventually led us to the analytic form of our theoretical
prediction

H th,O
c (l, L) = H3D

c + 


l1/ν3D
+ B − 


l1/ν3D

(
l

L

)1/ν2D

, (15)

for the effective critical field H eff,O
c (l, L) taken as function of

l and L. The comparison of our numerical data for H eff,O
c (l, L)

and prediction (15) with B = 0.20 ± 0.07, giving the best fit
of the H eff,O

c (l, L) data by the theoretical prediction (15), is
presented in Fig. 3.

Analogously, in the CCC case we found that, instead of
(12), the expression

HC
c (l ) − H3D

c = 
′l−1/ν3D (16)

for the critical field HC
c (l ) of infinite systems with thickness l

holds, containing a different constant 
′. Its value 
′ = 2.32
was calculated from the value HC

c (2) ≈ 2.85 of the critical
field of infinite systems of thickness l = 2 obtained on the

grounds of extensive simulations on these lattices with a very
large base. Similarly, instead of (11), we found the expression

H eff,C
c (l, L) − HC

c (l ) = B′(l )

L1/ν ′ , (17)

which holds for the effective critical field H eff,C
c (l, L) with the

same critical exponent ν ′ as in (10), and the amplitude

B′(l ) = B′ − 
′

l1/ν3D
l1/ν ′

. (18)

This eventually led us to our theoretical prediction

H th,C
c (l, L) = H3D

c + 
′

l1/ν3D
+ B′ − 
′

l1/ν3D

(
l

L

)1/ν ′

, (19)

which is compared in Fig. 4 with our numerical H eff,C
c (l, L)

data using the value B′ = 2.32 ± 0.19, which gives the best
fit under the CCC boundary conditions.

For both CCO and CCC cases and for each disorder R =
Reff

c (l, L), the value H eff
c (l, L) of the external field at which

the susceptibility has its maximum is determined from the
susceptibility curve obtained by averaging a large number
(ranging from 200 for the largest up to 32 000 for the smallest
systems) of individual susceptibility curves that correspond
to different random-field configurations, which was necessary
because at R = Reff

c (l, L) the spanning avalanches appear. For
each l and L the error bar was estimated as the greatest
deviation from H eff

c (l, L) of the value of external field at
which some spanning avalanche occurred, and such error bars
of H eff

c (l, L) are presented as vertical lines in Figs. 3 and
4. In the CCO case, i.e., Fig. 3, the agreement between the
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FIG. 8. The same as in Fig. 7, but for the susceptibility curves in the CCC case.

theoretical surface and the numerically extracted values lies
in the range ±0.01 for all values of l and L. The situation
is different in the CCC case, where the agreement is in the
range ±0.09 for l � 8, which is satisfactory, but for l < 8
some huge deviations appear, which is again, as in the case
of effective critical disorder, explained in detail in the caption
of Fig. 9.

IV. SCALING OF MAGNETIZATION AND
SUSCEPTIBILITY CURVES

The theoretical prediction (7) from Ref. [38] and the anal-
ogous prediction (8) from this paper lead in the L → ∞ limit
to the same prediction,

Rth
c (l ) = R3D

c

[
1 − �

l1/ν3D

]−1

, (20)

for the critical disorder of infinite systems with thickness l in
both the CCO and CCC boundary conditions, whereas (12)
and (16) lead to the predictions for the critical fields

H th,O
c (l ) = H3D

c + 


l1/ν3D
, (21)

H th,C
c (l ) = H3D

c + 
′

l1/ν3D
, (22)

which are affected by the choice of boundary conditions due
to different values of constants 
 and 
′. All three of them
can be tested by attempting to collapse the magnetization
and susceptibility curves using the values they predict for the
critical disorder and critical field.

