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Asymmetric heat transport in ion crystals
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We numerically demonstrate heat rectification for linear chains of ions in trap lattices with graded trapping
frequencies, in contact with thermal baths implemented by optical molasses. To calculate the local temperatures
and heat currents we find the stationary state by solving a system of algebraic equations. This approach is much
faster than the usual method that integrates the dynamical equations of the system and averages over noise
realizations.
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I. INTRODUCTION

The ideal thermal rectifier, also known as a “thermal
diode,” is a device that allows heat to propagate in one direc-
tion, from a hot to a cold bath, but not in the opposite one when
the temperature bias of the baths is reversed. The name is set
by analogy to the half-wave rectifiers or diodes for electric
current. More generally thermal rectification simply denotes
asymmetric heat flows (not necessarily all or nothing) when
the bath temperatures are reversed. Thermal rectification was
discovered by Starr in 1936 in a junction between copper and
cuprous oxide [1]. Many years later, a work of Terraneo et al.
demonstrated thermal rectification in a model consisting of a
segmented chain of coupled nonlinear oscillators in contact
with two thermal baths at temperatures TH and TC , with TH >

TC [2]. This paper sparked a substantial body of research that
spans to this day [3] (see Fig. 1 in Ref. [4]).

Research on thermal rectification has gained significant
attention in recent years as a key ingredient in building
prospective devices to control heat flows similarly to elec-
trical currents [4,5]. There are proposals to engineer thermal
logic circuits [6] in which information, stored in thermal
memories [7], would be processed in thermal gates [8]. Such
thermal gates, as their electronic counterparts, will require
thermal diodes and thermal transistors to operate [9,10].
Heat-rectifying devices would also be quite useful in nano
electronic circuits, letting delicate components dissipate heat
while being protected from external heat sources [4].

Most work on thermal diodes has been theoretical with
only a few experiments [11–14]. A relevant attempt to build
a thermal rectifier was based on a graded structure made
of carbon and boron nitride nanotubes that transports heat
between a pair of heating and sensing circuits [11]. One
of the ends of the nanotube is loaded with a deposition of
another material, which makes the heat flow better from the
loaded end to the unloaded end. However, rectifications were
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small, with rectification factors (relative heat-flow differen-
tials) around 7%.

Much effort has been aimed at improving the rectification
factors and the features of the rectifiers. Some works relied,
as in Ref. [2], on a chain segmented into two or more regions
with different properties, but using other lattice models such
as the Frenkel-Kontorova (FK) model [15,16]. The fundamen-
tal ingredient for having rectification was attributed to nonlin-
ear forces in the chain [5,15–19], which lead to a temperature
dependence of the phonon bands or power spectral densities.
The bands may match or mismatch at the interfaces depending
on the sign of the temperature bias of the baths, allowing or
obstructing heat flow [2,20]. Later, alternative mechanisms
were proposed which do not necessarily rely on anharmonic
potentials [21,22]. Also, Peyrard provided a simple model to
explain and build rectifiers based on assuming the Fourier law
for heat conduction locally combined with a temperature and
position-dependent conductivity [23].

It was soon realized that the performance of segmented
rectifiers was very sensitive to the size of the device, i.e., rec-
tification decreases with increasing the length of the rectifier
[16]. To overcome this limitation two ideas were proposed.
The first one consists in using graded rather than segmented
chains, i.e., chains where some physical property varies con-
tinuously along the site position such as the mass of particles
in the lattice [24–32]. The second one uses particles with
long-range interactions (LRI), such that all the particles in
the lattice interact with each other [25,33,34]. The rationale
behind this was that in a graded system new asymmetric, rec-
tifying channels are created, while the long-range interactions
create also new transport channels, avoiding the usual decay
of heat flow with size [25]. Besides a stronger rectification
power, LRI graded chains are expected to have better heat
conductivity than segmented ones. This is an important point
for technological applications, because devices with high
rectification factors are not useful if the currents that flow
through them are very small.

