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Using the replica approach and the cavity method, we study the fluctuations of the optimal cost in the random-
link matching problem. By means of replica arguments, we derive the exact expression of its variance. Moreover,
we study the large deviation function, deriving its expression in two different ways, namely using both the replica
method and the cavity method.
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I. INTRODUCTION

The application of replica theory [1] to the study of random
combinatorial optimization problems (RCOPs) has a long
tradition that started more than 30 years ago with the seminal
works by Orland [2] and Mézard and Parisi [3]. It became
immediately clear that methods borrowed from the theory of
disordered systems are very effective to study the average
properties of ensembles of RCOPs. Exact results have been
obtained, e.g., for mean-field versions of many RCOPs, such
as the matching problem [3], the traveling salesman problem
[4], K-SAT problems [5], graph partitioning [6], matching
enumeration in sparse graphs [7], constraint least-squares
problems [8], and many others. In the case of the matching
problem, expressions for the finite-size corrections to the
average optimal cost have also been obtained [9]. The parallel
success of the cavity method [1,10] inspired message-passing
algorithms for the solution of specific instances of RCOPs
[11].

In this paper, we study the deviations from the average opti-
mal cost (AOC) in a particular RCOP, the random-link match-
ing problem using both the replica and the cavity method.
Such an investigation is of methodological interest beyond the
analysis of the specific problem. Replica calculations for the
study of large deviations of thermodynamic-like functionals
in presence of disorder are quite rare in the literature. Indeed,
except for the analysis in Ref. [8], where the replica method
is applied to the study of large deviations of the minimum,
the results cited above mainly concern the typical properties
of the solutions only. On the other hand, the application of the
cavity method to the study of large fluctuations has not been
explored until now, with the exception of Ref. [12]. Here we
apply both approaches to the same problem, showing that they
lead to the same result.

We will study both the small fluctuations around the AOC
and the large deviations from it. In the matching problem we
assume that 2N vertices, labeled by the index i ∈ {1, . . . , 2N}

*gabriele.sicuro@for.unipi.it

are given, along with a positive weight wi j ∈ R+ for each pair
(i, j). We search for the symmetric matrix M = (mi j )i, j such
that the cost

CN [M] :=
∑
i< j

mi jwi j (1)

is minimized. The minimization has to be performed on the
set of matrices M such that

mji = mi j ∈ {0, 1} ∀i, j,
2N∑
i=1

mi j = 1 ∀ j. (2)

In the random-link version of the problem, the quantities wi j

are supposed to be independent and identically distributed
random variables, with probability density function ρ(w).
Using the replica theory, in Ref. [3] it has been proven that,
if limw→0 ρ(w) = 1, then

C := lim
N→+∞

E

[
min

M
CN [M]

]
= ζ (2)

2
, (3)

where we have denoted the average over all possible real-
izations by E[•], and ζ (z) is the Riemann ζ function. The
calculation was performed introducing a partition function

Zw(β ) :=
∑
{mi j}

2N∏
i=1

I

⎛
⎝ 2N∑

j=1

mi j = 1

⎞
⎠e−βNCN [M], (4)

where the indicator function I(•) is equal to 1 if its argument
is true and zero otherwise. From the expression above, the
replicated free energy can be derived,

�(n, β ) := − lim
N→+∞

lnE
[
Zn

w(β )
]

βnN
. (5)
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The functional �(n, β ) has been obtained, in the replica
symmetric hypothesis, in Ref. [3] and it is equal to

−βn�(n, β ) = −β

2

n∑
p=1

�(n + 1)

�(p)�(n − p + 1)
q2

p

+ 2 ln

[∫∫
dx dη

2π
(−iη)n

× exp

⎛
⎝iηx +

∞∑
p=1

xpqp

p!

