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We study the localization properties, energy spectra, and coin-position entanglement of the aperiodic
discrete-time quantum walks. The aperiodicity is described by spatially dependent quantum coins distributed
on the lattice, whose distribution is neither periodic (Bloch-like) nor random (Anderson-like). Within transport
properties we identified delocalized and localized quantum walks mediated by a proper adjusting of aperiodic
parameter. Both scenarios are studied by exploring typical quantities (inverse participation ratio, survival
probability, and wave packet width), as well as the energy spectra of an associated effective Hamiltonian. By
using the energy spectra analysis, we show that the early stage the inhomogeneity leads to a vanishing gap
between two main bands, which justifies the predominantly delocalized character observed for ν < 0.5. With
increase of ν arise gaps and flat bands on the energy spectra, which corroborates the suppression of transport
detected for ν > 0.5. For ν high enough, we observe an energy spectra, which resembles that described by
the one-dimensional Anderson model. Within coin-position entanglement, we show many settings in which an
enhancement in the ability to entangle is observed. This behavior brings new information about the role played
by aperiodicity on the coin-position entanglement for static inhomogeneous systems, reported before as almost
always reducing the entanglement when comparing with the homogeneous case. We extend the analysis in order
to show that systems with static inhomogeneity are able to exhibit asymptotic limit of entanglement.
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I. INTRODUCTION

With different transport properties to its classical analog,
quantum walks have been proven to be a versatile and highly
controllable platform to describe quantum systems [1–18]
and quantum algorithms [19–24]. Besides the presence in
different branches of science such as ferromagnetic films [3],
bacteria in biological systems [4], quantum dots [5], and
photosynthetic systems [7], quantum walks have also been the
central subject of a wide range of experimental studies, either
using nuclear magnetic resonance [11,12], trapped atoms
[13,14], linear optics [15,16], or integrated photonics circuits
[17,18].

Categorized in two classes, the evolution of the walker
is determined completely by a unitary time evolution. In
continuous-time quantum walks the dynamics is described
by a Hamiltonian, which defines a progress on continuous
time and discrete space, without coinlike degrees of freedom
[13,19]. In discrete-time quantum walks the walker prop-
agates in discrete steps determined by a dynamic internal
degree of freedom, which plays the role of a quantum coin
[1,9,11]. The generating Hamiltonian is not needed, although
it can be related to the procedure of integrating a certain
Hamiltonian over a finite time [9,11].

Restricting to disordered systems, continuous-time quan-
tum walks have been studied for years, presenting today
a well-established theoretical framework. The main charac-
teristic is the localization effect, where studies about the
role played by system dimensionality [25–27], correlations
[28–32], and electron-electron interaction [33–36], for exam-
ple, were shown both in theoretical and experimental scope.

More recently proposed and with more degrees of freedom,
disordered discrete quantum walks need a better understand-
ing, making it the reason of many studies on the theme. In this
regime, the disorder may be associated to the quantum coin or
the displacement operator [15,18,37–54].

In general terms, the disorder (inhomogeneity) induces de-
viations from quadratic spreading of the wave packet, includ-
ing the emergence of Anderson localization. For a dynamic
disorder, the quantum coin is the same at all lattice sites but
changes at each time step [37–44]. In this context, the analysis
of the time evolution of a quantum walker in the presence
of unitary noise in the Hadamard operator shows that the
standard deviation of the spatial distribution acquires a diffu-
sive behavior for long times, like the classical random walk
[37]. For quantum coins arranged in aperiodic sequences,
such as Fibonacci [39] and Thue-Morse [43], the transport
properties of a quantum walker in a one-dimensional (1D)
chain reveals a superdiffusive wave packet spreading. For
Fibonacci distributions, this behavior has been connected with
the power-law decay of the time-correlation function of the
chaotic trace map [41]. By using a time dependence for the
coin operator, different types of asymptotic behaviors (such
as subdiffusive and localized) for the wave-function spreading
were reported [44].

A localized behavior has also been described for systems
with spatial inhomogeneity, either for different coins ran-
domly distributed along the lattice sites but fixed during the
time evolution [15,18,45,46,52], as well as for systems with
position-dependent phase defects [47–49,54]. Both descrip-
tions have experimental studies by using optical setups, which
demonstrates the relevance of such structures for the advance
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of quantum information science [15,18,49]. The absence of
localization was described for different quasiperiodic distri-
butions in the inhomogeneity of the coin operators [43]. By
using the distribution of two coins on the lattice, Fibonacci
and the Thue-Morse sequences induce a superdiffusive be-
havior for the walker whereas the Rudin-Shapiro sequence
shows a subdiffusive one [43]. A fractal nature was reported
for quasiperiodic distributions in which the period of coin
operators is distributed analogous to the Aubry-André model.
The localized behavior described for the inverse period of
coins is an irrational number [53].

Changes in the wave packet spreading has also been re-
ported for systems whose disorder (inhomogeneity) is related
to the step lengths at every step [55–57]. With nonperfect
multiport connectivity, where there is small probability of
the multiports to connect to another multiport at a fixed
distance, a transition from the case of ballistic diffusion (for
unperturbed quantum walks) for sub-ballistic one has been re-
ported [55]. By including a non-Markovianity on the quantum
walks in a one-dimensional lattice, Molfetta et al. describes
a hyperballistic diffusion, with diffusion exponent equal to 3
[56].

It is observed that many studies focus on associating the
inhomogeneity implementation to transport properties of the
walker. However, the coin-position entanglement has relevant
aspects in quantum computation protocols and quantum in-
formation [58]. Contrary to the homogeneous quantum walk,
systems with dynamical inhomogeneity create maximally
coin-position entangled states in the asymptotic limit, inde-
pendent of the initial condition of the walker [59]. On the other
hand, the static inhomogeneity is almost always worse than
the homogeneous quantum walk in terms of entanglement
generation [45]. In addition, an absence of asymptotic limit
for such systems was reported [45]. The decrease (enhance-
ment) of entanglement due to static (dynamic) inhomogeneity
has also been described for 1D systems with on-site phase
disorder [47]. The effect of delocalization of the initial state
shows a relation between the initial angles of the spin ampli-
tudes, which always leads to the maximal entanglement for
Hadamard and Fourier walks [60].

