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Logical response induced by temperature asymmetry
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It is known that the reliable logical response can be extracted from a noisy bistable system at an intermediate
value of noise strength when two random or periodic, two-level, square waveform serve as the inputs. The
asymmetry of the potential has a very important role and dictates the type of logical operation, such as OR or
AND, exhibited by the system. Here we show that one can construct logic gates with symmetric bistable potential
if the two states of the double-well are thermalized with two different heat baths. It has been found that if a
given state is kept at a sufficiently low temperature compared to the other, the system shows one kind of logic
behavior (say, OR). Interestingly, the system’s response turns into the other kind (say, AND) if the temperature of
the initial low-temperature well is increased gradually and the quality of the logical response first improves and
then weakens after passing through a maximum at a particular value. However, the reliability of the second kind
of logical response (AND) is not as good as the first kind (OR) and depends on the amplitude of the inputs. Still one
can construct both kinds of logic gates with maximum reliability by properly choosing the initial low-temperature
well.

DOI: 10.1103/PhysRevE.100.032108

I. INTRODUCTION

Logic gates are the basis of digital computation [1]. During
the logic operation, typically two inputs are converted to a
single logical output by following Boolean algebra. For binary
logic operations the inputs and outputs possess two states, the
“on” state and the “off” state. Therefore, the logic gates are
generally used to construct electronic switches. However, the
idea of the input-output correspondence of logic operations
has been extended to several other areas, such as optical
[2], mechanical [3], physical [4], chemical [5–8], biological
[9–11], molecular [12,13], and several other domains [14–21].

The logic devices are reduced in size day by day and
the speed of the computation increases. In this scenario, the
interference of noise with the functioning of the machinery
becomes important [22]. Therefore, it is crucial to understand
the interplay between the signal, noise, and the dynamics
of the system. Much attention has been devoted to understand
the novel effect where noise acts constructively, by exploiting
the nonlinearity of the system to enhance the strength of
a periodic signal significantly. This is well-known as the
stochastic resonance [23–26] phenomenon. The presence of
noise in the system can also bring about another interesting
effect known as stochastic synchronization [27]. In general,
synchronization [28,29] occurs where nonlinear self-sustained
oscillators are either subject to periodic force or coupled with
each other. The effect is exhibited by locking or suppression
of the natural frequency by periodic forcing. Noise can induce
synchronizationlike phenomenon in stochastic bistable
systems which have no natural frequency. In case of this
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stochastic synchronization process, noise plays a role to
create a mean switching frequency between the metastable
states which serves as an analog of the natural frequency.
These resonance and synchronization phenomena improve the
quality of signal during information processing [30–33]. Here,
specifically, we focus on understanding the role of the noise
present in the system where input-output correspondence
can be interpreted as logical response. In spite of some
similarities regarding setting up the focus on to understand
the response of the system against external inputs in presence
of noise, there is a key difference between the present study
and the stochastic resonance or stochastic synchronization
phenomenon. In the latter cases the system is subject to
only one input signal, whereas in the former case system’s
feedback is studied against two input signals representing two
essential binary inputs.

For most of the cases logic operations take place in systems
of very small dimension and the role of thermal fluctuations
is inevitable. Therefore, to understand the basic idea of the
logical response in different systems, the output memory
states can be represented by the state of a Brownian par-
ticle in a bistable potential, the two wells representing the
binary memory states 0 and 1, in general. This is similar in
spirit of the consideration of the dynamics of a Brownian
particle in a bistable potential subject to periodic signal to
understand the process of stochastic resonance [24,26]. The
noise term present in the dynamical equation of the system
represents thermal fluctuations and the response of the system
towards external inputs is captured through the motion of the
Brownian particle in the double-well. As the particle jumps
between the two wells due to the effect of the noise and
the signal, the output is considered to be exemplified by the
position variable of the particle. It has been shown that the
input-output correlation shows logical behavior at an optimum
noise-level and the role of the asymmetry of the potential is
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very important to extract the desired kind of logic operation
from the system, considering a simple threshold detector [34].
In the above study, the dynamics is mimicked by the Brownian
motion in a double-well subject to two random inputs. Similar
effect has been extracted from system where no intrinsic force
field derived from potential is present and the nonlinearity
in the dynamics is encountered as an effect of the irregular
boundary of the system [35,36].

