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Percolation phase transition by removal of k2-mers from fully occupied lattices
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Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse
site percolation by the removal of k × k square tiles (k2-mers) from square lattices. The process starts with
an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice
are connected by occupied sites. Then the system is diluted by removing k2-mers of occupied sites from the
lattice following a random sequential adsorption mechanism. The process finishes when the jamming state is
reached and no more objects can be removed due to the absence of occupied sites clusters of appropriate size
and shape. The central idea of this paper is based on finding the maximum concentration of occupied sites, pc,k ,
for which the connectivity disappears. This particular value of the concentration is called the inverse percolation
threshold and determines a well-defined geometrical phase transition in the system. The results obtained for pc,k

show that the inverse percolation threshold is a decreasing function of k in the range 1 � k � 4. For k � 5,
all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other
words, the lattice remains connected even when the highest allowed concentration of removed sites is reached.
The jamming exponent ν j was measured, being ν j = 1 regardless of the size k considered. In addition, the
accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved
in the system, which occurs for k varying between one and four, has the same universality class as the standard
percolation problem.
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I. INTRODUCTION

The percolation theory is one of the simplest models in
probability theory, which has been applied to a wide range
of phenomena in physics, chemistry, biology, and materials
science where connectivity and clustering play an important
role: flow in porous materials [1–3], network theory [4–9],
thermal phase transitions [10,11], spread of the computer
virus [12], transport in disordered media [13,14], electrical
conductivity in alloys [15–18], simulated spread fire in multi-
compartmented structures [19], and the spread of epidemics
[20]. Percolation theory has also provided insight into the
behavior of more complicated models exhibiting phase transi-
tions and critical phenomena [1,2,21–23].

Classical percolation theory studies site and bond perco-
lation. In the case of discrete lattices, each cell is a site and
the bond is edge between cells. Then a single position (site or
bond) is occupied with probability p. For a precise value of p,
a cluster of nearest-neighbor sites (bonds) extends from one
side to the opposite side of the system. This particular value
of concentration rate is named the percolation threshold pc.
At this critical concentration a second-order phase transition
occurs, which is characterized by well-defined critical expo-
nents [1].

Percolation theory can also be used to understand network
robustness, i.e., how the structure of a network changes as its
elements (sites or bonds) are removed through either random
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or malicious attacks [4–9]. The focus of robustness in complex
networks is the response of the network to the removal of
nodes or links. The model of such a process can be thought
of as an inverse percolation problem. The term inverse is
used simply to indicate that the size of the conductive phase
diminishes during the removing process and the percolation
transition occurs between a percolating and a nonpercolat-
ing state.

In previous work [24–27], we studied the problem of
inverse percolation by removing linear objects from two-
dimensional (2D) lattices. This corresponds to the comple-
mentary form of the standard percolation of straight rigid
rods on a discrete lattice [28–34] and is conceptually similar
to the void continuum percolation problem or Swiss-cheese
percolation [35–42]. In this case, one considers a system of
overlapping objects and asks when the space not occupied
by the objects percolates. The problem is very similar to
the original definition involving fluid flow through a porous
media [2].

In Ref. [24], the problem of removing linear site k-mers
(particles occupying k consecutive sites along one of the
lattice directions) from square lattices was studied by nu-
merical simulations and finite-size analysis. The percolating
phase occurring at high concentrations is separated from a
nonpercolating phase by a continuous transition occurring
at an intermediate critical density pc,k . This critical density
was calculated as a function of k. The results, obtained for
k ranging from 2 to 256, showed a nonmonotonic size k de-
pendence for pc,k , which rapidly decreases for small particle
sizes (1 � k � 3). Then it grows for k = 4, 5, and 6, goes

2470-0045/2019/100(3)/032105(11) 032105-1 ©2019 American Physical Society

https://orcid.org/0000-0003-3529-0581
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032105&domain=pdf&date_stamp=2019-09-04
https://doi.org/10.1103/PhysRevE.100.032105


RAMIREZ, CENTRES, AND RAMIREZ-PASTOR PHYSICAL REVIEW E 100, 032105 (2019)

through a maximum at k = 7, and finally decreases again
and asymptotically converges towards a definite value for
large values of k [pc,k→∞ = 0.454(4)]. A similar study for
triangular lattices was carried out in Ref. [25]. In this case
the maximum occurs at k = 11 and the convergence value is
pc,k→∞ = 0.506(2).

In terms of network robustness, the results discussed in
the paragraph above indicate that, for large k-mers (k � 7
for square lattices and k � 11 for triangular lattices) and a
same fraction of removed sites (or attack), the robustness
of the network increases with the attack size (k). These
findings are consistent with those from Refs. [8,9], where
the vulnerability of networks during the process of cascading
failures was investigated. The authors studied the influence of
the characteristics of the initial attack on the vulnerability of
the networks, showing that random attacks on single nodes
are much more effective than correlated attacks on groups of
close nodes.