Faced with the above descriptions, we study space-
inhomogeneous discrete quantum walks, which exhibit tran-
sitions between localized and delocalized regimes. Here, the
inhomogeneity is described by a deterministic distribution
of quantum coins along the lattice, whose characteristic is
neither periodic (Bloch-like) nor random (Anderson-like).
The model proposed here may be seen as a generalization
of the model investigated in Ref. [53], whose description for
the coin operator can be restored by a proper adjustment
of the aperiodicity presented here. Transport properties are
studied by exploring typical quantities (inverse participation
ratio and survival probability), as well as the energy spectra
of an associated effective Hamiltonian. Localized and delo-
calized quantum walks are mapped, which seems useful to
control quantum information and quantum processing. We
also study the coin-position entanglement. The role played
by correlations on the coin-position entanglement, as well
as the ability of systems with static inhomogeneity to create
maximally entangled states or have an asymptotic limit were
issues explored in our study.

II. MODEL

We consider a quantum walker moving in an infinite
1D lattice of interconnected sites. The walker consists of a
qubit (two-state quantum system) with the internal degree of
freedom (e.g., spin [1] or polarization [15]). The quantum
walker state |ψ〉 belongs to a Hilbert space H = Hc ⊗ Hp,
where Hc is a complex vector space of dimension 2 associated
with the internal degree of freedom of the qubit, and Hp

denotes a countable infinite-dimensional space associated to
site positions. Here, the internal degree of freedom of the
walker (coin) is spanned by the orthonormal basis {| ↑〉, | ↓〉},
while the position space is spanned by the orthonormal basis
{|n〉: n ∈ Z}. Thus, a general initial state (t = 0) can be written
as

|ψ (0)〉 =
∑

n

[a(n, 0)| ↑〉 ⊗ |n〉 + b(n, 0)| ↓〉 ⊗ |n〉], (1)

with
∑

n[|a(n, 0)|2 + |b(n, 0)|2] = 1.
The evolution of the system depends on both internal and

spatial degree of freedom. We start the quantum walker in
the initial position and act upon it with a unitary operator Ĉ,
well known as quantum coin or quantum gate, followed by a
conditional displacement operation Ŝ at each time step. That
is, the position of a particle evolves according to its internal
coin state. Thus, the state of the walker after t steps is given by
applying the unitary transformation |ψ (t )〉 = Û t |ψ (0)〉 to the
initial state, where Û t = ∏t

i=1 Ŝ · (Ĉi ⊗ Ip). The displacement
operator has the form

Ŝ =
∑

n

(| ↑〉〈↑ | ⊗ |n + 1〉〈n| + | ↓〉〈↓ | ⊗ |n − 1〉〈n|), (2)

while Ip is the identity operator defined over Hp.
Here, we introduce a spatial inhomogeneity in the coin

operators given by an aperiodic distribution

Ĉn = cos(θ0nν )| ↑〉〈↑ | + sin(θ0nν )| ↑〉〈↓ |
+ sin(θ0nν )| ↓〉〈↑ | − cos(θ0nν )| ↓〉〈↓ |. (3)

Thus, the coin operators depend on their positions n and ν is a
tunable parameter that controls the aperiodicity degree on the
rotation angle θ0 = [0, 2π ]. Taking ν as positive, the smaller
values describe a very slow spatial inhomogeneity on the coin
operators. However, this spatial inhomogeneity increases as
ν grows, so as to behave as pseudorandom distribution for
high enough ν. Thus, the model proposed here may be seen
as a generalization of the model investigated in Ref. [53],
where its description for the coin operator can be restored
by setting ν = 1. On the other hand, by setting ν = 0, we
recover the homogeneous quantum walk. Thus, the ν > 0
parameter induces a static inhomogeneity on the system with
position-dependent quantum coin operations fixed during the
time evolution, i.e., Ĉ(θ0, n, t ) = Ĉ(θ0, n) = Ĉn(θ0).

III. RESULTS AND DISCUSSION

A. Transport properties and energy spectra

Initially, we investigate the influence of aperiodicity on
the transport features of the walker. Thus, we start follow-
ing the time evolution of the probability density distribu-
tion for a walker whose initial state is |ψ (0)〉 = | ↑〉 ⊗ |n0〉,
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FIG. 1. Time evolution of the density of probability in position
space of a quantum walker with initial state |ψ (0)〉 = | ↑〉 ⊗ |40〉
and ruled by (a) θ0 = π/4 and ν = 0.00; (b) θ0 = π/4 and ν = 1.00;
(c) θ0 = π/2 and ν = 0.00; (d) θ0 = π/2 and ν = 0.05. Specific spa-
tial inhomogeneities on well-known quantum coins (Hadamard and
Pauli-X) induce opposite dynamics those shown by homogeneous
systems.

with n0 = 40. In order to better understand the influ-
ence of aperiodic spatial inhomogeneity on the quantum
walk, we choose two well-known quantum coins as refer-
ence: Hadamard, θ0 = π/4; and Pauli-X, θ0 = π/2. While
Hadamard coins uniformly distributed on the lattice sites
induce a spread of the probability distribution [Fig. 1(a)],
a spatial inhomogeneity with ν = 1.0 gives rise to local-
ized behavior whose probability distribution remains re-
stricted around the initial sites [Fig. 1(b)]. On the other
hand, whereas Pauli-X coins bring a localized behav-
ior whose probability distribution stays oscillating around
the initial site [Fig. 1(c)], a spatial inhomogeneity with
ν = 0.05 leads to a delocalized distribution [Fig. 1(d)].