⎞
⎠

⎤
⎦, (6a)

where the order parameters qp have to be specified using the
saddle-point condition

∂�(n, β )

∂qp
= 0 p ∈ N. (6b)

The asymptotic AOC is then recovered as the value of �

in the zero-temperature limit, taking the number of replicas n
going to zero,

C = lim
β→+∞

lim
n→0

�(n, β ). (7)

Observe that we should, in principle, take n → 0 first and
then β → +∞, but, as usual in replica calculations, we will
assume that the order of two limits can be safely inverted.
Here and in the following, we denote by CN := minM CN [M]
the instance-dependent optimal cost and by 
N (C) its distri-
bution. We expect ρN (C) to concentrate, for N → +∞, on
the asymptotic AOC C, limN 
N (C) = δ(C − C). Moreover,
we expect CN to satisfy a large deviation principle, i.e.,

− ln ρN (C)

N
= L(C) + O

(
1

N

)
, (8)

where L(C) is a strictly convex, positive function having
L(C) = 0, known as the Cramér rate function. In some sense,
L(C) measures how rare it is to find an optimal cost C �= C for
large values of N .

Our computation of the large deviation function L(C)
for the random-link matching problem starts exactly from
Eq. (6a). It is well known that the replicated average free-
energy n�(n, β ) contains information not only on the average
free energy but also on its fluctuations [13]. In particular, using
Eq. (5) it is possible to show that, for finite n, −nβ�(n, β ) is
the cumulant generating function for the free energy ln Zw(β )
[14]. This fact has been used, for example, by Parisi and Rizzo
[15] to extract the large deviation function in the Sherrington-
Kirkpatrick model. They confirmed the anomalous scaling of
fluctuations of the free energy in the RSB phase predicted,
near the critical temperature, by Crisanti et al. [14], on the
basis of a previous result by Kondor [16]. In the present
paper, we are interested in the fluctuation of the “ground-state
free energy” CN in the random-link matching problem, and
therefore we have to take β → +∞. The cumulant generating
function of the optimal cost is then obtained as

α�(α) := lim
β → +∞

nβ = α

nβ�(n, β ) = − lim
N→+∞

lnE[e−αNCN ]

N

= lim
N→+∞

1

N

∞∑
k=1

(−1)k−1 κkα
k

k!
, (9)

where κk is the kth cumulant of the random variable NCN =
limβ→+∞ β−1 ln Zw(β ) [14], the first order in α simply being
the asymptotic AOC, α�(α) = αC + o(α). If limN N−1κ2 is
finite and different from zero, i.e., κ2 = 2σ 2N with σ 2 =
O(1), then this implies that E[(CN − C)2] = σ 2N−1, i.e.,
small fluctuations of the optimal cost are Gaussian.

If α�(α) is differentiable and convex, by the Gärtner-Ellis
theorem the Cramér function of 
N (C) is obtained as the
Legendre-Fenchel transform of α�(α),

L(C) := − lim
N→+∞

ln 
N (C)

N
= inf

α
[α�(α) − αC]

= αC�(αC ) − αCC, (10a)

with αC such that

C = ∂[α�(α)]

∂α

∣∣∣∣
α=αC

. (10b)

Conversely, the cumulant generating function can be obtained
from the rate function using, once again, a Legendre-Fenchel
transform,

α�(α) = inf
C

[L(C) + αC] = L(Cα ) + αCα, (11a)

with Cα such that

α = ∂L(C)

∂C

∣∣∣∣
C=Cα

. (11b)

Intuitively, therefore, the quantity α−1 plays the role of a
“fluctuation scale” with respect to the deviation C − C. In-
deed, assuming L(C) strictly convex and non-negative, such
that L(C) = 0, then α = 0 corresponds to Cα = C. On the
other hand, being ∂CL(C) < 0 for C < C, it is clear that
positive values of α corresponds to negative fluctuations of
the cost, and negative values of α correspond to positive
deviations from the asymptotic optimal cost. In the following,
we will derive the exact value of σ 2, proving that the small
fluctuation of the optimal cost are indeed Gaussian, and we
will obtain an expression for the function �(α) that we will
solve numerically.