More recently, numerical simulations and finite-size scal-
ing analysis have been carried out to study the problem of
inverse bond percolation by removing linear bond k-mers
(objects formed by k consecutive bonds along one of the
lattice directions) from square lattices [26]. The obtained
results showed that the inverse percolation threshold is a
decreasing function of k in the range 1 � k � 18. For k >

18, all jammed configurations are percolating states, and
consequently, there is no nonpercolating phase. As in pre-
vious cases [24,25], the decreasing behavior of the inverse
percolation threshold as a function of k clearly indicates
that random attacks on single nodes (k = 1) are much more
effective than correlated attacks on groups of close nodes.
In addition, the loss of the phase transition has very inter-
esting implications in terms of network attacks. In fact, for
large k-mers (k > 18), the lattice remains connected even
when the highest allowed concentration of removed bonds
is reached.

A similar behavior was observed for inverse site perco-
lation of linear k-mers in the presence of impurities [27].
As in Ref. [26], the percolation phase transition disappears
for a certain value of k, which depends on the value of
the fraction of impurities. The study complements previous
work in homogeneous lattices [24–26], revealing that the
construction of networks with low local connectivity (or low
clustering capacity), as occurs in the model for increasing
values of the fraction of impurities, is an effective strategy
against correlated attacks on groups of close nodes (large k).

In the case of void percolation, the effect of the shape of the
removed objects has been widely studied [39–42]. The same
has not happened for inverse percolation on discrete lattices,
where most of the attention has been devoted to the removal
of linear clusters of sites (bonds) [24–27].

The aim of the present work is to extend previous studies
to the removal of more compact objects such as k × k square
tiles (or k2-mers). For this purpose, extensive numerical sim-
ulations supplemented by analysis using finite-size scaling
theory have been carried out to study the problem of inverse
percolation by removing k2-mers from square lattices. Our
interest is in investigating the effect of the shape of the
removed object (structure of the attack) on the connectivity
properties of the damaged lattice.

It is also interesting to compare the results obtained for
inverse percolation with those reported for the standard per-
colation problem of k2-mers on square lattices, where the
percolation phase transition disappears for k � 4 [43–45].

The problem of mixtures of tiles of different size has also
been intensively studied [46–52]. In Refs. [46,47], Nakamura
showed that (1) the percolation phase transition at k � 4 can
be restored by adding supplementary squares of smaller size to
the jammed system and (2) the percolation threshold is pc,k ≈
0.73 at large values of k (k � 15).

Sahara et al. [48,49] investigated the percolation of mix-
tures of monomers (12-mers) with 22-mers and 42-mers. The
authors found that the percolation threshold increases com-
pared with its value for the ordinary percolation of monomers,
pc = 0.592746 [1]. In addition, the obtained values of fractal
dimension and critical exponents are consistent with those of
the ordinary percolation model.

Mixtures of particles of different size have also been
used to model conductive-insulating composites [50,51]. The
results of these studies revealed that the percolation be-
havior can strongly be controlled by introducing size dif-
ferences in the insulator particles. The model was shown
to be effective in describing experimental data on percola-
tion in segregated polymers (polyvinyl chloride-copper and
polycarbonate-copper composites) [50].

In a recent paper, Kriuchevskyi et al. [52] study the
jamming and percolation properties of equal-size k2-mers
and their mixtures with m2-mers (m < k) in a single-cluster
growth model [53,54]. The larger k2-mers were assumed to be
active (conductive), and the smaller m2-mers were assumed to
be blocked (nonconductive). Percolation and jamming behav-
iors were different from those in random sequential adsorption
(RSA) model [55–57]. The results also evidenced that the
studied problem belongs to the universality of ordinary 2D
random percolation regardless of the value of k considered.

The paper is organized as it follows: the model is presented
in Sec. II. Jamming and percolation properties are studied in
Sec. III. Finally, the conclusions are drawn in Sec. IV.

II. THE MODEL

Let us consider a square lattice of M = L × L sites that
represents our surface. Each site of the lattice has only two
possible states of occupation: empty or occupied. Nearest-
neighbor occupied sites form structures called clusters. The
distribution of these occupied sites determines the probability
of the existence of a large cluster (also called an “infinite”
cluster, inspired by the thermodynamic limit) that connects
from one side of the lattice to the other.

As was already mentioned, the central idea of the inverse
percolation model is based on removing objects from an initial
configuration where all sites are occupied and finding the
maximum concentration p for which the connectivity disap-
pears. We called this particular value of the concentration
the inverse percolation threshold [24–27]. In this study, the
removed species are square tiles composed by k × k occupied
sites. Accordingly, the inverse percolation threshold will be
denoted as pc,k .

The dilution of the lattice with k2-mers is carried out fol-
lowing a conventional RSA process [55–57] and considering
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FIG. 1. Schematic representation of a square lattice in which
some 2 × 2 tiles (open circles joined by solid lines) have been
removed. The solid circles represent the occupied sites.

periodic boundary conditions in both lattice directions. The
scheme consists of three steps: (1) starting from an initially
fully occupied lattice, (2) then a square tile of k × k sites is
chosen randomly and if those sites are occupied a k2-mer is
removed, otherwise the attempt is rejected, and (3) steps 1 and
2 are repeated until a desired concentration p = 1 − k2N/M is
reached (N is the number of the removed k2-mers).

Figure 1 shows a typical lattice configuration after removal
of 2 × 2 tiles (open circles joined by lines) from the 2D square
lattice. The solid circles represent the occupied circles.