The above dynamics can be better characterized by com-
puting the survival probability

SP(t) =
∑

α=↑,↓
|〈n| ⊗ 〈α|ψ (t )〉|2|n=n0 (4)

and the inverse participation ratio

IPR(t) = 1∑
n |ψn(t )|4 . (5)

The first describes the probability that the walker returns
to the initial position at time t , whereas IPR(t) gives the
estimate number of sites over which the wave packet is
spread at time t . Thus, in the long-time regime the survival
probability saturates at a finite value for a localized wave
function, while SP(t) → 0 means that the walker escapes
from its initial location. On the other hand, in the long-time
regime the IPR(t) ∝ N0 indicates that the walker remains
localized, whereas IPR(t) ∝ N corresponds to the regime
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FIG. 2. Time evolution of (top) survival probability (SP) and
(bottom) the inverse participation ratio (IPR) for same configurations
of θ0 and ν used in Fig. 1: (a)–(c) θ0 = π/4 with ν = 0.00 and
ν = 1.00; (b)–(d) θ0 = π/2 with ν = 0.00 and ν = 0.05. Both quan-
tities ratify the transitions between delocalized and strong-localized
regimes ruled by aperiodic inhomogeneity.

where the wave function is distributed over the lattice. With
this analysis in mind, we computed both quantities for the
same configurations used in Fig. 1 and we observe the re-
sults reinforcing the previous description (see Fig. 2). For
systems ruled by Hadamard coins homogeneously distributed
on the lattice the SP(t) → 0 and IPR(t) grows linearly as time
evolves. A localized behavior, where the wave function is
split into equiprobable portions and grouped into its initial
position, describes the dynamics for an inhomogeneous case
of θ0 = π/4 and ν = 1.00. For homogenous systems of Pauli-
X coins a bit-flip dynamics is well characterized, with SP(t)
successively alternating between 0 and 1 and IPR(t) remaining
fixed in 1. When we tune ν = 0.05 for θ0 = π/2 we observe
SP(t) → 0 and IPR(t) growing linearly as time evolves.

To understand the origin of changes in the mobility of the
walker we introduce an associated effective Hamiltonian and
explore the nature of its eigenvalues. As described above,
the dynamics of the quantum walker is given by a unitary
time-step operator, which consists of a change of internal
degree of freedom (coin flip) followed by a coin-dependent
displacement operation:

|ψ (t + 1)〉 = Û |ψ (t )〉. (6)

Since Û is time independent, by choosing the time unit as
the period of the time evolution and the unit of position as
the period of the lattice, Û can be interpreted as a Floquet
operator [46,51] associated with a time-independent effective
Hamiltonian (Heff ) defined as

Û = e−iHeff . (7)
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FIG. 3. Energy spectrum Ek = −ilog(λk ), with λk being the
eigenvalues of the operator Û for same configurations used in Fig. 1.
Allied to the presence of the internal degree of freedom, both systems
exhibit two main bands in absence of inhomogeneity: Hadamard
coins show a continuous energy spectrum inside the two main bands,
while Pauli-X coins show a flat degenerate energy spectrum into both
bands. The inhomogeneity for θ0 = π/4 opens new gaps in the main
energy bands, besides imposing a degeneracy on them. On the other
hand, the inhomogeneity breaks the high degeneracy level within two
sub-bands for θ0 = π/2.

Thus, by using the same methodology employed in
Ref. [43], we compute Ek = −i log(λk ), where λk are the
eigenvalues of the operator Û . In Fig. 3 we explore the energy
spectra of same configurations shown in previous figures.
In general terms, homogeneous systems exhibit two main
bands, which is related to the presence of the internal degree
of freedom (coin). For homogeneous systems composed by
Hadamard coins (θ0 = π/4) we observe two main bands,
gapped away from each other, but with a continuous energy
spectrum inside them. On the other hand, Pauli-X coins
(θ0 = π/2) uniformly distributed give a flat degenerate energy
spectrum for both bands, so that the linear combination of
eigenstates results in the well-known bit-flip dynamics [58]
exhibited in Fig. 1(c) and Figs. 2(b), 2(d). Both descriptions
are in agreement with previous literature [43,46]. In Fig. 3(b)
we observe that the spatial inhomogeneity of ν = 1.0 for
θ0 = π/4 induces the emergence of new gaps within the main
energy bands, giving rise new sub-bands. The eigenstates are
then still compactly localized inside these sub-bands, so as
to exhibit a degenerate aspect. Thus, a linear combination of
eigenstates results in a localized dynamics restricted to a few
sites. On the other hand, the spatial inhomogeneity of ν =
0.05 for θ0 = π/2 breaks the high degeneracy within main
bands. Thus, the inhomogeneity of θ0 induces an enlargement
of bands and a decrease of gap between them. These aspects
favor the spread of wave function along the lattice, as seen
in Fig. 1(d) and Figs. 2(b), 2(d). The spatial inhomogeneity
altering the dispersion and gaps of energy corroborates the
association of θ0 to the kinetic energy made in Ref. [46].
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FIG. 4. Energy spectrum Ek = −ilog(λk ), with λk being the
eigenvalues of the operator Û for θ0 = π/4 (blue) and θ0 = π/2
(red). Top: ν = 0.2, 0.3, 0.4; second group: ν = 0.8, 0.9, 1.0; third
group: ν = 1.3, 1.4, 1.5, and bottom: ν = 2.0, 3.0, 4.0. In the early
stage the inhomogeneity leads to vanishing gap between two main
bands. With increase of ν it is observed the presence of gaps and
flat-bands structures. The adjustment of ν > 1 provides an irregular
spectrum which resembles that described by 1D Anderson model,
except when the translational symmetry on the inhomogeneity is
recovered (ν ∈ Z∗).