II. SMALL FLUCTUATIONS

Let us start from the computation of the variance of the
optimal cost. The small α expansion of α�(α) up to o(α2)
terms will provide us the first and the second cumulant of the
optimal cost, i.e., its mean and its variance. Due to the fact
that we are performing an expansion around α = 0, it is useful
to recall the expression of the saddle-point value of the order
parameter qp ≡ Qp in this particular case, i.e., for n → 0 and
β → +∞. It has been shown in Ref. [3] that introducing the
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function

G0(t ) :=
∞∑

p=1

(−1)p−1eβpt

p!
Qp, (12)

the saddle-point condition for n → 0 and β → +∞ reads

G0(x) = 2
∫ ∞

−x
e−G0(t )dt ⇒ G0(x) = ln(1 + e2x ). (13)

To obtain the expansion of �(α), let us start from the double
integral appearing in the argument of the logarithm in Eq. (6a),
to be evaluated on the saddle-point Qp for small α. We have∫∫

dx dη

2π
(−iη)neiηx+∑∞

p=1
xpQp

p!

= 1 +
∞∑

k=1

αk

βkk!

∫∫
dx dη

2π
lnk (−iη)eiηx+∑∞

p=1
xpQp

p! . (14)

Using now the representation of the logarithm

ln(x) =
∫ +∞

0

e−t − e−xt

t
dt

we can write

lim
β → +∞
βn = α

∫∫
dx dη

2π
(−iη)neiηx+∑∞

p=1
xpQp

p!

= 1 + α

∫
[θ (−h) − e−G0(h)]dh

+ α2

2

∫∫
dh1dh2[θ (−h1)θ (−h2) − θ (−h1)e−G0(h2 )

− θ (−h2)e−G0(h1 ) + e−G0(max{h1,h2})] + o(α2)

= 1 + ζ (2)

4
α2 + o(α2). (15)

Similarly, the first term in Eq (6a) can be written as

β

2

∞∑
p=1

�(n + 1)

�(p)�(n − p + 1)
Q2

p

= α

2

∞∑
p=1

(−1)p−1

[
1 − α

β
Hp−1 + o

(
α

β

)]
Q2

p

= α

2
ζ (2) − α2

2β

∞∑
p=1

(−1)p−1Hp−1Q2
p + o(α2). (16)

where Hp is the pth harmonic number. If we now use the fact
that Hp−1 = ∫ ∞

0
e−t −e−pt

1−e−t dt , then

lim
β → +∞

nβ = α

β

2

∞∑
p=1

�(n + 1)

�(p)�(n − p + 1)
Q2

p

= α
ζ (2)

2
+ α2

∫ +∞

−∞
dhe−G0(h)

∫ +∞

0
G0(h − t )dt + o(α2)

= α
ζ (2)

2
+ α2 ζ (3)

2
+ o(α2). (17)

Collecting all results we get

�(α) = ζ (2)

2
− ζ (2) − ζ (3)

2
α + o(α), (18)

implying that small fluctuations of the optimal cost in the
random-link matching problem are Gaussian, with a variance
given by

E[(CN − C)2] = ζ (2) − ζ (3)

N
+ o

(
1

N

)
. (19)

Recently Wästlund [17] has derived the variance of the
random-link assignment problem with exponentially dis-
tributed random weights on a complete bipartite graph. His
result, obtained using a purely probabilistic approach, coin-
cides with Eq. (19), apart from a global factor 4, due to the
fact that the optimal cost of the assignment problem is twice
the optimal cost of the matching problem for N → +∞. In
our calculation, only the assumption limw→0 ρ(w) = 1 for the
weight probability density function has been used.