The idea of the enhancement of the logical response at
a given range of noise which is also known as “logical
stochastic resonance” [34–36] suggests that there are two con-
trolling factors which affect the quality and the type of logical
response obtained from a system against external stimuli.
One is the noise present in the system and the other is the
nonlinearity of the system. So far focus has been set on tuning
the noise level and adjusting the nonlinearity, more specifi-
cally the asymmetry of the system to improve the reliability
of the logical response [34–36]. Here, we address a crucial,
yet unexplored, issue concerned with the asymmetry of the
noise strength associated with the two states of the system.
In contrary to the calibration of the asymmetry of the system,
we concentrate on maintaining disparate noise-levels linked
to the two output memory states. Different noise strengths
alter the stability of the states of the system. Similar effect
in other contexts has been studied before, and is known as the
Landauer’s blow-torch effect [37–47]. Landauer’s blow-torch
effect is the phenomenon which describes that if a portion of
a double-well is heated, mass gets transferred from the hot
well to the cold well, i.e., temperature difference changes the
stability of the states. In the present paper, the idea is to see
whether the temperature-asymmetry-induced modified stabil-
ity of the two-states can make the system to behave as a logic
gate when it is subject to external inputs, and if it is possible,
then how to tune the thermalization of the two states to get
reliable and desired type of logical response from the system.
The aimed construction of the logic circuits would not only
answer important theoretical issues related to logical behavior
controlled by thermal asymmetry of two binary output states,
but might also be very useful for practical purposes. It could
be more feasible to control the thermalization of the two states
than to adjust the nonlinearity of the system.

The paper is organized as follows. In Sec. II the system and
the dynamics will be considered. The general rules of logical
input-output correspondence for the basic types of logic gates
will be discussed in Sec. III. The numerical results will be
analyzed in Sec. IV. The paper will be concluded in Sec. V.

II. THE SYSTEM AND THE DYNAMICS

To understand the underlying idea of the basic logic opera-
tions in small systems where the presence of noise is essential,
we consider a general model of a bistable potential where
the two wells represent two binary memory states 0 and 1.
We consider that an overdamped Brownian particle is moving
in this double-well potential. The system is subject to two
wave-trains of two-level, square-wave, random input signals.
Two signals are considered to represent two inputs which are
essential components of OR (NOR) or AND (NAND) logic opera-
tions. The input signals can also be periodic without the loss of
generality. The two levels of the signals represent two binary
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FIG. 1. The bistable system of the form V (x) = 1
4 x4 − 1

2 x2. The
noise level associated with the two wells are different. The scaled
diffusion coefficient for the left well is D1 and that for the right well
is D2.

inputs, 0 and 1; say the upper level represents the memory
state 1 and the lower level corresponds to the memory state 0.
The inputs can appear in four different combinations; (1,1),
(1,0), (0,1), and (0,0). Following the connection of neural
network [48], which is the computational circuit designed to
perform tasks by “learning” examples, we sum up the inputs
to a single input signal. So, (1,0) and (0,1) correspond to
the same effective input. Therefore, the resultant input is a
three-level, square-wave, random, or periodic drive. Due to
the application of the external inputs, the particle switches
its position between the two wells. So, the output against
the external input can be considered to be the state of the
particle in either of the two wells. We consider that the state of
the particle in the left well corresponds to the output memory
state 0 and that at the right well represents the output memory
state 1. In other words, the dynamics of the Brownian particle
in the above-mentioned set-up signifies the response of the
system towards external inputs, i.e., the output state of the
system. This definition of the output in terms of the position
of the particle has been considered before to capture the
response of the system against external bias in asymmetric
noisy bistable potential [34] and bilobal system [35].