A more extensive description about the relation between
the energy spectrum and dynamics behavior of inhomoge-
neous quantum walks is shown Fig. 4, where we compute
Ek for both coins (θ0 = π/2, π/4) for different settings of
ν. In the early stage the inhomogeneity induces the width of
each band to its maximal value, which leads to a vanishing
gap, i.e. a gapless spectrum. This nature recalls the spectrum
obtained from homogeneous Pauli-Z coins (θ0 = 0), whose
characteristic mobility is well known [58]. With increase of ν

arises new gaps, sub-bands, and degenerate eigenstates. The
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FIG. 5. Long-time average of the survival probability (〈SP(t∞)〉)
and the inverse participation ratio (〈IPR(t∞)〉) versus ν, for θ0 =
π/2, π/4. We display for 〈SP(t∞)〉 the average probability of the
walker returns to the initial (bottom/black) and around the initial
position (top/red), see description in text. Delocalized (localized)
quantum walks are predominant for ν < 0.5 (ν > 0.5), consistent
with energy spectra analysis. The translational symmetry on the
inhomogeneity (ν ∈ Z∗) favors the spread of wave function along
the lattice.

emergence of flat-band states can be understood as states
located within a small part of the lattice. With the energy
spectrum independent of momentum, the kinetic energy is
quenched, the group velocity vanishes, and the suppression of
transport is observed. For ν high enough the energy spectra,
which resemble that described by the 1D Anderson model,
are observed. This analysis is consistent with the arrangement
of the quantum coins along the lattice, whose slowly varying
distribution exhibited for small ν becomes randomlike as ν

increases. However, this latter aspect is absent for ν ∈ Z∗
(see bottom panels). With the translational symmetry on the
inhomogeneity some aspects inherent to the original coin are
recovered, which can favor the quantum transport.

The above analysis suggests the ν parameter as able to tune
delocalized and localized quantum walks, such that the de-
localized character is predominant in the low-inhomogeneity
regime. In order to confirm, we explore in Fig. 5 the long-time
average of survival probability [〈SP(t∞)〉] and the inverse par-
ticipation ratio [〈IPR(t∞)〉] for both coins (θ0 = π/2, π/4),
by ranging ν from 0–4. As before, we follow considering an
asymmetric initial state |ψ (0)〉 = | ↑〉 ⊗ |n0〉, with n0 = 500.
Besides the average probability of the walker returns to the
initial position [n = n0 in Eq. (4)] after a long time (bottom,
black), we show in Figs. 5(a), 5(b) the average probability
of finding the walker around [n = n0, n0 ± 1 in Eq. (4)] the
initial position (top, red). The behavior described by the
two coins is quite similar for small ν, where delocalized
quantum walks are well described for both coins in low-
inhomogeneity regime (ν < 0.5). Besides 〈SP(t∞)〉 → 0, we
observe 〈IPR(t∞)〉 predominantly high. Some configurations

with low 〈IPR(t∞)〉 are related to delocalized quantum walks
whose probability density is restricted to few sites, similar
to the walker subjected to homogeneously distributed Pauli-Z
coins [38,58]. The localized nature is predominant for higher
ν values. Here, a peculiarity inherent to Pauli-X coin is its lo-
calized nature for ν = 0. Thus, the Pauli-X coin is forwarded
to a delocalized state to small value of ν, but returns again to a
localized state as ν increases. By using a connection between
discrete and continuous quantum walks [61], we interpret
this aperiodic inhomogeneity (within a low ν regime) as a
potential difference between neighboring sites proportional
to nν−1, which vanishes in the thermodynamic limit and
favors a broadening of walker. For abrupt variations on the
distribution of quantum coins the internal correlations become
effectively short ranged, promoting destructive interferences
and inducing a localized quantum walk. In good agreement
with the Fig. 4, this premise is reinforced by delocalization
of wave function around ν ∈ Z∗, when inhomogeneity on the
quantum coins distribution recovers a translational symmetry.
However, the spatial dependence imposes intrinsic correla-
tions on the interference terms of the quantum coins, making
the translational symmetry not always predominant over the
delocalization criterion.

A more extensive description about the dynamics behavior
of quantum walker is shown in Fig. 6, where we display
diagrams for long-time average of the survival probability
[〈SP(t∞)〉] and the inverse participation ratio [〈IPR(t∞)〉] ver-
sus ν versus θ0. Here, we consider the maximal IPR between
collected data in order to plot on the vertical axis a normal-
ized 〈IPR(t∞)〉. The periodic dependence exhibited for ν = 0
(disorder-free) describes the well-known behavior for differ-
ent quantum coins: For Pauli-Z coins the quantum walker will
move away from initial position and the wave function will
only be seen at the position +t [for |ψ (0)〉 = | ↑〉 ⊗ |n0〉] or
−t [for |ψ (0)〉 = | ↓〉 ⊗ |n0〉] with nonzero probability. On
the other hand, for Pauli-X coins the quantum walker will
remain localized around initial position for all time t . By in-
cluding a spatial dependence (ν �= 0), the previous description
is changed. As previously suggested, delocalized (localized)
quantum walks are predominant for ν < 0.5 (ν > 0.5). The
translational symmetry on the inhomogeneity, recovered by
ν ∈ Z∗, appear to be a relevant aspect about the spread of wave
function along the lattice.

As previously reported, the disorder and/or inhomogene-
ity induces deviations from ballistic spreading of the wave
packet. Thus, in order to offer a complementary analysis, we
explore the wave packet spreading by using

σ (t ) =
√∑

n

[n − 〈n(t )〉]2|ψn(t )|2, (8)

where 〈n(t )〉 = ∑
n n|ψn(t )2| is the walker’s mean position.

After a long time σ (t ) ∝ t1 describes a ballistic dynamics with
constant velocity, while a σ (t ) that remains constant reports a
localized behavior. Thus, by computing the long-time average
of wave packet width for θ0 = π/4, we show in Fig. 7 the
size dependence of the wave packet width for chain sizes
ranging from N = 4000 to N = 64000 and some values of
ν. As expected, the fully delocalized regime for Hadamard
coins (θ0 = π/4 with ν = 0.0) results in a 〈σ (t∞)〉 ∝ N .