III. LARGE DEVIATIONS VIA REPLICAS

In the previous section we have performed a small α

expansion to extract the variance of the optimal cost CN for
N 	 1. To get instead the large deviation function L(C), we
have to keep α finite. We follow two different approaches and
we compare then our results with numerical simulations. Let
us start from the replica method. Following our general recipe,
we derive the large deviation function starting from Eq. (6a),
writing down the saddle-point equation in the β → +∞ limit,
taking nβ = α fixed. We start considering α < 0 (we will
relax this assumption in our cavity calculation). Using the fact
that, for n ∈ (−1, 0),∫

(−iη)neiηxdη = −2�(n + 1) sin(nπ )

(−x)n+1
θ (−x), (20)

and defining as in Eq. (12)

Gn,β (t ) :=
∞∑

p=1

(−1)p−1Qpeβpt

p!
(21)

the argument of the logarithm can be rewritten as

∫∫
dx dη

2π
(−iη)n exp

⎛
⎝iηx +

∞∑
p=1

xpQp

p!

⎞
⎠

= −β�(n + 1) sin(nπ )

π

∫ 0

−∞
exp

⎛
⎝ ∞∑

p=1

xpQp

p!

⎞
⎠ dx

(−x)n+1

= −β�(n + 1) sin(nπ )

π

∫ +∞

−∞
e−nβt−Gn,β (t )dt . (22)

The saddle-point equation (6b) becomes

βp

(
n

p

)
Qp = 2

(−1)p

p!

∫ +∞
−∞ e(p−n)βt−Gn,β (t )dt∫ +∞
−∞ e−nβt ′−Gn,β (t ′ )dt ′ �⇒

Gn,β (x) = −2

+∞∫
−∞

Kn,β (x + t )e−nβt−Gn,β (t )dt

∫ +∞
−∞ e−nβt ′−Gn,β (t ′ )dt ′ , (23)
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where the function

Kn,β (u) :=
∞∑

p=1

eβup(n
p

)
βp(p!)2

(24)

appears. Observing now that (see Appendix)

lim
β → +∞

nβ = α

Kn,β (u) = θ (u)

(
1

α
− u

)
, (25)

the saddle-point equation can be written as

Gα (x) := lim
β → +∞

nβ = α

Gn,β (x)

= − 2α

Zα

∫ +∞

−x

(
x + t − 1

α

)
e−αt−Gα (t )dt, (26a)

where we have introduced

Zα := −α

∫ +∞

−∞
e−αt ′−Gα (t ′ )dt ′. (26b)

The equation above implies that limx→+∞ x−1Gα (x) = 2 for
any value of α, i.e., Gα (x) ∼ 2x for large x. Assuming α >

−2, this also implies that limx→−∞ Gα (x) = 0. By conse-
quence, the integral appearing in the expression of Zα con-
verges for α > −2 only and diverges otherwise. Using the
saddle-point equation (23) in Eq. (6a) we finally get

α�(α) = α

Zα

∫ +∞

−∞
Gα (t )e−αt−Gα (t )dt − 2 lnZα. (26c)

Equation (26a) can be solved numerically for a given value
of α, allowing then to evaluate α�(α) in Eq. (26c), whose
Legendre transform is the desired large deviation function
L(C). Using the properties of Gα derived above, it can be
seen that limα→−2+ α�(α) = −∞: The presence of such a
singularity gives us information on the large C behavior of the
Cramér function, i.e., it implies that limC→+∞ C−1L(C) = 2.
As anticipated, Eqs. (26) have been derived assuming −2 <

α < 0. To get an expression that can be prolonged to positive
values of α we will use the cavity method.