In this article we propose to bridge the gap between
mathematical models and actual systems exploring the im-
plementation of a heat rectifier in a realistic, graded system
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FIG. 1. (Not to scale) Schematic representation of the frequency-graded chain of trapped ions proposed as a thermal rectifier. The left and
right ends of the chain are in contact with optical molasses at temperatures TL and TR (green and gray boxes, respectively). Each ion is in an
individual trap. The (angular) frequencies of the traps increase homogeneously from left to right, starting from ω1 and ending at ω1 + �ω.
The ions interact through the Coulomb force, which is long range, and therefore all the ions interact among them, even distant neighbors. By
default we use 15 ions.

with long-range interactions: a chain of ultracold ions in a
segmented Paul trap with graded microtraps for each ion.
Long-range interactions are due to the Coulomb forces, and
the baths at the ends of the chain may be implemented with
optical molasses; see Fig. 1. The trapping frequencies of the
microtraps are controlled individually in order to create a
graded and asymmetric trap-frequency profile along the chain.
This asymmetry will lead to a heat flow that depends on the
sign of the temperature difference of the baths. Heat transport
in trapped ion chains has been studied in several works
[35–39], and interesting phenomena like phase transitions
have been investigated [35–38]. The idea of using locally con-
trolled traps is already mentioned in Ref. [35] to implement
disorder and study its effects. The device we present here
may be challenging to implement but in reach with the current
technology, in particular that of microfabricated traps [40–42].
Thus the setting is thought for a small, realistic number of
controllable ions.

The rest of the article is organized as follows. In Sec. II we
describe the physical system of trapped ions with graded trap
frequencies. We also set the stochastic dynamics due to the
action of lasers at the chain edges. In Sec. III we implement
an efficient method to find the steady state using Novikov’s
theorem and solving an algebraic system of equations. In
Sec. IV we present simulations of this system exhibiting
thermal rectification and discuss the dependence with ion
number, different options for the ion-laser coupling, and the
advantages and disadvantages of using a graded frequency
profile instead of a segmented one. Finally, in Sec. V we
summarize our conclusions and discuss connections with
other works.

II. PHYSICAL SYSTEM

Consider a linear lattice of N individual harmonic traps of
(angular) trapping frequencies ωn evenly distributed along the
x axis at a distance a from each other. Each trap contains a
single ion that interacts with the rest via Coulomb potentials.
All the ions are of the same species, with mass m and charge
q. The Hamiltonian that describes the dynamics of the system
is (we consider only linear, one-dimensional motion along the
chain axis)

H (x, p) =
N∑

n=1

[
p2

n

2m
+ mω2

n

2

(
xn − x(0)

n

)2
]

+ Vint (x), (1)

where {xn, pn}, the position and momentum of each ion, are
the components of the vectors x, p, x(0)

n = na are the centers
of the harmonic traps, and Vint is the sum of the Coulomb

interaction potential between all pairs of ions,

Vint (x) = 1

2

∑
n

∑
l �=n

VC (|xn − xl |), (2)

with VC (|xn − xl |) = q2

4πε0

1
|xn−xl | . The ends of the chain are in

contact with two thermal reservoirs at temperatures TL for the
left bath and TR for the right bath, respectively. The action
of the reservoirs on the dynamics of the chain is modeled
via Langevin baths at temperatures TL and TR [43,44]. The
equations of motion of the chain, taking into account the baths
and the Hamiltonian, are

ẋn = 1

m
pn,

ṗn = −mω2
n

(
xn − x(0)

n

) − ∂Vint

∂xn
− γn

m
pn + ξn(t ),

(3)

where γn and ξn(t ) are only nonzero for the ions in the end
regions, in contact with the left and right baths in the sets
L = {1, 2, . . . , NL} and R = {N − (NR − 1), . . . , N − 1, N};
see Fig. 1. Here γn are friction coefficients and ξn(t ) are
uncorrelated Gaussian noise forces satisfying 〈ξn(t )〉 = 0 and
〈ξn(t )ξm(t ′)〉 = 2Dnδnmδ(t − t ′), Dn being the diffusion coef-
ficients. These Gaussian forces are formally the time deriva-
tives of independent Wiener processes (Brownian motions)
ξn(t ) = √

2Dn
dWn
dt [36,45], and Eq. (3) is a stochastic differ-

ential equation (SDE) in the Stratonovich sense [45].
The baths are physically implemented by optical molasses

consisting of a pair of counterpropagating Doppler-cooling
lasers [36]. The friction and diffusion coefficients for the ions
in contact with the baths are given by [46]