032106-5



A. R. C. BUARQUE AND W. S. DIAS PHYSICAL REVIEW E 100, 032106 (2019)

FIG. 6. Diagram of long-time average of the survival probability
(〈SP(t∞)〉) and the inverse participation ratio (〈IPR(t∞)〉) versus ν

versus θ0. Delocalized quantum walks are predominant for ν < 0.5,
while the localized nature is predominant with increasing ν, except
for ν ∈ Z∗. The latter, which may be associated with the translational
symmetry of inhomogeneity, appear to be a relevant aspect about the
spread of wave function along the lattice.

However, as we increase ν a crossover is observed from
the ballistic profile to the size-independent (ν = 1.0, 2.50),
which corroborates the previous results. In the intermediate
regime the wave packet width displays an effective sublinear
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FIG. 7. Long-time average of the standard deviation of the spa-
tial distribution [〈σ (t∞)〉] versus N for some representative values of
ν. The crossover from the ballistic scaling to the size-independent
regime can be effectively described by a sub-ballistic behavior.

finite-size scaling. We emphasize that 〈σ (t∞)〉 does not dis-
play a continuously smooth variation as ν increases. As
previously shown, with the ν increasing we identified some
configurations whose probability density is restricted to few
sites, but with the walker developing an oriented quantum
walk (similar to the walker subjected to homogeneously dis-
tributed Pauli-Z coins). We add that, in general terms, the
behavior found for θ0 = π/4 are applicable for other values
of θ0, which corroborates the great similarities between the
data of θ0 = π/4 and θ0 = π/2 previously displayed.

B. Entanglement properties

By considering the changes on the spreading behavior of
the quantum walker described previously, we investigate the
entanglement between the coin state and the particle position.
In this scenario, where the evolution of the whole system is
given by a unitary transformation in which the coin operation
at each step directly controls the interference pattern of the
quantum walker, we compute the von Neumann entropy of
the reduced density matrix given by [45,47,58–60]

SE (t ) = −Tr[ρc(t ) log2 ρc(t )], (9)

where ρc is the reduced density matrix obtained by tracing
over the position degree of freedom the full density matrix
ρ = |ψ (t )〉〈ψ (t )| of the quantum walk system. Within the
most general quantum state at some arbitrary step t

|ψ (t )〉 =
∑

n

[an(t )| ↑〉 + bn(t )| ↓〉] ⊗ |n〉, (10)

the reduced density matrix is given by

ρc(t ) =
∑

〈m|ρ|m〉 =
∑

m

[
α(t ) γ (t )
γ ∗(t ) β(t )

]
, (11)

with α(t ) = ∑
m |am(t )|2, β(t ) = ∑

m |bm(t )|2, γ (t ) =
am(t )b∗

m(t ), and the probability distribution |ψn(t )|2 =
α(t ) + β(t ) = 1. By diagonalizing ρc(t ) we obtain

SE [ρc(t )] = −λ+ log2 λ+ − λ− log2 λ−, (12)

where λ± are the eigenvalues of matrix ρc,

λ± = 1

2
{1 ±

√
1 − 4[α(t )β(t ) − |γ (t )|2]}. (13)

Thus, SE (t ) ∈ [0, 1], with separable states (not entangled)
giving SE = 0 and maximally entangled states providing SE =
1. For a disorder-free system ruled by Hadamard coins with
local initial conditions it has been shown within an asymp-
totic regime that SE (t → ∞) ≈ 0.872 [62,63]. Taking into
account the above results, we start by computing the time
evolution of von Neumann entropy SE (t ) for a walker with
initial state |ψ (0)〉 = | ↑〉 ⊗ |n0〉, n0 = 500, subjected to the
same configurations shown in Fig. 1, i.e., θ0 = π/4 with
Fig. 1(a) ν = 0.0 and Fig. 1(b) ν = 1.0, as well as θ0 = π/2
with Fig. 1(a) ν = 0.0 and Fig. 1(b) ν = 0.05. The results in
Fig. 8 reflect the localized or delocalized transition observed
in Fig. 1. For homogeneous case, Hadamard coins induce a
coin-position entanglement, which saturates around 0.872, in
full agreement with Refs. [62,63]. By adding spatial inhomo-
geneity (ν = 1.0) the coin-position entanglement exhibits an
oscillatory behavior with values 0 � SE (t ) � 1, i.e., between
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FIG. 8. Time evolution of von Neumann entropy for same con-
figurations of Fig. 1, i.e., Hadamard and Pauli-X coins in (a) absence
and (b) presence of spatial inhomogeneity. Within a disorder-free
(ν = 0.0) system, Hadamard coins induce a coin-position entan-
glement, which saturates around 0.872, in fully agreement with
Refs. [62,63]. On the other hand, Pauli-X coins shows absence of
entanglement. Aperiodic inhomogeneity can alter significantly the
entanglement properties.

not entangled and fully entangled. This feature is consistent
with dynamics behavior described in Fig. 1 and the energy
spectrum composed by flat bands exhibited in Fig. 3. On
the other hand, while homogeneous θ0 = π/2 coins show
absence of entanglement for homogeneous distribution, an
aperiodicity with ν = 0.05 brings an entanglement, which
oscillates close 0.898. This latter feature comes from the
emergence of dispersion on the energy spectrum, as described
in Fig. 3.