IV. LARGE DEVIATIONS VIA CAVITY

The equation for �(α) given by the replica method for
α ∈ (−2, 0] can be also obtained using the cavity method
and actually extended to positive values of α. The starting
point is the cavity condition for the occupancy of an edge
in the random-link matching problem. In particular, in the
cavity approach, each edge (i, j) is associated to its weight wi j

and to two cavity fields, φi and φ j on its vertices, containing
information on the rest of the graph, in such a way that the
occupancy mi j of the the edge is distributed as

P(mi j ) = exp[−βmi j (Nwi j − φi − φ j )]

1 + exp[−β(Nwi j − φi − φ j )]
. (27)

In the β → +∞ limit, an edge is occupied if, and only if,
Nwi j < φi + φ j . At zero temperature and in the large-N limit,

the cavity fields satisfy the following equation [4,18,19]:

φ0 = min
k∈∂0

(Nwk0 − φk ). (28)

Here ∂0 is the set of neighbors of the node 0. The mate node
i∗ of 0 is such that

i∗ = arg min
k∈∂0

(Nwk0 − φk ). (29)

In Refs. [4,18,19] the previous equations have been studied
and solved. The AOC predicted by the cavity method coin-
cides with the one obtained using the replica approach.

The recurrence relation for the cavity fields can be also
used to extract information on the fluctuations and evaluate
α�(α). For the sake of simplicity, let us start from a different
version of the problem, i.e., the random-link matching prob-
lem on a sparse graph, and in particular on a Bethe lattice, and
let us follow the approach of Rivoire [12] for the study of large
deviation on sparse topologies. In this case, we are interested
in solving our problem on a graph having 2N vertices, each
one of them having coordination z: We will later take the
limit z → 2N − 1. Taking this limit might sound dangerous,
because we apply a result obtained for a sparse topology to
a dense one. However, the random-link matching problem
is an “effectively sparse” problem: Given a fully connected
topology, the probability that a given node is connected, in the
optimal matching, to its nth-nearest neighbor is exponentially
small in n [19]. We will denote by Lz(C) the large deviation
function for random-link matching problem on the Bethe
lattice, so that L(C) = limz→+∞ Lz(C).

To obtain an expression for it, we proceed as usual in
the cavity approach, i.e., starting from an intermediate graph
having z randomly chosen (cavity) nodes with coordination
z − 1, and all the other nodes with coordination z.

Let us denote by L̂z the large deviation function corre-
sponding to the random-link matching problem on such a
topology.

We can recover the “correct” Bethe lattice topology in two
ways. We can, for example, connect a new node to the z cavity
nodes.

The optimal cost will be shifted by a certain amount N−1ε in
such a way that the probability density function of the optimal
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cost satisfies the equation

e−(N+1/2)Lz (C) =
∫

e
−NL̂z

(
N+1/2

N C−ε
)

pv (ε)dε

� e−NL̂z (C)+ α
2 C

∫
e−αNε pv (ε)dε, (30)

where α := −∂CL̂z(C) and pv (ε) is the distribution of the
energy shift ε due to a vertex addition.

Another possibility is to add z/2 edges.

We obtain in this case the following relation:

e−NLz (C) =
[ z/2∏

k=1

∫
pe(εk )dεk

]
e−NL̂z(C−∑

k εk )

� e−NL̂z (C)

[∫
pe(ε)e−αNεdε

] z
2

, (31)

where pe(ε) is the distribution of the energy shift ε due to an
edge addition. Taking the ratio of the two expressions above,
we obtain an equation for Lz(C) at the leading order in N ,
namely

α�(α) ≡ Lz(C) + αC = lim
N

{
z ln

[∫
pe(ε)e−αNεdε

]

− 2 ln

[∫
e−αNε pv (ε)dε

]}
. (32)

Taking z = 2N − 1 ≈ 2N we obtain the expression for our
case. To evaluate the previous quantity, let us introduce the
joint distribution pv (φ, ε) of the cavity field entering in
the added node and of the energy shift, such that pv (ε) =∫

pv (φ, ε)dφ. We define the reweighted distribution of the
cavity field as

pα (φ) := 1

Zα

∫
e−αNε pv (φ, ε)dε, (33)

with Zα proper normalization constant. In our case

pv (φ, ε) ≡ pv (ε)δ

(
φ

N
− ε

)
,

because the cost shift due to the addition of a node coincides
with the incoming cavity field, see Eq. (28). If we denote by