γn = −4h̄k2
L,R

(
IL,R

I0

)
2δL,R/


[1 + (2δL,R/
)2]2
,

Dn = h̄2k2
L,R

(
IL,R

I0

)



1 + (2δL,R/
)2
, (4)

n ∈ L,R,

where kL (kR) and IL (IR) are the wave vector and intensity of
the left (right) laser. δL (δR) is the detuning of the left (right)
laser with respect to the angular frequency ω0 of the atomic
transition the laser is exciting, and 
 is the corresponding
natural line width of the excited state. The expressions in
Eq. (4) are valid only if the intensities of the lasers are small
compared to the saturation intensity I0, IL,R/I0 � 1. In this
bath model, the friction term in Eq. (3) comes from the cooling
action of the laser, and the white noise force ξn(t ) corresponds
to the random recoil of the ions due to spontaneous emission
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of photons [47–49]. Using the diffusion-dissipation relation
D = γ kBT [50], the temperatures of the optical molasses
baths are given by

TL,R = − h̄


4kB

1 + (2δL,R/
)2

(2δL,R/
)
, (5)

with kB being the Boltzmann constant. If the laser intensities
are low enough, the temperatures of the baths are controlled
by modifying the detunings. When δ = δD = −
/2 the op-
tical molasses reach their minimum temperature possible,
the Doppler limit TD = h̄
/(2kB). Note that away from the
Doppler limit the same temperature may be achieved for two
different values of detuning. These two possibilities imply
different couplings (two different pairs of γ and D values) and
thus different physical effects that will be studied in Sec. IV C.

III. CALCULATION OF THE STATIONARY HEAT
CURRENTS

The local energy of each site is defined by

Hn = 1

2m
p2

n + 1

2
mω2

n

(
xn − x(0)

n

)2 + 1

2

∑
l �=n

VC (|xn − xl |).

(6)

Differentiating Hn with respect to time we find the continuity
equation

Ḣn = pn

m

[
ξn(t ) − γn

pn

m

]
− 1

2m

∑
l �=n

∂VC (|xn−xl |)
∂xn

(pn + pl ).

(7)

Two different contributions can be distinguished: jB
n ≡

pn

m [ξn(t ) − γn
pn

m ], which is the energy flow from the laser
reservoir to the ions at the edges of the chain (only for
n ∈ L,R), and Ḣ int

n ≡ − 1
2m

∑
l �=n

∂VC (|xn−xl |)
∂xn

(pn + pl ), which
gives the “internal” energy flow due to the interactions with
the rest of the ions. In the steady state 〈Ḣn〉 = 0, and therefore〈

jB
n

〉 + 〈
Ḣ int

n

〉 = 0, (8)

where 〈···〉 stands for the expectation value with respect to the
ensemble of noise processes ξ(t ) (ξ represents a vector with
components ξn). Equation (8) implies that, in the steady state,
the internal rates Ḣ int

n vanish for the inner ions of the chain
because jB

n = 0 for n /∈ L,R. In chains with nearest-neighbor
(NN) interactions, 〈Ḣ int

n 〉 simplifies to two compensating and
equal-in-magnitude contributions that define the homoge-
neous heat flux across the chain. For long-range interactions
this is not so, and defining the flux is not so straightforward. A
formal possibility is to impose NN interatomic interactions for
some atoms in the chain [25], but this approach is not realistic
in the current system, so we define instead the heat currents
for the left and right baths as

JL(t ) =
∑
n∈L

〈
jB
n

〉
,

JR(t ) =
∑
n∈R

〈
jB
n

〉
,

(9)

respectively. These expressions are in general time-dependent.
In the steady state we must have JL,steady + JR,steady = 0, since

the local energies stabilize and internal energy flows cancel.
We use either JL,steady or JR,steady to calculate the total energy
flow in the chain, always taking the absolute value, i.e., J ≡
|JL,steady| = |JR,steady|. J is defined as J→ when the hot bath is
on the left and J← when it is on the right.