III. INVERSE PERCOLATION AND
JAMMING PROPERTIES

The inverse percolation problem results a quite simple
situation for the case of removing single sites or bonds, when
the inverse and standard problems are symmetrical. However,
if some sort of correlation exists, as in the case of remov-
ing tiles of k × k elements, the statistical problem becomes
exceedingly difficult, and the percolation threshold has to be
estimated numerically by means of computer simulations.

A. Jamming coverage

Let us consider the complementary lattice to the original
lattice, where each empty (occupied) site of the original lattice
transforms into a occupied (empty) one of the complementary
lattice. Under these conditions, the filling process in the
complementary lattice (dilution process in the original lattice)
is equivalent to a RSA process of k2-mers. Accordingly, both
problems share formal aspects, terminology, and essential
characteristics, such as the existence of a nontrivial state, the
jammed saturation state.

In Fig. 1 it can be easily seen that the geometry of the
k2-mer excludes the possibility of continuing to eliminate
tiles even if there are occupied sites on the lattice. Thus,
the jamming coverage p j,k (the subindex k indicates that
the jamming coverage was reached after removing square
tiles of side k) is the concentration of occupied sites at

FIG. 2. Curves of pj,k vs k for tiles (line and solid squares) and
linear k-mers (line and crosses). The gray zone represents the space
of the concentrations that are not possible to access for the remotion
of tiles because of the blocking of the lattice.

which no more objects can be removed from the lattice (the
lattice is blocked). From the relationship between original
and complementary lattices, it is straightforward that pj,k =
1 − p′

j,k , where p′
j,k is the jamming coverage corresponding

to a standard RSA process of k2-mers on square lattices.
The dependence of p′

j,k as a function of the size k has
recently been studied [45]. In Ref. [45] numerical simulations
were performed for k in the range 2–100 and several values of
L/k : 128, 192, 256, 320, 384, and 448. For each k-L pair, the
results were obtained by averaging on 2 × 105 independent
samples. The authors found that (1) p′

j,k is a decreasing
function of k, and (2) the best fit to p′

j,k (obtained for k � 2)
corresponds to the expression p′

j,k=A + B/k + C/k2, where
A = p′

j,k=∞ = 0.5623(3), B = 0.3098(2), and C = 0.1277(2).
Then the fraction of occupied sites ranges from 1 to pj,k ,
where

p j,k = 1 − p′
j,k

= 0.4377 − 0.3098

k
− 0.1277

k2
. (1)

The jamming curve in Eq. (1) is shown in Fig. 2 (line
and solid squares). For comparison, the figure also includes
the jamming curve corresponding to the problem of removing
straight rigid k-mers from square lattices (line and crosses):
p j,k = 0.34 − 1.071/k + 3.47/k2(k � 48) [24,58]. This ex-
pression was obtained by fitting simulation data for segments
of length k between 2 and 512 and lattices of linear size L
between 128 and 4096 [58].

The space of the parameter p is separated in two regions
by the jamming curve. The region above the curve of p j,k

represents the space of all the allowed values of p (values
of p which can be reached by removing objects from the
surface). On the other hand, the region below the curve of
p j,k corresponds to a forbidden region of the space. The
above means that if we started from a fully occupied lattice
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(p = 1), we can remove components while the concentration
is higher than p j,k , but we cannot access to values of p so that
p < p j,k . In the figure, the gray zone indicates the space of
the concentrations that are not possible to access by removing
k × k tiles from square lattices.

Clearly, the probability of blocking the lattice depends
both on the geometry of the surface and on the shape of
the removed objects. As can be visualized from Fig. 2, the
k-mers jamming curve remains below the corresponding k2-
mers curve, indicating that the lattice is blocked at higher
concentrations of occupancy for tiles than for rigid rods. In
terms of the RSA process (in the complementary lattice), it
means that linear k-mers are more effective in filling the lattice
than k × k square tiles.

It is important to note that the term “jamming,” in the sense
used in the present paper, refers to the final state generated
by irreversible adsorption of structured objects (in this case
RSA), in which no more objects can be deposited due to the
absence of free space of appropriate size and shape [55–57].
This phenomenon should not be confused with the classical
jamming transition from a flowing to a rigid state, which
is a paradigm for thinking about how many different types
of fluids (from molecular liquids to macroscopic granular
matter) develop rigidity [59].

However, some critical properties have been identified in
relation to the jamming phenomenon associated with the RSA
problem. To understand this point, it is convenient to define
the jamming probability WL(p) [60]. In our case, WL(p) can
be defined as the probability that a L × L lattice reaches
a coverage p by removing sets of particles of size k × k
(k2-mers). The procedure to determine WL(p) consists of the
following steps: (a) the construction of the lattice (initially
fully occupied) and (b) the removal of objects on the lattice
up to the jamming limit p j,k . In the latter step, the quantity
mi(p) is calculated as

mi(p) =
{

1 for p � p j,k

0 for p < p j,k .
(2)

n runs of such two steps (a) and (b) are carried out for
obtaining the number m(p) of them for which a lattice reaches
a coverage p,

m(p) =
n∑

i=1

mi(p). (3)

Then WL(p) = m(p)/n is defined, and the procedure is re-
peated for different values of L.