The overdamped dynamics of the Brownian particle in
the bistable potential and subject to the external inputs is
represented by the following Langevin equation,

�
dx

dt
= −V ′(x) + I1(t ) + I2(t ) +

√
�kBT ξ (t ). (1)

In the overdamped limit, the inertial term of the Langevin
equation is neglected with respect to the damping force.
Therefore, mass does not appear directly in the equation of
motion of the overdamped Brownian particle. Here, x repre-
sents the position coordinate of the Brownian particle at time
t , −V ′(x) represents the force field derived from the bistable
potential V (x) which has the form, V (x) = a

4 x4 − b
2 x2 (Fig. 1).

� is the friction coefficient. ξ (t ) is the zero-mean, Gaussian,
white noise and obeys fluctuation-dissipation relation. The
properties of ξ (t ) are as follows:

〈ξ (t )〉 = 0,

〈ξ (t )ξ (t ′)〉 = 2δ(t − t ′). (2)
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I1 and I2 are the two random or periodic, two-level, square-
wave input signals.

In order to make the system and dynamics dimensionless,
we scale the position coordinate of the particle with a charac-
teristic length Lx. Lx corresponds to the distance between the
two minima of the double-well in absence of any external bias.
x̃ = x/Lx represents the dimensionless position coordinate.
The time t is divided by the factor τ = �L2

x/kBTR to get
the dimensionless time, t̃ = t/τ , here kB is the Boltzmann
constant and TR is a reference temperature. τ is actually twice
the time required for the Brownian particle to diffuse the
distance Lx. The forces have been made dimensionless by
scaling with the factor �Lx/τ . Equation (1) in dimensionless
form becomes,

dx̃

dt̃
= −ãx̃3 + b̃x̃ + Ĩ1(t̃ ) + Ĩ2(t̃ ) +

√
Dξ̃ (t̃ ). (3)

ã and b̃ are dimensionless coefficients which are obtained by

scaling a and b with proper factors (ã = a τL2
x

�
and b̃ = b τ

�
). Ĩ1

and Ĩ2 are the scaled inputs and have the form Ĩ1 = I1
τ

�Lx
and

Ĩ2 = I2
τ

�Lx
. ξ̃ (t̃ ) is the scaled noise term and D corresponds to

the scaled diffusion coefficient and has the form T/TR, where
TR is a reference temperature. For notational convenience
and brevity, we shall use untilde description to represent
dimensionless quantities from now on.

Now, for the present purpose, we consider that the two
wells are thermalized with two different heat baths; say the
left well is connected to a heat bath at temperature T1 and the
right well to the heat bath at temperature T2. The effective
diffusion coefficients for the left and the right well are D1

and D2, respectively. Therefore, the equation of motion for
the Brownian particle in the two wells differ in terms of the
effective noise and can be written as

dx

dt
= −ax3 + bx + I1(t ) + I2(t ) +

√
D(x)ξ (t ), (4)

where D(x) = D1 for x < 0 and D(x) = D2 for x > 0. It is
possible to maintain different temperatures for the two states
by changing the scaled diffusion coefficient, without affecting
damping, as the description of the dynamics has been properly
scaled with the damping coefficient.

III. RULES OF BASIC LOGIC OPERATIONS

Before going into the discussion of our results, here we
revisit the underlying principles of the basic types of the logic
operations. In digital computation, both inputs and outputs can
have two binary states, the “on” state and the “off” state or
the “true” state and the “false” state. Generally, the “on” state
or the “true” state is assigned to the logical value 1 and the
“off” state or the “false” state is assigned to the logical value
0. Two commonly used logic operations in logic circuits are
OR and AND or their negation operation NOR and NAND. For
these kinds of logic operations, there are at least two inputs
which are converted to a single logical output. In case of the
OR logic gate, at least one of the two inputs has to be “true”
to get a “true” output, whereas for an AND operation both of
the inputs have to be “true” to produce a “true” output signal.
The truth table for these logic operations has been presented
in Table I.

TABLE I. Truth table for basic logic operations.

Inputs (I1, I2) OR AND NOR NAND

(0,0) 0 0 1 1
(0,1), (1,0) 1 0 0 1
(1,1) 1 1 0 0

Now to understand whether the system under study consti-
tute a particular type of logic gate under a given condition, we
need to examine the input-output correspondence. It has been
shown previously [34] that logical response of a desired type
can be extracted from a system by controlling the nonlinearity
(i.e., the asymmetry of the bistable potential) and the noise-
level of the system.