A. Scaling of magnetization curves

For a chosen infinite RFIM spin system, its magnetization
MR(H ) scales in a vicinity of the critical point (Rc, Hc, Mc)
for that system as [3,18]

mR(H ) = |r|βM±(h′/|r|βδ ), (23)

where mR(H ) = MR(H ) − Mc is the reduced magnetization,
r = (R − Rc)/R is the reduced disorder, h′ = H − Hc + br is
the reduced magnetic field rotated by the parameter b, and
M±(x) denotes a pair of universal scaling functions depend-
ing on the single variable x = h′/|r|βδ in the range of disorder
above (+) and below (−) the critical disorder Rc, respectively;
for more explanation of (23) see Appendix C. The scaling of
variables in (23) is described by the two critical exponents: β

(describing the scaling �M ∼ |r|β of the magnetization jump
below Rc) and δ (describing the scaling m ∼ h′δ of the reduced
magnetization with the reduced magnetic field at the critical
disorder).

In thin systems with open boundary conditions along the
z axis (i.e., CCO case), even relatively small avalanches easily
reach the system’s borders along thickness and afterwards
propagate along the remaining two directions effectively as
2D avalanches [59]. So, in this case, one can expect that the
exponents β and δ have the values as in the 2D model on
equilateral lattices (β = 0.15, δ = 32 [20]) and test whether
the values of Rth

c (l ) and H th,O
c (l ), predicted by (20) and (21),

can play the role of Rc and Hc. The results of such test,
shown in Fig. 5 for the thicknesses l = 2, 4, 8, 16 and lateral
size L = 8192, suggest that the foregoing assumptions are
fulfilled.
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On the other hand, in the case of thin systems with closed
boundary conditions in all directions (i.e., the CCC case)
where the propagation of avalanches is not affected by the
system borders, the situation is different. Thus, in the case of
the thinnest (i.e., l = 2 and l = 4) systems the values of Rth

c (l )
and H th,C

c (l ), predicted by (20) and (22), cannot play the role
of Rc and Hc, and the values of exponents different from the
2D ones need to be used; cf. Fig. 6(a) and 6(b) and see the
discussion in the next section. Conversely, for the moderately
thick (i.e., l = 8 and l = 16) systems, one can use the 2D
values of exponents β and δ together with the values predicted
by (20) and (22) for Rc and Hc; see Figs. 6(c) and 6(d).

Finally, for the systems with thickness l > 16, the col-
lapses with the 2D values of exponents β and δ cannot be
achieved in a satisfying manner because the thicker the system
the less it resembles the 2D. Thus, in order to perform a
satisfying collapse for the thicker systems with a finite base,
the values of the exponents β and δ need to be altered towards
their values for the 3D model on equilateral lattices. More
detailed analysis of the flow of the exponents’ values is given
in Ref. [59].

B. Scaling of susceptibility curves

By differentiating (23) with respect to the external field H
we obtain the scaling law of the susceptibility curves χR(H ) ≡
dMR(H )/dH as

χR(H ) = |r|β−βδM′±(h′/|r|βδ ), (24)

where M′± = M±(x)/dx are the universal scaling func-
tions for the susceptibility curves above and below Rc; see
Refs. [3,18]. The collapses are shown in Fig. 7 (CCO case)
and Fig. 8 (CCC case) and are achieved in the same way as the
corresponding collapses of magnetization, shown in Figs. 5
and 6, respectively.

V. DISCUSSION

In this paper we have analyzed how the change of boundary
conditions affects the behavior of the NEA RFIM of spin
systems with finite thickness; for the influence of other factors
(like preexisting domains and/or interfaces) see, for instance,
Refs. [50,61,62]. Thus, we found that besides the differences
in the CCO and CCC cases regarding the values of exponents
β and δ, and our theoretical predictions for the critical field
of infinite systems, a significant difference between the nu-
merical values for the effective critical disorders Reff,O

c (l, L)
and Reff,C

c (l, L) is also encountered in the case of very thin
systems.