Figure 3(a) shows the behavior of WL(p) for k = 4 and dif-
ferent values of the lattice size L = 384, 512, 640, 768, 896.
During the removing process, the fraction of particles on the
lattice diminishes (the p axis varies between 1 and pj,k). As
can be observed from the figure, WL(p) varies continuously
between 1 and 0, with a sharp fall around pj,k . Even when the
probabilities show a dependence on the system size, WL(p) is
independent of the system size for p = pj,k [60]. Thus, the
value of p j,k can be obtained from the crossing point of the
curves of WL(p) for different lattice sizes.

The jamming probability can also be used to determine the
jamming exponent ν j . As established in the literature [28],

FIG. 3. (a) Curves of the jamming probability WL (p) as a func-
tion of the fraction of occupied sites p for k = 4 and different lattice
sizes as indicated. (b) Log-log plots of (dWL/d p)max and �L as a
function of L for the case shown in part (a). According to Eq. (4)
the slope of each line corresponds to 1/ν j [or to −1/ν j in the case
of Eq. (5)]. (c) Data collapse of the jamming probability, WL , vs
(p − pj,k )L1/ν j for the data in panel (a). The curves were obtained
using pj,k=4 = 0.35207 [45] and ν j = 1.
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dWL(p)/d p can be fitted by the Gaussian function. This is
a good approximation for the purpose of locating its maxi-
mum. Then, according to the finite-size scaling theory [28],
the maximum of the derivative of the jamming probability
[dWL(p)/d p]max and the width of the transition �L behave
asymptotically as (

dWL

dp

)
max

∝ L1/ν j (4)

and

�L ∝ L−1/ν j . (5)

Figure 3(b) shows, in a log-log scale, (dWL/dp)max and �L

(inset) as a function of L for k = 4, where ν j can be obtained
from the inverse of the slopes of the lines that fit the data. In
this case ν) = 1.001(2) (main figure) and ν j = 0.99(2) (inset).
The study was repeated for other sizes k. In all cases, the
obtained values of ν j remain close to 1. This finding confirms
recent investigations on RSA processes on Euclidean lattices
[61]. The results in Ref. [61] showed that ν j = 2/d , where d
is the dimensionality of the lattice. The values of ν j do not
depend on size and shape of the depositing objects.

As shown in Figs. 3(a) and 3(b), the properties of WL(p) are
identical to those of RX

L (p) in standard percolation transitions
(this probability will be discussed in detail in the next section);
namely, RX

L (p) obeys the same scaling relation in Eqs. (4) and
(5), and the intersection of the curves of RX

L (p) for different
system sizes can be used to determine the critical point that
characterizes the phase transition occurring in the system.
Then, based on these features, we propose the following
scaling behavior at criticality for the jamming probability:

W (p) = W [(p − p j,k )L1/ν j ], (6)

where W is the corresponding scaling function.
The scaling tendency in Eq. (6) has been tested by plotting

WL(p) versus (p − p j,k )L1/ν j and looking for data collapsing.
As an example, Fig. 3(c) shows the obtained results for k =
4. Using the values of p j,k=4 = 0.35207 [45] and ν j = 1,
the curves present an excellent scaling collapse. This data
collapse study for the jamming probability WL(p) allows for a
consistency check of the value ν j = 1 calculated in Fig. 3(b).

B. Percolation threshold

Once the limiting parameters p j,k are determined, we will
focus on finding the phase diagram given by the evolution of
the inverse percolation threshold with the size of the removed
tiles. The percolation transition is analogous to continuous
phase transitions that occur in thermodynamic systems, and,
as is known, a phase transition can take place only in the
thermodynamic limit [this is N → ∞ M → ∞ and N/M
(finite)]. In finite systems (such as the ones that are possible to
simulate computationally no matter how large N and M are)
it is not possible to have a sharply defined threshold and the
finite-size scaling theory is the one that sets up the basis to
achieve the percolation threshold of the system with accuracy.
The results presented here were derived through simulations
complemented with finite-size scaling analysis.

The main information is obtained from the probability
RX

L,k (p) that a lattice composed of L × L sites percolates at the

FIG. 4. Fraction of percolating lattices RX
L,k (p) (X = {I,U, A}, as

indicated) as a function of the concentration p for k = 3 (a), k = 4
(b), and k = 5 (c) and different lattice sizes: L/k = 128, squares;
L/k = 256, circles; L/k = 320, up triangles; L/k = 384, down trian-
gles; L/k = 448, left triangles; and L/k = 512, right triangles. The
statistical errors are smaller than the symbol sizes.

concentration p after the removal of k × k tiles [1]. The index
X in the definition of R may have the following meanings:

RU
L,k (p): the probability of finding a cluster which perco-

lates on any direction (x or y direction),
RI

L,k (p): the probability of finding a cluster which perco-
lates in the two (mutually perpendicular) directions (x and y
direction),

RA
L,k (p) = 1

2 [RU
L,k (p) + RI

L,k (p)].
Basically, each simulation run consists of the following

steps: (1) the construction of a lattice of linear size L with
a coverage p according to the dilution procedure described
in Sec. II, and (2) the cluster analysis using the Hoshen and
Kopelman algorithm [62]. In this last step, the size of the
largest cluster SL is determined, as well as the existence of
a percolating island. We consider open boundary conditions
for the percolation calculations.