Here, in the present work we ask an important question;
can we construct logic gates by controlling the asymmetry in
the thermalization of the two states of the double-well instead
of the asymmetry of the potential? Or in other words; is it pos-
sible to build up logic gates with symmetric bistable system by
maintaining noise asymmetry? The successful construction of
the logic gates by manipulating the noise levels of the two
output states, would establish a completely new perspective to
set up logic circuits.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Input-output correspondence

For numerical simulations, we consider Eq. (4). The values
of the parameter a and b have been taken to be equal to
1. The dynamics of the output [Eq. (4)] is solved using the
improved Euler algorithm or Heun’s method which is essen-
tially a second-order Runge-Kutta method [49]. This is the
technique to solve ordinary differential equations with noise
and requires two evaluations of the function at each step. The
time step has been taken to be equal to 10−3. The noise has
been generated using Box-Muller algorithm. The Langevin
dynamics is integrated with both random and periodic input
signals I1 and I2, separately. As we consider both I1(t ) and
I2(t ) can have two discrete levels Ia and −Ia corresponding
to the logical inputs 0 and 1 respectively, the combination
of the logical input (1,1) produces numerical input signal of
strength 2Ia, (0,1) and (1,0) combination corresponds to 0
and (0,0) combination refers to the −2Ia numerical value of
the total input signal. The solution for the position variable
x from Eq. (4) signifies the response of the system towards
the external stimuli, and is considered as the output signal
against the random or the periodic inputs. The output state
at the left well is assigned to the logical output value 0 (or
1) and that at the right well to the logical value 1 (or 0).
Due to the presence of the noise and external bias in the
system, the output state can only be in the left or the right
potential well. The system can not rest at the metastable state
even if one starts simulating the dynamics keeping the initial
condition fixed at the metastable state. To get the output state,
we solve the dynamics according to Eq. (4) and measure x.
Then depending upon the value of x, we determine whether
the output memory sate is at the left or the right well, or in
other words, whether the output corresponds to the logical
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FIG. 2. Input (line with filled circle)-output (line with filled
triangle) correspondence extracted from the system in absence of
noise. The input signals are periodic. The phases of the signals are
different in (a) and (b).

value 0 or 1. The unprocessed numerical value of the position
variable x plays the decisive role in case of the determination
of the output state.

To do a systematic examination of the input-output corre-
spondence, we start with a noiseless situation. It is observed
that the response of the system is not “logical” in absence of
noise. This has been shown in Figs. 2(a) and 2(b) for periodic
input signals. The observation is similar for random input
signals as well.

Next, we introduce noise in the system, however
maintaining asymmetry in the noise-level associated with the
two output memory states. We keep the temperature of one of
the wells fixed and vary temperature of the other well starting
from a very low value. Say, first we keep the temperature of
the left well fixed which results a constant diffusion coefficient

for the left well of value D1 = 0.1 and vary the temperature
of the right well with the resulting diffusion coefficient
varying within the range between D2 = 0.01 and 1.5. Now,
we scrutinize the time series of the input, I (t ) = I1(t ) + I2(t )
and the output x(t ). It is observed that OR (or NOR) logical
response can be extracted from the system when the diffusion
coefficient of the right well D2 is maintained at a very low
value. This is true when the system is subject to either random
or periodic input signals. It has been demonstrated for three
random trajectories in Figs. 3(a)–3(c) for three different val-
ues of Ia = 0.3, 0.5, and 1.0 at D2 = 0.01. The same has been
presented in Figs. 4(a)–4(c) with periodic input signals. With
increasing noise strength associated with the right well, the
reliability of the OR (or NOR) logical response starts to become
weaker and the system does not show definitive logic behavior
for a certain range of noise strength. However, the system’s
response comes within the reliability limit of an AND (or
NAND) gate at a much higher value of D2. This corresponds to
a D2 value which is higher compared to the value of D1 = 0.1.
However, the AND (or NAND) response is not as good as the OR