To compute the average heat fluxes of the baths 〈 jB
n 〉 in

Eq. (9) we need the averages 〈pn(t )ξn(t )〉. Instead of explicitly
averaging pn(t )ξn(t ) over different realizations of the white
noise we use Novikov’s theorem [45,51,52]. Novikov’s the-
orem states that the ensemble average (over the realizations
of the noise) of the product of some functional φ(t ), which
depends on a Gaussian noise ξ (t ) with zero mean value,
〈ξ (t )〉 = 0, and the noise itself is given by

〈ξ (t )φ(t )〉 =
∫ t

0
dt ′〈ξ (t )ξ (t ′)〉

〈
δφ(t )

δξ (t ′)

〉
, (10)

where δφ(t )/δξ (t ′) is the functional derivative of φ(t ) with re-
spect to the noise, with t ′ < t . When the noise is δ-correlated,
〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′), and Eq. (10) reads 〈ξ (t )φ(t )〉 =
D〈δφ(t )/δξ (t ′)〉|t ′→t− . To apply Novikov’s theorem to our
model we need the functional derivatives of the position xn(t )
and momentum pn(t ) coordinates with respect to the white
noises. We integrate Eq. (3) to have its formal solution as a
functional depending on the white Gaussian noises ξn(t ),

xn(t ) = xn(0) + 1

m

∫ t

0
ds pn(s),

pn(t ) = pn(0) +
∫ t

0
ds

[
−∂H

∂xn
(s) − γn

m
pn(s) + ξn(s)

]
.

(11)

Equation (11) implies that the functional derivatives are
δxn(t )/δξm(t ′)|t ′→t− = 0 and δpn(t )/δξm(t ′)|t ′→t− = δnm (δnm

is the usual Kronecker delta symbol). Thus we have
〈xn(t )ξm(t )〉 = 0 and 〈pn(t )ξm(t )〉 = δnmDm, which gives for
the heat flow from the baths

〈
jB
n

〉 = 1

m

[
Dn − γn

〈
p2

n

〉
m

]
. (12)

In all simulations we check that |JL,steady| = |JR,steady| within
the numerical tolerance of the computer. To measure the
asymmetry of the heat currents we use the rectification factor
R defined as

R = J→ − J←
max(J→, J←)

. (13)

R values may go from −1 to 1 (in the figures we depict it
in percentages between −100% and 100%). If there is no
rectification J→ = J← and R = 0. For perfect rectification in
the right (left) direction, J→ � J← (J→ � J←), and R = 1
(R = −1). Take note that other definitions of rectification
factors exist in many works on asymmetric heat transfer, so
comparisons should be done with care.

This model does not show the antithermodynamical behav-
ior observed in other models [53,54], and heat is found to flow
in all cases from the hot to the cold bath.
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A. Algebraic, small-oscillations approach to calculate
the steady state

To find the temperature profiles and heat currents in the
steady state the usual approach is to solve the SDE system
in Eq. (3) up to long times and for many realizations of
the white noises ξ(t ). In that way the ensemble averages
〈pn(t → ∞)2〉, necessary for both the temperature profiles
and heat currents, are computed. This standard route implies
a heavy computational effort, in particular when we want
to study the heat transport for several bath configurations,
frequency increments, and chain parameters. It is possible
to circumvent this difficulty and find ensemble averages like
〈xnxm〉, 〈xn pm〉, 〈pn pm〉 (second-order moments) without in-
tegrating any SDE [55]. The idea is to impose the condition
d〈· · ·〉/dt = 0 for all the second-order moments and linearize
the dynamical equations of the system around equilibrium. A
system of linear algebraic equations for the moments results,
that can be easily solved without solving the SDE many times.

To linearize the SDE in Eq. (3) we approximate the
potential energy of the Hamiltonian in Eq. (1), V (x) =
Vint (x) + m

∑
n ω2

n(xn − x(0)
n )2/2, by its harmonic approx-

imation around the equilibrium positions xeq, defined by
∂V (x)

∂x |
x=xeq

= 0. The approximate potential (ignoring the zero-
point energy) is

V (x) ≈ 1

2

∑
n,m

Knm
(
xn − xeq

n

)(
xm − xeq

m

)
, (14)

with Knm = ∂2V (x)
∂xn∂xm

|
x=xeq

being the Hessian matrix entries of

V (x) around the equilibrium configuration [56]