We carried out mL independent runs of such a two-step
procedure out for each lattice size L and concentration p.
Then RX

L,k (p) was defined as the ratio between the runs that
presented a percolation cluster, mX

L , and the total attempts,
mL. So RX

L,k (p) = mX
L /mL is defined for the desired criterion

among X = {I,U, A}, and the procedure is repeated for dif-
ferent values of L, p, and k × k size of the tiles. For each value
of k, mL = 105 independent random samples were carried
out with L/k = 128, 256, 320, 384, 448, and 512. As can be
appreciated, this represents extensive calculations from the
computational point of view. Then the finite-scaling theory
can be used to determine the percolation threshold and the
critical exponents with reasonable accuracy [1,63,64].

The probability curves RX
L,k (p) are shown in Fig. 4 for

k = 3 (a), k = 4 (b), k = 5 (c), and different values of
L/k. From panels (a) and (b), it is observed that the y-
axis values of the crossing points (RX ∗

) depend on the
criterion X used: RA∗ ≈ 0.50, RI∗ ≈ 0.32, and RU ∗ ≈ 0.68.
These results coincide (within the numerical errors) with the
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corresponding exact values for standard percolation: A cri-
terion, 1/2 [65,66]; I criterion, 0.32212045 . . . [66,67]; and
U criterion, 0.67788954 . . . [66,67]. In addition, the crossing
points do not modify their numerical value for the different
sizes studied (k = 1, 2, 3, 4). This finding represents a first
indication that the universality class of the phase transition
involved in the problem is conserved no matter the values
of k.

The situation is different for k = 5 [Fig. 4(c)], where the
curves of RX

L,k (p) remain around 1, demonstrating there is
only one phase (the percolating phase) in the whole range of
allowed values of p (there is not phase transition). This finding
indicates that the percolation phase transition disappears for
k > 4. In other words, as k2-mers with k > 4 are removed
from a square lattice, the jamming transition occurs before
the percolating island can be separated into a finite number of
isolated clusters.

As mentioned, the percolation phase transition is well
defined by its critical exponents. At this point, we are capable
of finding the critical exponent of the correlation length, ν,
from numerical data. This exponent is of importance because
it is necessary in order to calculate the percolation threshold.
The finite-size scaling theory allows us to estimate ν through
different methods. One route is from the maximum of the
derivative of the functions RX

L,k (p) [1],(
dRX

L,k

d p

)
max

∝ L1/ν . (7)

In order to apply Eq. (7), it is convenient to fit RX
L,k (p)

with some approximating function through the least-squares
method. This allows us to express RX

L,k (p) as a function of
continuous values of p. The fitting curve is the error function
because dRX

L,k (p)/d p is expected to behave approximately
like the Gaussian distribution [63]. We use the term approx-
imately because the behavior of dRX

L,k (p)/d p is known not
to be a Gaussian in all ranges of coverage [68]. However,
this quantity is approximately Gaussian near the peak, and
fitting with a Gaussian function is a good approximation for
the purpose of locating its maximum. Thus,

dRX
L,k

d p
= 1√

2π�X
L,k

exp

⎧⎨
⎩−1

2

[
p − pX

c,k (L)

�X
L,k

]2
⎫⎬
⎭, (8)

where pX
c,k (L) is the concentration at which the slope of

RX
L,k (p) is the largest and �X

L,k is the standard deviation from
pX

c,k (L).
In Fig. 5(a) ln [(dRA

L,k/d p)
max

] has been plotted as a func-
tion of ln [L/k] (note the log-log functional dependence) for
k = 2, 3, and 4. According to Eq. (7) the slope corresponds
to 1/ν.

Another alternative way to obtain ν is given by the di-
vergence of the root-mean-square deviation of the threshold
observed from their average values, �A

L,k in Eq. (8) [1],

�X
L,k ∝ L−1/ν . (9)

Figure 5(b) shows ln (�A
L,k ) as a function of ln(L/k) (note the

log-log functional dependence) for k = 2, 3, and 4. According
to Eq. (9), the slope corresponds to −1/ν.

FIG. 5. (a) Log-log plot of (dRA
L,k/d p)

max
as a function of L/k for

k = 2 (squares), k = 3 (circles), and k = 4 (triangles). According to
Eq. (7) the slope of each line corresponds to 1/ν = 3/4. (b) ln (�A

L,k )
as a function of L/k for k = 2 (squares), k = 3 (circles), and k = 4
(triangles). According to Eq. (9), the slope of each curve corresponds
to −1/ν = −3/4.

For both methods, the values of 1/ν remain constant and
close to 3/4. The study in Fig. 5 was repeated for the I and
U percolation criteria. In all cases, the results coincide, within
numerical errors, with the exact value of the critical exponent
of the ordinary percolation ν = 4/3.