It has been reported that static inhomogeneity exhibits the
worst results in terms of entanglement generation, almost
always reducing the entanglement when comparing with the
homogeneous case [45,47]. In the face of significant changes
on the entanglement power induced by aperiodic spatial
dependence (previously reported in Fig. 8), we investigate
whether this type of static inhomogeneity is able to make
it more prone to increase the coin-position entanglement. In
Fig. 9 we focus on settings that exhibit a delocalized character
(see top panels). We consider θ0 = π/6, π/4, π/3, where
systems with spatial inhomogeneity (ν = 0.05) are shown on
the right panels. We observe an increasing of entanglement
power induced by inhomogeneity, even for a configuration
that has a strong entanglement into a homogeneous regime
(θ0 = π/3). Such ability has not been reported for static inho-
mogeneity, only for dynamic and fluctuating inhomogeneities
[45,47]. Since both studies describe random distributions, for
the quantum coins [45] or on-site phase [47], we identified
that inner correlations on the distribution of disorder can
enhance the efficiency in the ability to entangle internal (spin
or polarization) and external (position) degrees of freedom.

In order to better understand this phenomenology we
compute in the Fig. 10 the long-time average of the en-
tanglement [〈SE (t∞)〉] versus ν, for θ0 = π/6, π/4, π/3 and
π/2. To establish reference we show dashed lines that de-
scribe the 〈SE (t∞)〉 for the respective homogeneous sys-
tem. We observe many configurations of inhomogeneity in
which there is an enhancement on the entanglement power.
These configurations are predominantly found for the smaller
values of ν. As ν grows, the randomlike aspect that gov-
erns the quantum coins distribution impels the coin-position

100 101 102

time steps

100

101
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103

IP
R

(t)

θ0 = π/6
θ0  = π/4
θ0  = π/3

100 101 102 103

time steps

θ0 = π/6
θ0  = π/4
θ0  = π/3

0 200 400 600 800
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S E(t)

θ0 = π/6
θ0  = π/4
θ0  = π/3
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time steps

θ0 = π/6
θ0  = π/4
θ0  = π/3

ν = 0.00 ν = 0.05

(a) (b)

(c) (d)

FIG. 9. Time evolution of the inverse participation ration IPR(t)
(top) and von Neumann entropy SE (t ) (bottom) for coins θ0 =
π/6, π/4, π/3 in the (a), (c) absence and (b), (d) presence of in-
homogeneity. While IPR(t) exhibits a delocalized character of coins
in both regimes, we observe an increasing of entanglement power
induced by inhomogeneity, even for a configuration with a strong
entanglement in the homogeneous configuration (θ0 = π/3).

entanglement to weakening, which agrees with the description
of Refs. [45,47].

By considering the rise in the entanglement power an im-
portant aspect, we extend our numerical experiments in order
to offer a diagram θ0 versus ν, which reveals this enhancement
in the ability to entangle internal (spin or polarization) and
external (position) degrees of freedom (see Fig. 11). Here,
we are not concerned with the increase percentage, only
with the growth of the long-time average entanglement as
compared with its respective value for homogeneous case.
Thus, black points mean any increase in long-time average
of entanglement, while white points denote a weakening.
For θ0 = π/2 and θ0 = 3π/2 we observe a continuous black
line, since homogeneous systems of Pauli-X coins display
〈SE (t∞)〉 = 0. This latter is related to the energy spectrum
composed by two main flat bands, which induces a bit-flip
dynamics. The increase in entanglement concentrates around
Pauli-Z coins, configurations in which the walker moves away
of initial position without interference and also shows absence
of entanglement within a homogeneous regime. For initial ν

values the gain of entanglement power is predominant, while
becoming restricted to close values of θ0 = 0, π , and 2π as ν

grows.

C. Asymptotic limit

A complementary analysis was directed to the asymptotic
limit of entanglement. It has been reported that systems
ruled by Hadamard quantum coins [63], systems with dy-
namic [45,59], and fluctuating [45] inhomogeneities display
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FIG. 10. The long-time average of the entanglement [〈SE (t∞)〉]
versus ν, for θ0 = π/6, π/4, π/3 and π/2. Dashed lines describe
the respective 〈SE (t∞)〉 in homogeneous systems. We observe many
configurations of inhomogeneity in which there is an enhancement in
the entanglement power, being predominantly found for the smaller
values of ν. As ν grows, the randomlike aspect that governs the
quantum coins distribution impels the entanglement to weakening.

an asymptotic limit. On the other hand, systems with static
inhomogeneity have no asymptotic limit [45], with the long-
time entanglement fluctuating about a mean value with no
signs of convergence to its mean. Thus, by using the same

FIG. 11. Diagram θ0 versus ν which reveals the enhancement in
the ability to entangle internal (spin or polarization) and external (po-
sition) degrees of freedom with respect to homogeneous distribution
of quantum coins. We are not concerned about a gain percentage,
so that black points mean an increase of long-time average of
entanglement, while white points denote a weakening. The increase
in entanglement is predominant for initial values of ν. As ν grows,
the increasing is restricted to values close to θ0 = 0, π , and 2π , as
well as θ0 = π/2 and 3π/2.

100 101 102 103

time steps
10-4
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10-1

100

D
(t)

θ0=π/4; ν=0.00
θ0=π/4; ν=1.00
θ0=π/2; ν=0.00
θ0=π/2; ν=0.05

~t -1.0

FIG. 12. Time evolution of trace distance for θ0 = π/4, ν =
0.00, θ0 = π/4, ν = 1.00, θ0 = π/2, ν = 0.00, and θ0 = π/2, ν =
0.05. Such as in systems governed by Hadamard coins, systems with
static inhomogeneity can also exhibit asymptotic value, which obeys
a power law. Dashed line is a guide to the eyes showing D(t ) ∼ t−1.0.