Knm =

⎧⎪⎨
⎪⎩

mω2
n + 2

( q2

4πε0

) ∑
l �=n

1∣∣xeq
n −xeq

l

∣∣3 if n = m

−2
( q2

4πε0

)
1∣∣xeq

n −xeq
m

∣∣3 if n �= m
. (15)

Note that this approximation does not modify the two main
features of the system, namely, asymmetry and long-range in-
teractions, which are manifest in the asymmetric distribution
of ωn and the nonzero off-diagonal elements of the K matrix,
respectively. In the following we will use yn = xn − xeq

n to
simplify the notation. The linearized dynamics around the
equilibrium positions are given by

ẏn = 1

m
pn,

ṗn = −
∑

l

Knlyl − γn

m
pn + ξn(t ). (16)

Now we set d〈· · · 〉/dt = 0 for all the moments. Using
Eq. (16) and applying Novikov’s theorem we find

〈pn pl〉 − γl〈yn pl〉 −
∑

m

Klm〈ynym〉 = 0,

∑
m

[Knm〈ym pl〉 + Klm〈ym pn〉] + 1

m
(γl + γn)〈pn pl〉 = 2δnlDn.

(17)

The system (17) is linear in the second-order moments so it
can be solved numerically to find the steady-state values of
the moments. Besides Eq. (17) we have that 〈yn pl〉 = −〈yl pn〉,

which follows from Eq. (16) and d〈ynym〉/dt = 0. Since there
are 1

2 N (N − 1) independent 〈yn pl〉 moments, we choose the
ones with n < l . Similarly, the moments 〈ynyl〉 and 〈pn pl〉
contribute with 1

2 N (N + 1) independent variables each, and
we choose the ones with n � m. Thus there are in total
1
2 N (3N + 1) independent moments that we arrange in the
vector

η = [〈y1y1〉, 〈y1y2〉, . . . , 〈yN yN 〉,
×〈p1 p1〉, 〈p1 p2〉, . . . , 〈pN pN 〉,
×〈y1 p2〉, 〈y1 p3〉, . . . , 〈yN−1 pN 〉]T . (18)

There are the same number of independent equations as
independent moments: N2 equations correspond to the first
line in Eq. (17), and 1

2 N (N + 1) equations to the second line
because of the symmetry with respect to n, l . The system of
equations (17) may be compactly written as Aη = B, where
A and B are a 1

2 N (3N + 1) square matrix and vector.

IV. NUMERICAL RESULTS

We now display the results of our simulations. To find the
temperature profiles and the currents in the steady state we
use the algebraic method described in Sec. III A. We also
check that the results coincide with those by solving Eq. (3)
for many different realizations of the noisy forces ξ(t ) and
averaging. The code for all the numerical simulations has
been written in the language JULIA [57,58]. In particular,
to solve the Langevin equation, we used the Julia package
DIFFERENTIALEQUATIONS.JL [59].

To model the baths and the chain we use atomic data taken
from ion trap experiments [60,61]. We consider 15 24Mg+

ions in all figures except in Fig. 6. The three leftmost and three
rightmost ions are illuminated by Doppler cooling lasers.
The Doppler cooling lasers excite the transition 3s2S1/2 →
3p2P1/2, with angular frequency ω0 = 2π × 1069 THz and
excited state line width 
 = 2π × 41.3 MHz [36]. For this
ionic species and atomic transition the Doppler limit is TD =
1 mK. The intensities of the laser beams are small compared
to the saturation intensity I0 so that Eq. (4) holds. We take
In/I0 = 0.08 for the ions in the laser beams, whereas In = 0
for the rest.

The temperatures TL, TR of the left and right laser baths
are controlled with their detunings δL, δR with respect to the
atomic transition. We fix two values for the detunings, δH and
δC , such that TH > TC (hot and cold baths, also source and
drain), and we define J→ (J←) as the stationary heat current in
the chain when TL = TH and TR = TC (TL = TC and TR = TH ).

Except in Sec. IV E we consider a graded frequency profile.
If the frequency of the leftmost trap is ω1, the frequency of
the nth trap will be ωn = ω1 + �ω n−1

N−1 up to ω1 + �ω for the
rightmost trap. In Sec. IV E we compare the graded chain to a
segmented chain, where the left half of the chain has trapping
frequencies ω1 and the other half has ω1 + �ω.