πα (u) :=
∫ +∞

0
pα (ŵ − u)dŵ,

then the distribution of the cavity field can be rewritten as

pα (φ) = 1

Zα

∫
pv (φ, ε)e−αNεdε = pv (φ/N )e−αφ

Zα

= 2e−αφπα (φ)

Zα

[
1 − 1

N

∫ φ

−∞
πα (χ )dχ

]2N−1

, (34)

where we have used Eq. (28) to express pv in terms of πα . In
the N → +∞ limit we obtain an equation for pα ,

pα (φ) = 2e−αφπα (φ)

Zα

exp

[
−2

∫ φ

−∞
πα (χ )dχ

]
. (35)

Moreover, because of Eq. (27), the energy cost due to the
addition of an edge

pe(ε) =
∫∫

dφ1dφ2 pα (φ1)pα (φ2)

×
∫ +∞

0
dw ρ(w)δ

[
ε − min

(
0,w − φ1 − φ2

N

)]
, (36)

and therefore, by means of an integration by parts, we get for
large N

α�(α) := αC + L(C) = −2 lnZα

+ α

Zα

∫∫
dφ1dφ2 pα (φ1)pα (φ2)

×
∫ ∞

0
dw we−α(w−φ1−φ2 )θ (φ1 + φ2 − w). (37)

Note that, until now, no assumptions have been made on the
range of values of α, except the implicit ones about the fact
that the quantities above are well defined and convergent: The
cavity expression can be used therefore for both positive and
negative values of α, provided that the involved quantities are
finite.

It can be seen that the expression in Eq. (37) is equivalent
to the one given in Eq. (26c) in its range of validity. Indeed,
introducing the function

Gα (φ) := 2
∫ +∞

0
ŵpα (ŵ − φ)dŵ, (38)

Eq. (35) simplifies as

pα (φ) = 1

Zα

dGα (φ)

dφ
e−αφ−Gα (φ), (39)

and therefore we can write, using Eq. (38), a self-consistent
equation for the function Gα (φ) that is found to be identical
to Eq. (26a), proving that the function Gα introduced here
is the same appearing in the replica approach. Repeating the
arguments presented in the replica derivation, we obtain that
the integrals are finite for α > −2. Substituting Eq. (39) in
Eq. (37), simple manipulations give us the same expression
presented in Eq. (26c), the main difference being that, in the
obtained formula,

Zα =
∫

e−αφ pv (φ)dφ =
∫

e−αφ dGα (φ)

dφ
e−Gα (φ)dφ. (40)

If we further restrict ourselves to negative values of α, then
an integration by parts allows us to write Zα in the same
form given in Eq. (26a), proving the equivalence of the two
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−4

−2

0

2

α

α
Φ

(α
)

ζ(2)
2

α

N = 40

N = 60

N = 100

Cavity

FIG. 1. Cavity and numerical results for the α�(α) in the
random-link matching problem. The cavity results have been ob-
tained by means of a population dynamics algorithm, using a pop-
ulation of 105 fields. The numerical data have been obtained instead
from 1010 instances for each value of α and N : For large N the
finiteness of the number of instances makes the curves going to
αζ (2)/2 because of the concentration of the measure.

approaches and implicitly providing us a prolongation of the
replica result.