(or NOR) response. This fact has been illustrated in Figs. 3(d)–
3(f) for three single trajectories with Ia = 0.3, 0.5, and 1.0.
In this case, the input signals are random. The observations
are similar for periodic input signals and have been illustrated
in Figs. 4(d)–4(f). Both the logical response start to become
weaker if the noise strength D2 is further increased. Similarly,
one can construct AND (or NAND) gate first and then OR (or
NOR) gate by keeping D2 fixed at an intermediate value, say
0.1, and varying D1 within the range between 0.01 and 1.5.
This has been shown in Figs. 5(a)–5(f) and Figs. 4(a)–4(f) for
random and periodic input signals, respectively.
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FIG. 3. Input (line with filled circle)-output (solid line) correspondence at D2 = 0.01 for (a) Ia = 0.3, (b) Ia = 0.5 and (c) Ia = 1.0. The
system shows OR (or NOR) logical response for these three cases. Input-output correspondence at D2 = 0.6 for (d) Ia = 0.3, (e) Ia = 0.5, and
(f) Ia = 1.0. The system tends to show AND (or NAND) logical response for these last three cases. In all of these cases D1 has been kept fixed at
0.1 and the inputs are considered to be random signals.
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FIG. 4. Input (line with filled circle)-output (solid line) correspondence at D2 = 0.01 for (a) Ia = 0.3, (b) Ia = 0.5, and (c) Ia = 1.0. The
system shows OR (or NOR) logical response for these three cases. Input-output correspondence at D2 = 0.6 for (d) Ia = 0.3, (e) Ia = 0.5, and
(f) Ia = 1.0. The system tends to show AND (or NAND) logical response for these last three cases. In all of these cases D1 has been kept fixed at
0.1 and the inputs are considered to be periodic signals.

B. Quantifying the logical response

As noise is present in the system, we cannot comment
on the overall behavior of the system just by observing a
single trajectory. Therefore, to better understand the logi-
cal response of the system quantitatively, we introduce an

ensemble-averaged quantifier Plogic. Plogic is measured in the
following way. We define a sum which is initialized to value
zero before we start our observation for each trajectory. We
check the output corresponding to a given input at every time-
step for a given trajectory. If the input-output correspondence
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FIG. 5. Input (line with filled circle)-output (solid line) correspondence at D1 = 0.01 for (a) Ia = 0.3, (b) Ia = 0.5 and (c) Ia = 1.0. The
system shows AND (or NAND) logical response for these three cases. Input-output correspondence at D1 = 0.6 for (d) Ia = 0.3, (e) Ia = 0.5 and
(f) Ia = 1.0. The system tends to show OR (or NOR) logical response for these last three cases. In all of these cases D2 has been kept fixed at
0.1 and the inputs are considered to be random signals.
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FIG. 6. Input (line with filled circle)-output (solid line) correspondence at D1 = 0.01 for (a) Ia = 0.3, (b) Ia = 0.5 and (c) Ia = 1.0. The
system shows AND (or NAND) logical response for these three cases. Input-output correspondence at D1 = 0.6 for (d) Ia = 0.3, (e) Ia = 0.5,
and (f) Ia = 1.0. The system tends to show OR (or NOR) logical response for these last three cases. In all of these cases D2 has been kept fixed
at 0.1 and the inputs are considered to be periodic signal.

follows a given kind of logical response, then we add value
1 to the corresponding sum and normalize it at the end of the
time series. To mathematically represent the description, let us
define the normalized sum corresponding to the jth trajectory
as S j . S j can be expressed as

S j = 1

N

N∑

i=1

θ [ fout(x) − fin(I1, I2)]. (5)

Here, N is the total number of time steps for a single trajectory.
The function θ has value 1 if fout produces the desired value
corresponding to a particular type of logic operation for the
given set of inputs (I1, I2) and otherwise it has value equal to
0. fout is determined by observing the state of the Brownian
particle which is estimated from the position coordinate of the
particle:

fout(x) = 0, if x < 0,

= 1, if x > 0. (6)

Say, for example, if at an instant of time, the system is subject
to (0,1) input and the particle is at the right well, i.e., at the
output memory state 1, fin(I1, I2) and fout(x) relate to each
other by an OR logic operation and the function θ contributes
to the quantifying sum belonging to an OR logical response.
Now, we take an average over such sums over an ensemble of
size M and the average value corresponds to Plogic. Therefore,
Plogic can be expressed as