A. Evolution to steady state

To compare the results by solving Eq. (3) and av-
eraging and those from the algebraic method we simu-
lated a frequency-graded chain with a trapping frequency
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FIG. 2. (a) Temperatures of the ions in the stationary state for
a graded chain with the parameters described in Sec. IV A. The
temperature profiles found with the algebraic method [Eq. (17)] are
indistinguishable from the ones found solving the Langevin equation
[Eq. (3)]. Empty triangles (squares) correspond to TL = TH (TL =
TC ) and TR = TC (TR = TH ). (b) Heat currents as a function of time
for TL = TH and TR = TC [see Eq. (9)]: JL (t ) (thick solid green line)
from the left reservoir into the chain; JR(t ) (thick dashed grey line)
from the right reservoir into the chain (negative except at very short
times); JL (t ) + JR(t ) (thick dotted black line), which must go to
zero in the steady state. The three lines tend to stationary values
marked by the horizontal thin lines. Parameters: ω1 = 2π × 50 kHz,
a = 50 μm, δH = −0.02 
, and δC = −0.1 
, which gives temper-
atures TH ≈ 12 mK and TC ≈ 3 mK. �ω = 0.5 ω1. In all figures

 = 2π × 41.3 MHz.

ω1 = 2π × 50 kHz for the leftmost ion; see Fig. 2. The num-
ber of ions interacting with the laser beams (three on each
bath) is consistent with the lattice constant and typical waists
of Gaussian laser beams [60,61]. To set the trap distance

we fix first the characteristic length l = ( q2

4πε0

1
mω2

1
)
1/3

as the
distance for which the Coulomb repulsion of two ions equals
the trap potential energy for an ion at a distance l away from
the center of its trap. If a < l , the Coulomb repulsion of the
ions is stronger than the trap confinement which makes the
ions jump from their traps. With the parameters used in this
section we have l = 38.7 μm and set a = 1.29 l = 50 μm.
The detunings of the hot and cold lasers are δH = −0.02 


and δC = −0.1 
, which gives temperatures TH ≈ 12 mK and
TC ≈ 3 mK. We fix the value �ω = 0.5 ω1 for the frequency
increment.

The results of the two methods are in very good agreement.
In the scale of Fig. 2(a) the calculated local temperatures

FIG. 3. Graded chain of N = 15 24Mg+ ions. (a) Stationary
fluxes for different frequency increments: J→ (for TL = TH and TR =
TC , dashed line); J← (for TL = TC and TR = TH , solid line). (b) Rec-
tification factor. Parameters: ω1 = 2π × 1 MHz, l = 5.25 μm, a =
4.76 l (25 μm), δH = −0.02 
, and δC = −0.1 
.

are undistinguishable. In the calculation based on solving
the dynamics we had to integrate Eq. (3) for Ntrials = 1000
realizations of white noise ξ(t ). The method based on the
system of moments shortened the calculation time with re-
spect to the dynamical trajectories by a factor of 1/700.
In fact, the time gain is even more important because the
dynamical method requires further processing, performing a
time averaging to compute the stationary flux in addition to
noise averaging; see Fig. 2(b).

Additionally, the relaxation to the steady state slows down
when the frequencies of the traps increase since the determin-
istic part of the Langevin equation dominates the dynamics
over the stochastic part, entering an underdamped regime. In
contrast, this increase does not affect the algebraic method.

B. Rectification in frequency-graded chains

In this subsection we demonstrate rectification for the
frequency-graded chain. We used the method described in
Sec. III A for 24Mg+ ions with the same parameters for the
baths used before. We fix the trapping frequency of the left-
most trap to ω1 = 2π × 1 MHz and a trap spacing a = 4.76 l
(25 μm) (the characteristic length is l = 5.25 μm). Figure 3
depicts the results with these parameters in a graded chain.
Figure 3(a) shows that both J→ and J← decrease rapidly
as the frequency increment is increased. The rectification
reaches its maximum value for a frequency difference of
�ω ≈ 0.1ω1. The fluxes cross so there are some points where
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FIG. 4. Rectification factor in a graded chain of N = 15 24Mg+

ions for different trap distances and frequency increment. The dashed
lines are for R = 0 and delimit the regions J→ > J← and J→ < J←.
The parameters are ω1 = 2π × 1 MHz, l = 5.25 μm, δH = −0.02 
,
and δC = −0.1 
.