V. NUMERICAL RESULTS

We have integrated Eq. (37) by means of a population
dynamics algorithm, and we have compared our results with
the value of α�(α) obtained by numerical simulations, per-
formed solving a large number of instances of the problem.
In our numerical simulations, we assumed ρ(w) = e−w. The
quantity α�(α) can be evaluated directly, using the fact
that α�(α) = − limN→∞ N−1 lnE[e−αNCN ]. The agreement is
very good in the neighborhood of the origin, as can be seen in
Fig. 1, where the cavity and numerical results are compared.
For reference, we have plotted the tangent to the curve in the
origin, whose slope coincides with the AOC, ζ (2)/2. We have
discarded the data points where finite-sample effects appear
for larger values of |α|; obviously, better estimates can be
obtained running an exponentially large number of instances
in the size of the system. Finite-size effects still appear in
the evaluation of the derivative of α�(α) (that has been also

−0.5 0 0.5 1 1.5 2 2.5

0.5

1

π2

12

α

E
[C

e
−

α
N

C
]

E
[e

−
α

N
C

]

N = 40

N = 60

N = 100

FIG. 2. Plot of the derivative of α�(α) obtained from numerical
simulation compared with the theoretical prediction obtained using
cavity.
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FIG. 3. Function L(C) obtained performing the Legendre trans-
form of our cavity results, compared with the quadratic approxima-
tion (dashed) provided by the results in Sec. II.

directly evaluated as ∂α[α�(α)] = limN→∞ E[CN e−αNCN ]
E[e−αNCN ] ) for

α < 0, larger sizes being closer to the theoretical predictions,
see Fig. 2. Finally, the theoretical prediction near α = −2
becomes noisy and less reliable, because of the approaching
of the divergence. In this regime, the convergence of the
cavity fields distribution fails and an accurate estimation of
α�(α) is more challenging. In Fig. 3 we have plotted the
Legendre transform of our cavity results, that is, the desired
large deviation function. The curve is compared with the
quadratic approximation in the origin, corresponding to the
Gaussian small-fluctuation behavior.

VI. CONCLUSIONS

Using the replica approach we have evaluated the variance
of the average optimal cost for the random-link matching
problem on the complete graph, assuming a distribution of the
weights such that limw→0 ρ(w) = 1. Our result is in agree-
ment with a previously obtained expression by Wästlund,
proving that the small fluctuations of the optimal cost around
its asymptotic AOC are Gaussian. We have then derived an
expression for the Legendre transform α�(α) of the Cramér
function L(C) using both the replica theory (for positive cost
fluctuation) and the cavity method. The cavity formula, in
particular, has been obtained for the random-link matching
problem on a generic sparse graph having fixed coordination,
and provides a recipe for the numerical evaluation of α�(α).
In the fully connected case, our results also show that α�(α)
diverges for α → −2, implying that limC→+∞ C−1L(C) = 2.
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APPENDIX: DERIVATION OF Eq. (25)

To prove the limit in Eq. (25), we can start using the fact
that

(n
k

) = (−1)k
(−n+k−1

k

)
. The series can be written as

∞∑
p=1

1(α/β

p

) eβup

(p!)2
= �(−α/β)

β

∞∑
p=1

1

�(p − α/β)

(−eβu)p

p!p
. (A1)

We have to compute the β → +∞ limit at nβ = α

fixed. The coefficient in front of the series has limit
limβ→+∞ β−1�(−α/β) = −1/α. On the other hand,

lim
β→+∞

∞∑
p=1

1

�(p − α/β)

(−eβu)p

p!p
+ θ (u)

= lim
β→+∞

∞∑
p=1

[
�(p)

�(p − α/β)
− 1

]
(−eβu)p

(p!)2
, (A2)

where we have used the fact that

lim
β→+∞

∞∑
p=1

(−eβu)p

(p!)2
= −θ (u). (A3)

We can write the following expansion:

�(p)

�(p − α/β)
− 1

=
∞∑

k=1

(−α/β)k

k!
Bk (ψ̂0(p), ψ̂1(p), . . . , ψ̂k−1(p)), (A4)

where we have introduced the (opposite) polygamma function
ψ̂n(z) := −ψn(z)

ψn(z) := dn+1

dzn+1
ln �(z) = (−1)n+1

∫ ∞

0
t n e−tz

1 − e−t
dt (A5)

and the (complete) exponential Bell polynomials

Bk (x1, . . . , xk ) :=
(

∂

∂t

)k

exp

⎛
⎝ ∞∑

j=1

x jt j

j!