In Fig. 9 we present the proposed theoretical curves for
infinite systems of thickness l: curve (20) for the critical disor-
der Rc(l ) in the main part of Fig. 9(a) and curves (21) and (22)
for the critical field H th,O

c (l ) and H th,C
c (l ) in the CCO and CCC

cases, respectively, in the main part of Fig. 9(b). In addition,
the theoretical curves (7) from Ref. [38] and (10) from this
paper are calculated for a set of fixed values of L and varying
l and presented by lines in the inset of Fig. 9(a), together with
two numerical data sets (symbols) for the effective critical
disorder in the CCO and CCC cases. In order to adequately
capture these markedly different data sets exponents denoted

FIG. 9. (a) Main: theoretical curve (20) giving the (same) pre-
diction for the critical disorder in both the CCO and CCC cases.
Inset: numerical values (dots) of the effective critical disorder shown
against the lateral size L for the systems of fixed thicknesses, and
the corresponding curves representing the theoretical predictions (7)
from Ref. [38] and (10) for the CCO and the CCC cases, respectively.
(b) Main: theoretical curve for the critical field given by (21) for the
CCO and by (21) for the CCC case. Inset: the same as for the inset
in panel (a) but for the effective critical field.

to L in (7) from Ref. [38] and (10) from this paper must
be different, ν ′ �= ν2D (which was expected since avalanche
spreading along x and y dimensions significantly differs in the
CCC and CCO cases).

Similarly, in the inset of Fig. 9(b), the curves (15) and (19)
are shown together with points representing the corresponding
numerical data of the effective critical field. From this, it
can be noticed that the numerical data in the CCO case, as
well as in the CCC case for l � 8, agree with the theoretical
predictions, but not in the CCC case for l = 4.

In our opinion, the reason for the above discrepancies
is as follows: because flipping of a spin si, located at the
(say) top border, affects the effective field heff

j (3) of all of
its nearest neighbors, and because there are more of such
neighbors if this boundary is closed, the spreading of the
avalanches reaching top (or bottom) border is facilitated
which causes a noticeable lowering of the effective critical
field if the fraction of such spins is significant. Therefore,
the l � 8 systems behave similarly because at most 25% of
the spins are affected by the change of boundary conditions
from the CCO to the CCC case, whereas the l � 4 systems
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behave differently owing to a quite high percentage of the
spins affected by that change (50% for l = 4 and 100% for
l = 2). This in turn causes the departure of numerical data
for the effective critical field Reff,C

c (l, L) of the l � 4 systems
in the CCC case from the simple theoretical prediction (10)
treating all the spanning avalanches as effectively 2D. And,
as in this case the effective critical field H eff,C

c (l, L) (i.e., the
field that maximizes susceptibility) is determined at the (lower
than theoretically predicted) numerical value Reff,O

c (l, L) of
effective critical disorder, its numerical values for l � 4 sys-
tems lie above the theoretical prediction (19); cf. the inset in
Fig. 9(b).

Finally, let us point out that our predictions (10), (15), and
(19), together with (20), (21), and (22), give only the leading
terms in the scaling with l (and L) of the corresponding quan-
tities. Correction terms in their forms are to be expected (see
Appendix B), leading to smaller deviations of the theoretical
predictions from the numerical results, and this will be a
subject of our future studies. This also applies to the variables
r and h′ approximating the correct scaling variables in the
ordinary 3D model.

VI. CONCLUSION

In this paper we have studied the effective critical disorder
Reff

c (l, L) and the effective critical field H eff
c (l, L) for the

nonequilibrium athermal random-field Ising model situated
on the L × L × l cubic lattices together with their thermo-
dynamic limits, the critical disorder Rc(l ) and the critical
field Hc(l ), pertaining to the lattices of infinite lateral size
L and finite thickness l . We have proposed the theoretical
predictions for all of these quantities and supported the pre-
dictions for finite lattices by the numerical data obtained
in extensive simulations. The analysis is performed using
periodic (i.e., closed) boundary conditions in both lateral
directions and two types (closed and open) along thick-
ness, the latter one better corresponding to the experimental
situations.