Plogic = 1

M

M∑

j=1

S j . (7)

Here, in our present study, Plogic has been averaged over
106 number of trajectories. We can say, this quantifier has

been defined based on a two-state approach as the state of
the Brownian particle in the double-well decides the output.
However, it is different from the techniques generally adopted
to observe synchronization phenomenon [50,51] where aver-
age Kramer’s rate or signal to noise ratio are calculated to
represent the output. In our case, the quantifier Plogic that is
employed as a measure of the output response has a definition
that depends simply on examining the state of the system
towards a given input. This consideration works for both
random and periodic signals.

As we can see from the time-series of the input-output
correspondence of the system [Figs. 3(a)–3(f), Figs. 4(a)–4(f),
Figs. 5(a)–5(f), and Figs. 6(a)–6(f)], its response to the inputs
is instantaneous. Therefore, there is not much effect of the
consideration of the waiting time on the measured quantifier
and we have not taken waiting time of the response into
account while measuring Plogic. If the system obeys the basic
rules of a certain logic operation at every instant of time for
all the trajectories, then Plogic has value equal to 1. If the
value of Plogic is close to 1, then we can say that the system
has formed a reliable logic gate. It has been maintained that
the input states (0,0), (0,1), (1,0), and (1,1) occur in equal
proportion for a given ensemble, so that there appears no bias
from the inputs while measuring Plogic. We have presented
the variation of Plogic against D2 and D1 for three different
amplitudes of the input signal Ia in Figs. 7(a) and 7(b). In
the first case D1 is kept constant at 0.1 and D2 is varied.
It is observed that at very low strength of noise D2, POR (or
PNOR) has value almost equal to 1, i.e., OR (or NOR) logic gate
is formed with maximum reliability. However, this response
becomes weaker with increasing value of D2. Interestingly,
the AND (or NAND) response of the system starts to improve
with growing D2. POR (or PNOR) and PAND (or PNAND) cross

032108-6



LOGICAL RESPONSE INDUCED BY TEMPERATURE … PHYSICAL REVIEW E 100, 032108 (2019)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P l
og
ic

D2

OR, Ia 1.0
AND, Ia 1.0
OR, Ia 0.5
AND, Ia 0.5
OR, Ia 0.3
AND, Ia 0.3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
P l
og
ic

D1

OR, Ia 1.0
AND, Ia 1.0
OR, Ia 0.5
AND, Ia 0.5
OR, Ia 0.3
AND, Ia 0.3

(a) (b)

FIG. 7. Variation of Plogic against (a) D2 when D1 is kept fixed
and (b) D1 when D2 is kept constant for three different amplitudes of
external drive. The system is subject to random input signals.

each other when the values of D1 and D2 become equal.
The AND (or NAND) logical behavior becomes reliable (within
<5% error) at certain strength of noise D2 and starts to
become weaker when D2 is further increased. Therefore, this
second type of logical response shows a maximum at an
intermediate strength of noise D2. This observation is similar
to the “logical stochastic resonance” phenomenon [16]. The
point to remember here is that the position of the maximum of
PAND (or PNAND) and the range through which it remains reliable
depends on the amplitude of the external input signifying
nonlinear response of the system. Similarly, in the second
case we vary D1 keeping D2 fixed and first construct AND

(or NAND) and then OR (or NOR) logic gate. In the above
cases the system is considered to be subject to random input
signals. We have performed similar calculations with periodic
input signals and retrieved the same effect. We compare the
variations of Plogic against the noise strengths for random and
periodic input signals in Figs. 8(a) and 8(b) for Ia = 0.5.
The analysis suggests that Plogic is quantitatively identical
for random and periodic input signals, within the range of
the noise strength where the system produces reliable logical
response. Therefore, we can say, jittering effect does not affect
the numerical simulations when we consider random inputs.
This is because the system’s response is almost instantaneous
to the inputs that can be seen from the time series of the
input-output correspondence.