⎞
⎠

∣∣∣∣∣∣
t=0

. (A6)

The expansion above is obtained applying the Faà di Bruno
formula for the derivative of a composed function ∂n

x ( f ◦
g)(x) with f (x) ≡ ex and g(x) ≡ − ln �(x). If we now as-
sume B0 ≡ 1, then the Bell polynomials satisfy the recurrence
relations [20]

Bk+1(x1, . . . , xk+1) =
k∑

i=0

(
k

i

)
Bk−i(x1, . . . , xk−i )xi+1. (A7)

We will show now by induction that, for k � 2,

lim
β→+∞

∞∑
p=1

Bk (ψ̂0(p), . . . , ψ̂k−1(p))
βk

(−eβu)p

(p!)2
= 0. (A8)

For k = 1 we have

lim
β→+∞

∞∑
p=1

ψ̂0(p)

β

(−eβu)p

(p!)2

= lim
β→+∞

∫ +∞

0

J0(2eβ u−t
2 ) − 1

1 − e−βt
dt = −uθ (u). (A9)

The k = 2 case follows straightforwardly. Indeed,

lim
β→+∞

∞∑
p=1

B2(ψ̂0(p), ψ̂1(p))
β2

(−eβu)p

(p!)2

= lim
β→+∞

∞∑
p=1

ψ̂2
0 (p) + ψ̂1(p)

β2

(−eβu)p

(p!)2

= −
∫ +∞

0
dt

∫ +∞

0
dτ θ (u − t − τ )

+
∫ +∞

0
dt tθ (u − t ) = 0. (A10)

Let us suppose now that the statement is true for generic k > 2
and let us consider it for k + 1. Then we have

∞∑
p=1

Bk+1(ψ̂0(p), . . . , ψ̂k (p))
βk

(−eβu)p

(p!)2
=

k∑
i=0

(
k

i

) ∞∑
p=1

Bk−i(ψ̂0(p), . . . , ψ̂k−i−1(p))ψ̂i(p)

βk+1

(−eβu)p

(p!)2
. (A11)

The inner sum can be written as∫ +∞

0
dt

(−1)it i

1 − e−βt

∞∑
p=1

Bk−i(ψ̂0(p), . . . , ψ̂k−i−1(p))
βk−i

(−eβ(u−t ) )p

(p!)2
, (A12)

implying that

∞∑
p=1

Bk+1(ψ̂0(p), . . . , ψ̂k (p))
βk

(−eβu)p

(p!)2
=

k−2∑
i=0

(
k

i

)∫ +∞

0
dt

(−1)it i

1 − e−βt

∞∑
p=1

Bk−i(ψ̂0(p), . . . , ψ̂k−i−1(p))
βk−i

(−eβ(u−t ) )p

(p!)2

+k(−1)k−1
∫ +∞

0
dt

t k−1

1 − e−βt

∞∑
p=1

ψ̂0(p)

β

(−eβ(u−t ) )p

(p!)2
+ (−1)k

∫ +∞

0
dt

t k

1 − e−βt

∞∑
p=1

(−eβ(u−t ) )p

(p!)2
. (A13)

The last two terms in the previous expression in the β → ∞ tend to zero

−k(−1)k−1
∫∫ +∞

0
t k−1θ (u − t − τ )dτdt + (−1)k−1

∫ +∞

0
dt t kθ (u − t ) = 0. (A14)
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By the induction hypothesis, the remaining k − 2 contributions are infinitesimal as well for β → +∞, and the thesis is proved.
We can restrict therefore the expansion in Eq. (A4) to the k = 1 term in the β → +∞ hypothesis. We have

lim
β→+∞

∞∑
p=1

[
�(p)

�(p − α/β)
− 1

]
(−eβu)p

(p!)2
= αuθ (u). (A15)

The relations above finally give us the asymptotic in Eq. (25).
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