Once ν was determined and with previous values of pX
c,k (L)

[Eq. (8)], a scaling analysis can be done to determine the
percolation threshold in the thermodynamic limit [1]. Thus,
we have

pX
c,k (L) = pX

c,k (∞) + AX L−1/ν, (10)

where AX is a nonuniversal constant.
Figure 6 shows the extrapolation towards the thermody-

namic limit of pX
c,k (L) (X = I,U, A and k = 3, 4) according

to Eq. (10). Combining the three estimates for each size k,
the final values of pc,k (∞) can be obtained. Additionally, the
maximum of the differences between |pU

c,k − pA
c,k| and |pI

c,k −
pA

c,k| gives the error bar for each determination of pc,k (∞).
The values obtained in Fig. 6 were pc,k=2(∞) = 0.48115(5),
pc,k=3(∞) = 0.40997(9), and pc,k=4(∞) = 0.36500(11). For
the rest of the paper, we will denote the percolation threshold
for each size k by pc,k [for simplicity we will drop the symbol
“(∞)”].

The results for pc,k allow us to obtain the dependence of the
inverse percolation threshold with k. The corresponding the
curve is shown in Fig. 7 (open squares). Figure 7 also includes
p j,k as a function of k [Eq. (1), solid squares].

pc,k shows a decreasing function with k in the range 1 �
k � 4. The situation changes for k � 5 because all jammed
configurations are percolating states, and consequently there
is no nonpercolating phase in the whole range of allowed
values of p. This finding means that the percolation phase
transition disappears for k � 5. The last can be clearly seen
in Fig. 7: for k = 4, the value for pc,4 almost intersects
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FIG. 6. Extrapolation of the percolation threshold for an L lattice
pX

c,k (L) (X = {I,U, A}) towards the thermodynamic limit according
to the theoretical prediction given by Eq. (10) for the data in Fig. 4:
(a) k = 2; (b) k = 3, and (c) k = 4. Triangles, circles, and squares
denote the values of pX

c,k (L) obtained by using the criteria I , A, and
U , respectively. The bar error in each measurement is smaller than
the size of the corresponding symbol.

the jamming curve. For bigger values of k, pc,k should be
smaller than pc,4 but those values are not possible to reach
because of the blocking of the lattice. A similar behavior was
observed for standard site percolation of k2-mers on square
lattices [43–45]. In this case, the percolation phase transition
disappears for k � 4. Above k = 3, the jamming transition
occurs before the system can reach the connectivity required
for the formation of a percolating cluster.

In order to visualize better the differences (or asymmetry)
between the classical percolation of k2-mers on square lattices
[43–45] and the corresponding inverse percolation problem,
the standard jamming and percolation curves have been in-
cluded in Fig. 7. The values of jamming coverage (p′

j,k) and
percolation threshold (p′

c,k) as a function of k are shown as
open and solid squares, respectively. The data correspond to
results reported in Ref. [45]. While p represents a fraction of
occupied sites after removing k2-mers from an initially fully
occupied lattice, the nomenclature p′ indicates a fraction of
occupied sites after depositing k2-mers on an initially empty
lattice. Thus, p(p′) varies between 1(0) and p j,k (p′

j,k).
In Fig. 7 five points have been marked as i, j, l, m, n, and

five points have been marked as i′, j′, l ′, m′, n′. The analysis
of typical lattice configurations in these points will allow us to
understand the observed differences between the standard and
inverse percolation problem. The corresponding snapshots
are shown in Figs. 8 (case k = 3) and 9 (case k = 4). Each
configuration can be thought of in two different ways: (1)
the configuration was obtained by following a standard RSA
process of k2-mers. Then blue open circles and red solid
circles represent occupied sites by k2-mers and empty sites,
respectively. (2) The configuration was obtained by removing

FIG. 7. Inverse percolation threshold pc,k (open squares) and
jamming coverage pj,k (solid squares) as a function of k for the prob-
lem of removing k2-mers from square lattices. Percolation threshold
p′

c,k (open circles) and jamming coverage p′
j,k (solid circles) as a

function of k for the standard problem of depositing k2-mers on
square lattices (data correspond to results reported in Ref. [45]).
Points i, j, l, m, n and i′, j ′, l ′, m′, n′ (open diamonds) are explained
in the text. Inset: Comparison between the inverse percolation
thresholds obtained by removing k2-mers from square lattices (open
squares) and the corresponding ones obtained by removing linear
k-mers from square lattices (solid triangles) [24].

k2-mers as described in Sec. II. Then blue open circles and red
solid circles represent empty sites (after removing k2-mers)
and occupied sites, respectively. Under these considerations,
each snapshot in Figs. 8 and 9 allows us to discuss standard
percolation [way (1)] and inverse percolation [way (2)] in the
following ways:

Figure 8(a), way (1), point i′ (p′ ≈ 0.5): The lattice is
covered by small islands of occupied sites (blue open circles),
and, accordingly, there does not exist a path of occupied sites
connecting the opposite sides of the lattice.

Figure 8(a), way (2), point i (p ≈ 0.5): Even when half
of the particles were removed from the lattice, a cluster of
occupied sites extends from one side to the opposite one of the
system (see thick line). In other words, the percolating phase
of occupied sites (red solid circles) has not been disconnected,
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FIG. 8. (a) Snapshot of a typical lattice configuration in points i
and i′ of Fig. 7. (b) Same as panel (a) for the points j and j′ of Fig. 7.
(c) Same as panel (a) for the points l and l ′ of Fig. 7. The meaning
of red solid circles and blue open circles is given in the text. Thick
line denotes a percolation path connecting two opposite sides of the
lattice.