We found that for bigger thicknesses there are no signif-
icant differences caused by these two types of conditions,
whereas for thin systems the differences appear together with
some anomalous behavior in the limit of very small l . The
differences are manifested in the scaling collapses of the mag-
netization and susceptibility curves that are well described by
the values of critical exponents for the 2D model in the open
boundary case for all l � 2, but not for l < 8 in the case of
closed conditions.

In our final conclusion, we consider that our study provides
strong numerical evidence that the considered model on the
family of cubic lattices of finite thickness exhibits a criticality
that is for thin systems with the open boundaries along thick-
ness described by the critical exponents from the 2D model,
which should be relevant for the analyses of experimental data
obtained on thin ferromagnetic samples.
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APPENDIX A: QUALITATIVE JUSTIFICATION
OF SCALING HYPOTHESES (8) AND (9)

Let us start from the statement that the correlation length
becomes of the order of system size, ξ ∼ l , when disorder
approaches the effective critical disorder for the finite system
of size l . Specially, in equilateral 3D systems of size l , this
means that 1 − R3D

c /Reff
c (l, L = l ) ∼ l−1/ν3D when disorder

tends to critical, R → Reff
c (l, L = l ); as evidence for analo-

gous statement in the case of the equilateral 2D RFIM systems
see (10) and Fig. 6 in Ref. [20].

Now, as RC
c (l ) behaves similarly to Reff

c (l, L = l ) for suffi-
ciently big l , one may conjecture that

RC
c (l ) − R3D

c

RC
c (l )

= �′

l1/ν3D
(A1)

holds for the RFIM systems with finite thickness with CCC
boundary conditions like the analogous hypothesis (10) from
Ref. [38] in the CCO case [an alternative way of justifying
(A1)]: systems of size L × L × l , where L � l with changing
l and L are 3D systems whose critical disorders approach
R3D

c in a 3D manner. On the other hand those systems behave
effectively as systems of infinite base and thickness l , leading
to (A1).

Nevertheless, some differences between the cases are to
be expected. Namely, when the boundaries are open along
thickness, then in l > 1 systems the avalanches are halted at
the system boundaries and therefore, being squeezed between
the boundaries, propagate in a 2D manner as is shown in
Ref. [59], making the transition from l = 2 to l = 1 smooth.
However, in the CCC case, the avalanches in the l > 1
systems can propagate along thickness, which causes them
to behave differently than in the l = 1 case. Therefore, the
transition from l = 2 to l = 1 is not smooth in the CCC case,
and the lower value of l for which (A1) is suitable is l = 2.
Since l = 2 is a small thickness, it allowed us to simulate
the systems with large bases and thereupon find that �′ =
21/ν3D [RC

c (2) − R3D
c ]/RC

c (2) ≈ −3.02. On the other hand, as
for the CCO case � = 1 − R3D

c /R2D
c ≈ −3 one may take that

�′ = �

within the error bars, promoting (A1) into hypothesis (8),
which is the same as hypothesis (10) in Ref. [38].

Regarding the hypothesis (9), let us start from the equation

Reff,C
c (l, L) − R3D

c

Reff,C
c (l, L)

= Reff,C
c (l, L) − RC

c (l )

Reff,C
c (l, L)

+ RC
c (l ) − R3D

c

RC
c (l )

RC
c (l )

Reff,C
c (l, L)

, (A2)

which for L = l becomes

Reff,C
c (l, l ) − R3D

c

Reff,C
c (l, l )

= Reff,C
c (l, l ) − RC

c (l )

Reff,C
c (l, l )

+ RC
c (l ) − R3D

c

RC
c (l )

RC
c (l )

Reff,C
c (l, l )

. (A3)

The left-hand side of (A3) describes the approach of the
effective critical disorder Reff,C

c (l, l ) to the critical disorder
R3D

c for the equilateral systems of size l in the ordinary 3D
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RFIM, so