the rectification is exactly zero, besides the trivial one at
�ω = 0, at �ω = 0.05 ω1, 0.3 ω1, 1.3 ω1. At these points
the direction of rectification reverses, presumably as a con-
sequence of the changes in the match and mismatch of the
temperature-dependent local power spectra. The change of
rectification direction occurs for all choices of parameters,
as displayed in Fig. 4. Figure 4 gives the rectification fac-
tor for different trap distances and frequency increments.
Zero–rectification curves separate regions with different rec-
tification direction. The second region in Fig. 4 (starting
from the left) would be the most interesting one to build a
thermal diode, since rectification reaches its largest values
there.

For small values of �ω there is little asymmetry in the
chain and therefore modest rectification is expected, whereas
a very large �ω implies very high trapping frequencies on the
right implying too strong a confinement and vanishing inter-
actions. This bottleneck decreases the fluxes in both directions
and the rectification. However, since �ω is controllable, and
the range of values of �ω for which rectification is larger can
be also controlled with the intertrap distance a (see Fig. 4),
the existence of a rectification window does not imply a major
limitation.

C. Same bath temperatures, different bath couplings

As already mentioned below Eq. (5), above and below
the detuning δD = −
/2 corresponding to the Doppler limit
temperature, the optical molasses allow for two different
couplings [two pairs of friction and diffusion coefficients in
Eq. (4)] between the ions and the laser corresponding to the
same bath temperature. This duality may be seen explicitly
in Fig. 5. Specifically Fig. 5(a) depicts the variation of the
friction coefficient for values of δ around δR, and Fig. 5(b)
the corresponding temperatures. Interestingly, the different
couplings imply different rectification factors. If we set δC =
δD = −
/2, i.e., the cold bath is cooled to the Doppler limit,
δH can be chosen to be below or above δD for the same
temperature TH . The corresponding rectification factors for

FIG. 5. (a) Friction coefficient defined in Eq. (4). (b) Bath tem-
perature defined in Eq. (5). (c) Rectification as a function of the
temperature difference between the hot and cold baths TH − TC for
δH below (dashed black line) and above (solid blue line) the Doppler
limit, and δC = δD (Doppler limit). Parameters: ω1 = 2π × 1 MHz,
�ω = 0.15 ω1, l = 5.25 μm, a = 4.76 l .

the two choices are shown in Fig. 5(c), which demonstrates
that significant rectification can be achieved by choosing
δH < δD for temperature increments that are smaller than or
of the order of TC = TD, for example, R ≈ 20% for �T =
0.1TC , or R ≈ 60% for �T = TC . Finding good rectifica-
tion at low (relative) temperature differences is considered
to be one of the challenges in asymmetric heat transport
research [62].

D. Dependence with ion number

Keeping in mind that scaling the frequency-graded ion
chain to a large numbers of ions is not a realistic option in this
setting, it is nevertheless important to study the dependence
with ion number from small to moderate numbers. In Fig. 6 we
observe an overall trend in which the rectification decreases
with the number of ions in the chain (while it increases with
temperature bias �T in the studied range). This effect is easy
to understand, as increasing N while keeping the total vari-
ation of the trapping frequency �ω constant, the frequency
gradient decreases. This lowers the asymmetry in the chain
and the rectification factor. Oscillations with N superimposed
to the global trend are more visible at the smaller N values
giving an optimal N value at N = 19.

E. Graded versus segmented

We have also compared the performance of the graded
thermal diode and a segmented version in which the left half
of the chain is trapped with frequency ω1 and the right half
(including the middle ion) with ω1 + �ω. Even though the
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FIG. 6. Rectification factor for different bath temperature dif-
ferences �T as the number of ions is increased. The detuning of
the cold bath laser is set to the Doppler limit δC = −
/2. ω1 =
2π × 1 MHz, �ω = 0.15 ω1, l = 5.25 μm, a = 4.76 l .

optimal rectification in Fig. 7(a) for the segmented chain is
larger than for the graded chain, the fact that the fluxes are
generally much larger for the graded chain [see Fig. 7(b)]
makes the graded chain more interesting for applications.