C. The role of thermal asymmetry

To explain the observed behavior of the system, we
analyze its response towards individual input sets. In case of
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FIG. 8. Variation of Plogic against (a) D2 when D1 is kept fixed
and (b) D1 when D2 is kept constant, at Ia = 0.5, for random and
periodic input signals.

the construction of the logic gate with bistable system, the
Brownian particle experiences directional force for the input
sets (0,0) and (1,1) because they correspond to −2Ia and 2Ia

numerical value of the external driving. The negative value of
the external force drives the particle to the left well, i.e., 0 (or
1) output state and due to the positive force, the particle moves
to the right well, i.e., 1 (or 0) output state. The output for the
(0,0) and the (1,1) state for both the OR (or NOR) and AND (or
NAND) gate are the same and the external resultant directional
force makes the system to satisfy correct logical input-output
correspondence. The combination of the inputs (0,1) and (1,0)
gives rise to the zero value of the resultant input. In this situa-
tion the asymmetry of the potential generally decides whether
the left well or the right well would be occupied. If the right
well is deeper than the left well, then OR (or NOR) logic gate
is formed and in the reverse situation AND (or NAND) gate is
formed. Here, we consider that the potential of the system
is symmetric and introduce asymmetry in the noise level of
the two output states. This difference in the thermalization
of the two states now dictates which well would be occupied
in the zero-external drive situation. If the temperature of the
right well is very low as compared to the left well, then the
particle occupies the right well for most of the realizations
because the low temperature well freezes particle’s motion.
This results in an overall OR (or NOR) response of the system
towards the external stimuli. Consequently, in the opposite
situation, i.e., when the temperature of the left potential well
is maintained at a very low value as compared to the right
potential well, the system forms an AND (or NAND) gate with
very high degree of logical reliability.

If we concentrate on the first case, i.e., when we keep D1

fixed and vary D2, then the system’s OR (or NOR) response
starts to become weaker as D2 deviates from very small value.
This is because now a higher proportion of trajectories would
end up in the left potential well in the zero force situation, due
to the increased thermal energy of the particle, by making OR

(or NOR) response of the system weaker. However, the AND (or
NAND) response of the system starts to become stronger with
increasing noise strength as the occupancy level of the left
well for the zero-external force case increases. The system
starts to produce reliable AND (or NAND) response when
D2/D1 becomes greater than 1 and reaches a certain ratio
corresponding to a given Ia. The constructive role of noise
remains effective over a range of D2 value and then becomes
weaker which results in a maximum of PAND when plotted
against D2. Similarly, in the second case, one can construct
an OR (or NOR) logic gate at an intermediate value of D1.

One important fact to mention here is that the quantifier
to measure the logical response for a single trajectory is a
dynamical quantity. However, when we take an ensemble
average of the quantifier and calculate Plogic it becomes a
stationary measure. The stationary state distribution of the
two wells gets modified due to the difference in diffusion
coefficient of the two wells which is reflected in the value of
Plogic and this gives rise to the observed phenomena.

The interesting point to note here is that by tuning the noise
level, we are able to form basic logic gates at two different
range of temperatures and there occurs a transition in the
logical behavior depending upon the ratio of the diffusion
coefficient associated with the two output states.
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V. CONCLUSIONS

To summarize, we generalize the dynamics of the output
of logic gates of small scale according to the dynamics of a
Brownian particle in a bistable potential subject to external
inputs. The state of the particle in either of the two wells rep-
resents the binary logical output. In general, the asymmetry of
the bistable potential plays the decisive role for the formation
of a logic gate of a given type. We focus on a basic issue
of understanding the construction of logic gates by keeping
the symmetry of the potential intact. We suggest that one can

construct logic gates with a symmetric bistable system by
thermalizing the two states at two different temperatures. It
has been shown that the logic gates of desired type can be
constructed by properly choosing the noise levels associated
with the two output states. The same system forms different
kinds of logic gates depending upon the maintained ratio of
the effective diffusion coefficients linked to the two output
states. The proposed criteria of the construction of logic
gates can be verified experimentally and the present study
is supposed to have important practical applications in the
build-up of logic circuits of a desired type.
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