Reff,C
c (l, l ) − R3D

c

Reff,C
c (l, l )

= A′

l1/ν3D
, (A4)

where the amplitude A′ characterizes the approach in the CCC
case. Next, our numerical data for l > 8 suggest for the first
term on the right-hand side of (A3) that

Reff,C
c (l, L) − RC

c (l )

Reff,C
c (l, L)

= A′(l )

L1/ν ′ , (A5)

i.e., that the approach of Reff,C
c (l, L) to RC

c (l ) when the lateral
size L diverges is of a power law type specified by the
exponent ν ′; see the inset in Fig. 9. Now, after replacing in
(A3) the left-hand sides of (A4) and (A5) by the matching
right-hand sides, one can solve (A3) for A′(l ) and, in this way,
find that

A′(l ) = (A′ − �)l1/ν ′

l1/ν3D − �
. (A6)

This equation led us to hypothesis (9), which is a modified
hypothesis (11) from Ref. [38] as it contains a different
constant A′ and exponent ν ′ that is, according to our numerical
data, different from the correlation length exponent ν2D in the
ordinary 2D model.

APPENDIX B: THE APPROACH OF THE EFFECTIVE
CRITICAL FIELD TO THE CRITICAL FIELD

WHEN THE SYSTEM SIZE DIVERGES

Generally the choice of the scaling variables specifying
the displacement of a system from its critical point is not
unique. The simplest choice of such variables in the case of
equilateral RFIM systems of size L is {R − Rc, H − Hc, 1/L};
however, any other triple of variables {x1, x2, x3} having a
smooth 1-1 correspondence with that simplest triple and van-
ishing at the critical point {Rc, Hc, 0} can equally serve as
well. Nevertheless, not all such choices are equally suitable.
As elaborated in Ref. [63] only proper (i.e., correct) choices
enable exact scaling manifested in the existence of universal
scaling functions that are generalized homogeneous functions
depending in the foregoing RFIM case not on three, but on
two, scaled variables.

As the form of the correct RFIM scaling variables is not
known, different approximations have been proposed so far.
Thus, r ≡ (R − Rc)/R, h′ ≡ H − Hc + br, and 1/L was pro-
posed by Sethna et al. (see Ref. [3] and the references therein),
whereas Perez-Reche and Vives [63] proposed u = u1 + Au2

1
and v = v1 + B′u1 instead of r and h′, where u1 = (R −
Rc)/Rc and v1 = (H − Hc)/Hc. Although seemingly differ-
ent, these two choices should lead to essentially the same
collapses because in the near proximity of the critical point
r = u1 − u2

1 + u3
1 + · · · and so on, implying that r ≈ u and

h′ ≈ v.
From the functional point of view, the role of the scaling

variable measuring the deviation of the external field H from
its critical value Hc should be that it, inter alia, enables
collapsing of the susceptibility curves. For this reason, such
a variable should be centered at the effective critical field
H eff

c (R, L), i.e., the value of H at which the susceptibility

curve, obtained at disorder R for the equilateral RFIM sys-
tem of size L, attains its maximum. However, the form of
H eff

c (R, L) is not known, and both Hc − br in Ref. [3] and
Hc(1 − B′u1), i.e., (30) in Ref. [63], are in fact two similar
first-order approximations of unknown H eff

c (R, L), expressed
in terms of deviations r and u1 from Rc, respectively.

Despite r and u1 being not the same variables, their
values reff

c (L) ≡ [Reff
c (L) − Rc]/Reff

c (L) and ueff
1c ≡ [Reff

c (L) −
Rc]/Rc, attained at the effective critical disorder Reff

c (L) for the
equilateral RFIM systems of size L, both approach zero when
L → ∞ following power laws, ∼L−ν , specified by the same
exponent ν (and differing in the corresponding correction
terms). On these grounds, one can propose hypotheses (11)
and (12) in the CCO case, and hypotheses (16) and (17) in the
CCC case of L × L × l 3D RFIM systems.