FIG. 9. (a) Snapshot of a typical lattice configuration in points m
and m′ of Fig. 7. (b) Same as panel (a) for the points n and n′ of Fig. 7.
The meaning of red solid circles and blue open circles is given in the
text. Thick line denotes a percolation path connecting two opposite
sides of the lattice.

and, consequently, the inverse percolation phase transition has
not happened yet.

Figure 8(b), way (1), point j′ (p′ ≈ 0.61): The fraction of
occupied sites (blue open circles) is not sufficient to connect
the opposite sides of the lattice (the standard percolation phase
transition has not happened yet).

Figure 8(b), way (2), point j (p ≈ 0.39): The fraction
of occupied sites (red solid circles) is p ≈ 0.39 < pc,k=3 =
0.40997(9). Then the inverse percolation phase transition has
happened, and there does not exist a path of occupied sites
connecting the opposite sides of the lattice.

Figure 8(c), way (1), point l ′ (p′ ≈ 0.65): The fraction of
occupied sites (blue open circles) is p′ ≈ 0.659 > p′

c,k=3 =
0.63110(9) [45]. Then the standard percolation phase
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transition has happened, and a path of occupied sites connects
the opposite sides of the lattice (see thick line).

Figure 8(c), way (2), point l (p ≈ 0.35): As in the pre-
vious case [Fig. 8(b)], p ≈ 0.35 < pc,k=3 = 0.40997(9) and
the percolating phase of occupied sites (red solid circles) has
disappeared.

Figure 9(a), way (1), point m′ (p′ ≈ 0.6): The fraction of
occupied sites (blue open circles) is not sufficient to percolate,
and, accordingly, there does not exist a path of occupied sites
connecting the opposite sides of the lattice.

Figure 9(a), way (2), point m (p ≈ 0.4): The fraction
of occupied sites (red solid circles) is p ≈ 0.4 > pc,k=4 =
0.36500(11). Then a cluster of occupied sites extends from
one side to the opposite one of the system (see thick line), and,
consequently, the inverse percolation phase transition has not
happened yet.

Figure 9(a), way (1), point n′ (p′ ≈ p′
j,k): As expected

from previous investigations [43–45], the jammed configura-
tion shown in the figure is a nonpercolating state of occupied
sites (blue open circles). In other words, the standard percola-
tion phase transition disappears for k2-mers on square lattices
with k � 4.

Figure 9(a), way (2), point n (p ≈ p j,k): The fraction
of occupied sites (red solid circles) is p ≈ p j,k < pc,k=4 =
0.36500(11). Then the inverse percolation phase transition
has happened, and there does not exist a path of occupied sites
connecting the opposite sides of the lattice.

Summarizing, the detailed analysis presented in
Figs. 7–9 indicates that (1) inverse and standard percolation
phase transitions occur for k = 2 and k = 3 and (2) only
the inverse percolation phase transition occurs for k = 4.
The standard percolation phase transition disappears for
k � 4. Then (3) the inverse percolation phase transition is not
possible for k � 5.

It is also interesting to compare the results obtained for
k2-mers with those previously reported for straight rigid k-
mers [24]. This comparison is shown in the inset of Fig. 7.
Open squares (solid triangles) represent data obtained by re-
moving k2-mers (k-mers) from square lattices. Two important
observations can be drawn from the figure: (1) while the phase
transition disappears for k2-mers with k > 4, percolating and
nonpercolating phases extend to infinity in the space of the
parameter k for rigid k-mers; and (2) the values of pc,k

corresponding to k2-mers remain below the curve obtained by
removing k-mers.

In terms of network attacks, the behavior described in (1)
and (2) indicates that the vulnerability of the network depends
on the shape and size of the attacked region. Thus, extended
attacks on linear sets of occupied sites are more effective
than more compact attacks on k × k clusters of sites. As an
illustrative example, it is necessary to remove almost 3/5 of
the sites to disconnect a network by removing sets of 2 × 2
square tiles of occupied sites. The same effect can be achieved
by removing a little more than 2/5 of the sites using dimers
(k-mers with k = 2). Moreover, for k > 4, the lattice remains
connected even when the highest allowed concentration of
removed k2-mers is reached. The results shown in Fig. 7 are
consistent with those reported in Refs. [8,9], where it was
shown that the effectiveness of an attack depends on its degree
of correlation.

FIG. 10. (a) Log-log plot of (dP/d p)max as a function of L/k for
different values of k as indicated. Following Eq. (11), the slope of
each curve corresponds to (1 − β )/ν = 31/48. (b) Log-log plot of
χmax as a function of L/k for different values of k as indicated. The
slope of each line corresponds to γ /ν = 43/24.