procedure employed in Ref. [45], we compute the trace dis-
tance

D[ρc(t + 1), ρc(t )] = D(t ) = 1
2 Tr|ρc(t ) − ρc(t − 1)| (14)

in order to study the asymptotic limit of our aperiodic quan-
tum walks. This quantity gives how close are two quantum
states, which in the dynamic context can be played as how
well information is preserved by some physical process. Thus,
whenever a quantum walk leads to

lim
t→∞ D[ρc(t + 1), ρc(t )] = D(t ) = 0, (15)

it is said that the system has an asymptotic limit. In Fig. 12
we show the results of this analysis for Hadamard coins (θ0 =
π/4), Pauli-X (θ0 = π/2), and θ0 = π/3. Homogeneous sys-
tems of Hadamard coins show an asymptotic limit, which
obeys a power-law dependence, in agreement with Ref. [45].
However, we found D(t ) ∼ t−1.0, in contrast with D(t ) ∼
t−1/2 reported by Ref. [45]. We attribute this difference to the
initial conditions, which have been considered here as local-
ized initial condition [|ψ (0)〉 = | ↑〉 ⊗ |0〉], while it was built
through an average of 16.384 delocalized initial conditions
(superposition between positions | − 1〉 and |1〉) in Ref. [45].
We also note θ0 = π/4 tuned with spatial dependence ν =
1.0 performing quantum walks that do not come close to
a particular state and do not have an asymptotic limit. For
Pauli-X coins the asymptotic limit displays opposite trends:
while it has no asymptotic limit in homogeneous case, with
an aperiodic inhomogeneity ruled by ν = 0.05 it exhibits
an asymptotic limit, which obeys a power-law dependence
D(t ) ∝ t−1.0. Furthermore, we can see the inhomogeneous
case of Pauli-X coins displaying a linear coefficient slightly
lower than that displayed by homogeneous Hadamard coins.
Thus, we report a possibility to induce an asymptotic limit
even in static inhomogeneity.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the localization and en-
tanglement properties in quantum walks ruled by aperiodic
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(inhomogeneous) spatial dependence on the quantum coins
distribution. With an adjustable distribution ruled by a single
parameter ν we show the existence of delocalized and local-
ized quantum walks, as well as the proper adjusting of the
aperiodicity in order to develop both. With the energy spectra
analysis, obtained from an associated effective Hamiltonian
and the nature of its eigenvalues, both delocalized and local-
ized regimes could be better understood. In the early stage the
inhomogeneity leads to a vanishing gap between two main
bands, which justifies the delocalized behavior observed for
ν < 0.5. With increase of ν arise gaps and flat bands on the
energy spectra, which justifies the suppression of transport
detected for ν > 0.5. For ν high enough the energy spectra
resembles that described by the 1D Anderson model. The
translational symmetry on the inhomogeneity, recovered for
ν ∈ Z∗, shows to be a relevant aspect, which favors delocal-
ized quantum walks. For the coin-position entanglement, tak-
ing as reference the homogeneous distribution (disorder-free)
of quantum coins, we identified many settings in which an
enhancement in the ability to entangle is observed. Although
the results have been reported for a walker whose initial
state is given by |ψ (0)〉 = | ↑〉 ⊗ |n0〉, we observe that the
phenomenology is predominant among different settings of

initial coin states of the quantum walker (see Supplemental
Material [64]). Thus, this behavior brings new information
about the role played by aperiodicity on the coin-position en-
tanglement for static inhomogeneous systems, reported before
as almost always reducing the entanglement when comparing
with the homogeneous case [45,47]. Furthermore, since sys-
tems with static inhomogeneity have been reported as having
no asymptotic limit [45], we extend the analysis in order to
show that aperiodic spatial inhomogeneity is able to induce
an asymptotic limit to entanglement. To conclude, with the
recent experimental achievements in optical setups [18], we
believe that the scheme proposed here is feasible for integrated
waveguide circuits. The spatial inhomogeneity proposed here
would be adjusted in the beam splitters arranged in a lattice
of Mach-Zehnder interferometers, since each beam splitter
implements the quantum coin operation.
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and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011).

[16] Z.-H. Bian, J. Li, X. Zhan, J. Twamley, and P. Xue, Phys. Rev.
A 95, 052338 (2017).

[17] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi,
R. Ramponi, and R. Osellame, Phys. Rev. Lett. 108, 010502
(2012).

[18] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio,
L. Sansoni, F. D. Nicola, F. Sciarrino, and P. Mataloni, Nature
Photon. 7, 322 (2013).

[19] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[20] N. Shenvi, J. Kempe, and K. B. Whaley, Phys. Rev. A 67,

052307 (2003).
[21] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[22] S. E. Venegas-Andraca, Quantum Inf. Process. 11, 1015

(2012).
[23] N. B. Lovett, S. Cooper, M. T. Matthew Everitt, and V. Kendon,

Phys. Rev. A 81, 042330 (2010).
[24] D. Koch and M. Hillery, Phys. Rev. A 97, 012308 (2018).
[25] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[26] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287

(1985).
[27] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469

(1993).
[28] J. C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989).
[29] P. Phillips and H.-L. Wu, Science 252, 1805 (1991).
[30] F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735

(1998).
[31] F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062

(1999).
[32] U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann,

Appl. Phys. Lett. 77, 633 (2000).
[33] D. L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994).
[34] K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94,

056404 (2005).
[35] W. S. Dias and M. L. Lyra, Physica A 411, 35 (2014).