In Eq. (10) from Ref. [63] the deviation of external field
from the critical external field was considered:

〈H〉α − Hc ∼ −CαL−1/μ,

where 〈H〉α stands for the average of the external field values
triggering the α-type of spanning avalanches. By comparing
this equation to Eqs. (16) and (17) one can notice the differ-
ence in critical exponents (μ = ν/βδ), from which may arise
question whether Eqs. (16) and (17) are correct. Let us note
that previous equation [Eq. (10) from Ref. [63]] holds for R =
Rc, i.e., for u1 = 0, whereas H eff

c (R, L) corresponds to R =
Reff

c (L), i.e., to ueff
1c > 0. So Eq. (29) from Ref. [63] gives that

〈H〉α
(
Reff

c (L), L
) − Hc = −HcB′ueff

1c − ĥα

(
ueff

1c L1/ν
)

L1/μ

∼ −HcB′ D

L1/ν
− ĥα (D)

L1/μ
,

where ueff
1c corresponds to given L and therefore ueff

1c L1/ν ≈ D,
where D is a constant independent of L. Because 1/ν < 1/μ,
this implies that the leading term for big L is proportional to
L−1/ν , which leads us again to hypotheses (11), (12), (16),
and (17).

APPENDIX C: COLLAPSING OF
MAGNETIZATION CURVES

Equation (23) follows from the statement (substantiated
by the corresponding renormalization group analysis, e.g.,
in Ref. [22]) that sufficiently close to the critical point the
singular part of the Gibbs free energy per degree of freedom
[i.e., the part giving divergent (some or all of the) response
functions at the critical point] is a generalized homogeneous
function

g(aα1 x1, aα2 x2, aα3 x3, . . .) = ag(x1, x2, x3, . . .),

of its (scaling) variables x1, x2, x3, . . . measuring the distance
to the critical point; here a > 0 is a renormalization step,
and α1, α2, α3,...are appropriate exponents. In the case of
infinite RFIM systems and x1 = r, x2 = h′ this implies that
the reduced magnetization m = −∂g/∂h′ satisfies

m(r, h′) = a−1+α2 m(aα1 r, aα2 h′),

or equivalently

m(r, h′) = |r|(1−α2 )/α1M±(h′|r|−α2/α1 ),
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FIG. 10. Fluctuations between the magnetization curves (left) and the susceptibility curves (right) corresponding to two different samples
both at the effective critical disorder for L = 1024 and l = 8. The individual curves are shown in the upper parts of both panels (using the finer
or coarser H scale in the main parts or insets), whereas their differences � (dashed-solid) are shown in the lower parts.

when the renormalization step is taken as a = |r|−1/α1 and
M±(h′|r|−α2/α1 ) ≡ m(±1, h′), which equals (23) with (1 −
α2)/α1 = β and α2/α1 = βδ.

Regarding the scaling variables, here we follow the
choice r = (R − Rc)/R and h′ = H − Hc + br adopted by
Sethna and collaborators who showed (see the review
[3] and the references quoted therein) why in the ex-
pression for the reduced external magnetic field h′ there
should be a term proportional to r; for other choices see
Refs. [19,63].

In theoretical analyses and in presentations of numerical
data the averaged magnetization and susceptibility curves are

used. These curves are obtained by averaging over (theo-
retically, all, and in simulations all employed) random-field
samples giving individual curves that fluctuate from sample to
sample. As we simulated the systems at their effective critical
disorder, such fluctuations, illustrated in Fig. 10, prove to be
large. Therefore, we used many samples to reduce statisti-
cal scattering in the averaged curves, and we estimated the
maximum uncertainty of the effective critical field H eff

c (l, L),
corresponding to the peak of the averaged susceptibility curve,
as the maximum deviation between this value and the values
taken by the spanning field, i.e., the field triggering some
spanning avalanche.
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