C. Critical exponents and universality

In order to completely analyze the universality of the
problem, the critical exponents β and γ can be obtained
from the scaling behavior of the percolation order parameter
P = 〈SL〉/L2 and the corresponding percolation susceptibility
χ = (〈S2

L〉 − 〈SL〉2)/L2, respectively [1]. 〈·〉 means an average
over simulation runs. Thus,

P = L−β/νP(u), (11)

where u = |p − pc,k|L1/ν and P is the scaling function. At the
point where dP/d p is maximal, u = const and

(
dP

d p

)
max

= L(−β/ν+1/ν)P(u) ∝ L(1−β )/ν . (12)

The exponent γ can be determined by scaling the maxi-
mum value of the susceptibility. The behavior of χ at critical-
ity is χ = Lγ /νχ (u′), where u′ = (p − pc,k )L1/ν and χ is the
corresponding scaling function [1]. At the point where χ is
maximal, u′ = const and χmax ∝ Lγ /ν .

The data for (dP/d p)max and χmax are shown in Figs. 10(a)
and 10(b), respectively. The obtained values of the critical
exponents are β = 0.139(1) and γ = 2.38(2) (k = 2); β =
0.141(5) and γ = 2.40(3) (k = 3); and β = 0.138(1) and
γ = 2.39(2) (k = 4). So, as can be seen, simulation data are
consistent with the exact values of the critical exponents of
the ordinary percolation ν = 4/3, β = 5/36, and γ = 43/18,
which clearly indicates that this problem belongs to the same
universality class as the standard percolation problem [45].
This finding is expected since standard and inverse percolation
problems are based on the RSA model, which has very short-
range correlations.
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IV. CONCLUSIONS

In this paper, the inverse percolation properties created
by removing square tiles composed of k × k occupied sites
(k2-mers) from square lattices have been studied by extensive
numerical simulations complemented with finite-size scaling
theory.

The inverse percolation problem deals with how connec-
tivity varies during the dilution process of an initially fully
occupied lattice. The procedure starts with an initial config-
uration in which all sites of the lattice are occupied, and,
thereby, the opposite sides of the lattice are connected by
nearest-neighbor occupied sites. Then the system is diluted
by randomly removing k2-mers from the surface following a
RSA mechanism. In this framework, the jamming properties
are studied while the main goal is to find the minimum
concentration p for which the connectivity disappears; this
particular value is called the inverse percolation threshold pc,k .

On the other hand, p j,k is the coverage of the limit state,
in which no more objects can be removed from the lattice due
to the absence of nearest-neighbor clusters with appropriate
shape and size. As it happens when multisite occupancy is
considered, jamming coverage has a strong influence in the
properties of the system. In this case, the jamming dependence
on k was calculated as p j,k = 1 − p′

j,k [24,25], where p′
j,k is

the jamming dependence for the standard RSA problem of k2-
mers on square lattices [45].

In addition, the critical exponent characterizing the jam-
ming process, ν j , was measured for different values of k. In all
cases, the values obtained for ν j remain close to 1, confirming
that ν j = 2/d for RSA processes on d-dimensional Euclidean
lattices. The scaling properties of the jamming probability
were also investigated. By using data collapse analysis, we
found that this quantity behaves at criticality as W (p) =
W [(p − p j,k )L1/ν j ], where W is the corresponding scaling
function. As far as the authors know, this scaling behavior of
the jamming probability has not been previously reported in
the literature.

Once the limiting parameters p j,k were determined, the
percolation properties of the system were studied. We found
that the percolation threshold has a monotonic decreasing
dependence on k and pc,k can be obtained only for k = 2, k =
3, and k = 4. For k � 5 all jammed configurations are per-
colating states, and, consequently, the percolation transition
disappears from k � 5. This implies that for larger values of
k, the jamming critical concentration occurs before the perco-
lation phase transition and the system cannot be disconnected.
This finding contrasts with the results previously obtained

by removing straight rigid k-mers from square lattices [24].
In fact, in the case of linear k-mers, the percolation phase
transition occurs for the whole range of k sizes. Accordingly,
percolating and nonpercolating phases extend to infinity in the
space of the parameter k.

The obtained results were also exhaustively compared with
the ones corresponding to the standard jamming and perco-
lation problem of k2-mers on square lattices [45]. While the
standard percolation phase transition disappears for k � 4,
the inverse percolation phase transition still occurs for k = 4.
As mentioned in the paragraph above, the inverse percolation
phase transition is not possible for k � 5. These findings
indicate that, even though the jamming properties of the stan-
dard and inverse models are trivially symmetric, the inverse
percolation problem cannot be derived straightforwardly from
the standard percolation problem, and it deserves a detailed
treatment as presented here.

It is interesting to analyze the results obtained for inverse
percolation in terms of vulnerability and network attacks. In
this context, the present study reinforces the concept that the
vulnerability of the network depends on the shape and size
of the attacked region. We found here that extended attacks
on linear sets of occupied sites are more effective than more
compact attacks on k × k clusters of sites. These results are
consistent with those reported in Refs. [8,9], where it was
shown that the effectiveness of an attack depends on its degree
of correlation.

Finally, the accurate determination of critical exponents
(ν, γ and β) confirmed that the percolation phase transition
involved in the system, which occurs for k varying between 1
and 4, belongs to the same universality class as the standard
percolation problem.

Future efforts will be dedicated to developing a unifying
work exploring the asymmetry between standard and inverse
percolation, as well as global phase diagrams for different
shapes and networks within the RSA model.
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