032106-9

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevB.76.155124
https://doi.org/10.1103/PhysRevB.76.155124
https://doi.org/10.1103/PhysRevB.76.155124
https://doi.org/10.1103/PhysRevB.76.155124
https://doi.org/10.1016/j.physleta.2011.08.030
https://doi.org/10.1016/j.physleta.2011.08.030
https://doi.org/10.1016/j.physleta.2011.08.030
https://doi.org/10.1016/j.physleta.2011.08.030
https://doi.org/10.1088/1742-6596/302/1/012037
https://doi.org/10.1088/1742-6596/302/1/012037
https://doi.org/10.1088/1742-6596/302/1/012037
https://doi.org/10.1088/1742-6596/302/1/012037
https://doi.org/10.1088/1751-8113/41/6/065304
https://doi.org/10.1088/1751-8113/41/6/065304
https://doi.org/10.1088/1751-8113/41/6/065304
https://doi.org/10.1088/1751-8113/41/6/065304
https://doi.org/10.1103/PhysRevA.93.023623
https://doi.org/10.1103/PhysRevA.93.023623
https://doi.org/10.1103/PhysRevA.93.023623
https://doi.org/10.1103/PhysRevA.93.023623
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1126/science.1193515
https://doi.org/10.1126/science.1193515
https://doi.org/10.1126/science.1193515
https://doi.org/10.1126/science.1193515
https://doi.org/10.1103/PhysRevA.96.023620
https://doi.org/10.1103/PhysRevA.96.023620
https://doi.org/10.1103/PhysRevA.96.023620
https://doi.org/10.1103/PhysRevA.96.023620
https://doi.org/10.1016/j.physleta.2017.08.016
https://doi.org/10.1016/j.physleta.2017.08.016
https://doi.org/10.1016/j.physleta.2017.08.016
https://doi.org/10.1016/j.physleta.2017.08.016
https://doi.org/10.1103/PhysRevA.93.042302
https://doi.org/10.1103/PhysRevA.93.042302
https://doi.org/10.1103/PhysRevA.93.042302
https://doi.org/10.1103/PhysRevA.93.042302
https://doi.org/10.1103/PhysRevA.72.062317
https://doi.org/10.1103/PhysRevA.72.062317
https://doi.org/10.1103/PhysRevA.72.062317
https://doi.org/10.1103/PhysRevA.72.062317
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1174436
https://doi.org/10.1126/science.1174436
https://doi.org/10.1126/science.1174436
https://doi.org/10.1126/science.1174436
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.97.012308
https://doi.org/10.1103/PhysRevA.97.012308
https://doi.org/10.1103/PhysRevA.97.012308
https://doi.org/10.1103/PhysRevA.97.012308
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0953-8984/1/44/017
https://doi.org/10.1088/0953-8984/1/44/017
https://doi.org/10.1088/0953-8984/1/44/017
https://doi.org/10.1088/0953-8984/1/44/017
https://doi.org/10.1126/science.252.5014.1805
https://doi.org/10.1126/science.252.5014.1805
https://doi.org/10.1126/science.252.5014.1805
https://doi.org/10.1126/science.252.5014.1805
https://doi.org/10.1103/PhysRevLett.81.3735
https://doi.org/10.1103/PhysRevLett.81.3735
https://doi.org/10.1103/PhysRevLett.81.3735
https://doi.org/10.1103/PhysRevLett.81.3735
https://doi.org/10.1103/PhysRevLett.82.4062
https://doi.org/10.1103/PhysRevLett.82.4062
https://doi.org/10.1103/PhysRevLett.82.4062
https://doi.org/10.1103/PhysRevLett.82.4062
https://doi.org/10.1063/1.127068
https://doi.org/10.1063/1.127068
https://doi.org/10.1063/1.127068
https://doi.org/10.1063/1.127068
https://doi.org/10.1103/PhysRevLett.73.2607
https://doi.org/10.1103/PhysRevLett.73.2607
https://doi.org/10.1103/PhysRevLett.73.2607
https://doi.org/10.1103/PhysRevLett.73.2607
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1103/PhysRevLett.94.056404
https://doi.org/10.1016/j.physa.2014.05.059
https://doi.org/10.1016/j.physa.2014.05.059
https://doi.org/10.1016/j.physa.2014.05.059
https://doi.org/10.1016/j.physa.2014.05.059


A. R. C. BUARQUE AND W. S. DIAS PHYSICAL REVIEW E 100, 032106 (2019)

[36] A. Müller-Groeling, H. A. Weidenmüller, and C. H. Lewenkopf,
Europhys. Lett. 22, 193 (1993).

[37] D. Shapira, A. J. B. Ofer Biham, and M. Hackett, Phys. Rev. A
68, 062315 (2003).

[38] S. Panahiyan and S. Fritzsche, New J. Phys. 20, 083028
(2018).

[39] P. Ribeiro, P. Milman, and R. Mosseri, Phys. Rev. Lett. 93,
190503 (2004).

[40] M. C. Bañuls, C. Navarrete, A. Pérez, E. Roldán, and J. C.
Soriano, Phys. Rev. A 73, 062304 (2006).

[41] A. Romanelli, Physica A 388, 3985 (2009).
[42] G. D. Molfetta and F. Debbasch, Quant. Studies: Math. Found.

3, 293 (2016).
[43] N. L. Gullo, C. V. Ambarish, Th. Busch, L. Dell’Anna, and

C. M. Chandrashekar, Phys. Rev. E 96, 012111 (2017).
[44] A. Romanelli, Phys. Rev. A 80, 042332 (2009).
[45] R. Vieira, E. P. M. Amorim, and G. Rigolin, Phys. Rev. A 89,

042307 (2014).
[46] I. Vakulchyk, M. V. Fistul, P. Qin, and S. Flach, Phys. Rev. B

96, 144204 (2017).
[47] M. Zeng and E. H. Yong, Sci. Rep. 7, 12024 (2017).
[48] R. Zhang, P. Xue, and J. Twamley, Phys. Rev. A 89, 042317

(2014).
[49] P. Xue, R. Zhang, Z. Bian, X. Zhan, H. Qin, and B. C. Sanders,

Phys. Rev. A 92, 042316, (2015).
[50] R. Zhang and P. Xue, Quant. Inf. Proc. 13, 1825

(2014).

[51] A. Romanelli, A. Auyuanet, R. Siri, G. Abal, and R. Donangelo,
Physica A 352, 409 (2005).

[52] J. Ghosh, Phys. Rev. A 89, 022309 (2014).
[53] Y. Shikano and H. Katsura, Phys. Rev. E 82, 031122 (2010).
[54] A. Wójcik, T. Łuczak, P. K. Tomasz Łuczak, A. Grudka, T.

Gdala, and M. Bednarska-Bzdęga, Phys. Rev. A 85, 012329
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