FIG. 7. Comparison of graded and segmented chains with N =
15 24Mg+ ions. (a) Maximum of J→ and J← for the graded
and segmented chain for different frequency increments. (b) Rec-
tification factor: graded chain (dashed lines); segmented chain
(solid lines). Parameters: ω1 = 2π × 1 MHz, l = 5.25 μm, a =
4.76 l, δH = −0.02 
, and δC = −0.1 
.

V. SUMMARY AND DISCUSSION

In this article we have numerically demonstrated heat
rectification in a chain of ions trapped in individual microtraps
with graded frequencies, connected at both ends to thermal
baths created by optical molasses. An alternative to implement
a graded frequency profile in the laboratory could be combin-
ing a collective Paul trap for all the ions with on-site dipolar
laser forces [35,63–65].

A goal of this article is to connect two communities, ion
trappers and researchers on heat-rectification models. The
results found are encouraging and demonstrate the potential
of a trapped-ion platform to experimentally investigate heat
rectification schemes. Trapped ions are quite interesting to this
end because they are highly controllable and may easily adopt
several features to enhance rectification, such as the ones
explored here (long-range interactions and an asymmetrical
gradation), or others such as time-dependent forces [5,66],
or different nonlinearities in on-site forces. The limitations
and application domain should also be clear; the proposed
platform is circumscribed to cold temperatures of the order
of hundreds of μK to mK achieved by Doppler cooling. In
this sense it is not aimed at competing with (it is rather
complementary to) proposals for which experiments [11–14]
or simulations [62,67,68] demonstrate thermal rectification at
room temperature or for hundreds of K. Also, the number of
ions should realistically be kept small so the proposed ion
chain is not aimed at achieving a macroscopic diode length,
but at playing a role in thermal diode research and in the
context of ion-trapped based quantum technologies.

Methodologically, the calculation of the steady state has
been performed with an algebraic approach much faster than
the time-consuming integration and averaging over noise and
time of the dynamical equations. The algebraic approach
linearizes the forces around equilibrium positions, which, in
this system and for the realistic parameters considered, is well
justified and tested numerically. The results found provide
additional evidence that simple linear models may rectify heat
flow [21]. We underline that our linear model is, arguably,
even simpler than some linear “minimalist, toy models” in
Ref. [21] that showed rectification (our on-site forces are
already linear from the start, and the temperature dependence
of explicit model parameters is only in the coefficients of
the Langevin baths), with the important bonus of being also
realistic.

To shed some more light on the mechanism behind
the observed rectification we can analyze the local ther-
mal conductivities λ[x, T (x)] defined in a continuous model
by [23]

J = λ[x, T (x)]

∣∣∣∣dT (x)

dx

∣∣∣∣, (19)

where J is the stationary heat current and T (x) the local tem-
perature. [We use the modulus of the temperature derivative
for consistency with our (positive) definition of J .] In our
model we discretize the coordinate with the ion index and the
temperature derivative is discretized as

dTn

dx
= Tn+1 − Tn−1

xeq
n+1 − xeq

n−1

. (20)
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FIG. 8. Thermal conductivity through the chain for TL > TR

(empty squares), and TL < TR (filled triangles). ω1 = 2π × 1 MHz,
�ω = 0.15 ω1, l = 5.25 μm, a = 4.76 l, δH = −0.02 
, and δC =
−0.1 
.

Through integration, it is clear that when λ depends on
both temperature and position, rectification is possible. In
the continuous model the temperature increment between the

baths is

|TL − TR| =
∫ L

0

J

λ[x, T (x)]
dx (21)

so that the key for rectification is a different integral of
the inverse of the conductivities in the two scenarios (TL =
TH , TR = TC with conductivity λ→[x, T→(x)] along a local
temperature decreasing from the left or the reversed one,
TR = TH , TL = TC with conductivity λ←[x, T←(x)] along an
increasing local temperature. Particularly favorable for rec-
tification is the scenario where one of the lambdas is above
the other one for all x. Figure 8 shows that this is essen-
tially the case in our model, at least along the most relevant
part of the integral.
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