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Nonlinear dissipation and nonequilibrium gas flows
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Rayleigh and Onsager showed that in the regime where the flows are small and the thermodynamic forces
vary slowly, the entropy generation rate is linearly related to the flows, and the flows are related to the gradient
of the forces. Hence, the Rayleigh-Onsager dissipation is only applicable to linear irreversible thermodynamics.
We introduce the extension of Rayleigh-Onsager dissipation to highly nonlinear dissipation to treat nonlinear
irreversible thermodynamics. This extension fulfills the positive entropy generation criterion. To demonstrate
this nonlinear dissipation, we apply it to obtain the generalized hydrodynamics from the kinetic theory according
to Eu theory. Specifically, it provides an alternative evolution for a stress tensor and heat flux. The challenging
problems of nonlinear irreversible thermodynamics, as represented by nonequilibrium flows, are investigated.
The result implies that this study provides a promising alternative to obtain a unified framework for modeling
both equilibrium and nonequilibrium gas flows.

DOI: 10.1103/PhysRevE.100.032101

I. INTRODUCTION

In 1872, Boltzmann described the statistical behavior
of kinetic systems governing particle motion at molecular
scales [1]. His description considered a probability distribu-
tion function f for the position and momentum of a typical
particle at the position r, the velocity of which is nearly
equal to a given velocity vector v at time t . In the last
century, Curtiss [2] added the moment of inertia I and angular
momentum j to consider diatomic molecules in particular,
leading to the Boltzmann-Curtiss equation at the molecular
level (in the absence of external forces for a gas):[

∂

∂t
+ v · ∇ + j

I

∂

∂ψ

]
f (v, r, t ) = R[ f ]. (1)

In this equation, ψ , j, and R[ f ] represent the azimuthal angle
associated with the orientation of the molecular level, the
magnitude of the angular momentum vector, and the collision
integral of the interparticle interactions, respectively,

R[ f ] = 1

2πm2
ab

∫
( f ∗

a f ∗
b − fa fb)

(
jb jr

|vb − va|
)

d�a, (2)

where mab denotes the reduced mass of the collision pair a
and b; the superscript asterisk ∗ stands for the postcollision
value. The collision volume element is defined by d�a =
sin βbdψadαbdβbdψbd jbdγrd jr , where ψa and ψb are the
values of phase angles γa and γb, respectively, at the point
of closest approach of the collision pair. The Euler angles
α and β are determined by the condition of the molecular
rotation in the rotated frame. j is aligned with the z axis.
For details, we refer the reader to Curtiss’ paper [2], which
contains the derivation of the collision integral for a rigid
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rotator gas. The important point to note about (1) is that
R[ f ] extends the collision integrals in the original Boltzmann
equation for monatomic gases to rigid rotator fluids, but it still
remains irreversible and satisfies the Boltzmann H-theorem.
Additionally, since it breaks time-reversal invariance symme-
try and hence is irreversible, it makes it possible to formulate a
thermodynamically consistent hydrodynamics theory. This is
the principal reason why we choose the Boltzmann-Curtiss ki-
netic equation (1) to derive the unified framework of transport
processes in the rigid rotator fluid.

The nonconserved variables 	(k) such as the viscous
stress tensor �, excess normal stress 
, and heat flux
vector Q can be defined by molecular expressions as
given by � = 〈h(1) f 〉, h(1) = m[cc](2); 
 = 〈h(2) f 〉, h(2) =
1
3 mc2 − p

n ; Q = 〈h(3) f 〉, h(3) = ( 1
2 mc2 + Hrot − mĥ)c. Here,

〈〉 denotes the integration over the velocity space, c is the
particular velocity of the gas particle defined by c = v − u,
Hrot denotes the rotational Hamiltonian of the molecule, m is
the molecular mass, p is the pressure, and n is the number
density. ĥ represents the enthalpy density per unit mass, and
the symbol [A](2) denotes the traceless symmetric part of
second-rank tensor A.

The general evolution equations of nonconserved vari-
ables can be obtained by multiplication of the Boltzmann-
Curtiss equation (1) with subsequent integration over the ve-
locity space, yielding 〈h(k) ∂ f

∂t 〉 + 〈h(k)v · ∇ f 〉 + 〈h(k) j
I

∂ f
∂ψ

〉 =
〈h(k)R[ f ]〉. Using v = c + u, ∇ · v = 0, the mass conser-
vation equation and substantial time derivative D/Dt , this
general evolution equation can be expressed as ρ D

Dt ( 〈h(k) f 〉
ρ

) +
∇ · 〈ch(k) f 〉 − Z (k) = �(k). Here, ρ is the density. 〈ch(k) f 〉,
the flux of 〈h(k) f 〉, denotes the high-order moments and

can be neglected. �(k) = 〈h(k)R[ f ]〉 is the dissipation term
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that accounts for the energy dissipation accompanying the
irreversible process. Z (k) = 〈 f ( D

Dt + c · ∇ + j
I

∂
∂ψ

)h(k)〉 rep-
resents the kinematic term arising from the hydrodynamic
streaming effect, which can be expressed as the shear stress,
as given by

Z (�) =
〈

f
D

Dt
h(1)

〉
+ 〈 f c · ∇h(1)〉 +

〈
f

j

I

∂

∂ψ
h(1)

〉

= −2(p + 
)[∇u](2) − 2[� · ∇u](2)

Z (
) = −2γ ′(� + 
I) : ∇u − 2

3
γ ′∇ · u

Z (Q) = −Q · ∇u + � · Cp∇T − (p + 
)Cp∇T,

where γ ′ = (5 − 3γ )/2, where γ is the specific-heat ratio,
Cp is the specific heat at constant pressure, and T is the
temperature.

Finally, the constitutive equations, all of which are derived
from the Boltzmann-Curtiss equation, can be expressed in
compact form as

ρ
D	(k)/ρ

Dt
− Z (k) = 
(k)(k � 1). (3)

II. NONLINEAR DISSIPATION, RAYLEIGH-ONSAGER
DISSIPATION, AND ENTROPY GENERATION

The local equilibrium Maxwell distribution function is
defined as

f (e) = n

(
m

2πkBT

)3/2

exp(Z0) = exp(Z0)

n−1〈exp(Z0)〉 , (4)

where kB is the Boltzmann constant and Z0 = − 1
kBT [ 1

2 mc2 +
Hrot]. We note that 〈 f (e)〉 = n, and we then have ( m

2πkBT )3/2 =
1

〈exp(Z0 )〉 . In view of the H-theorem, it is convenient to search
for the form of the nonequilibrium distribution function,
namely the thermodynamic branch, in an exponential form.
Additionally, the exponential form can be proved based on the
maximum entropy principle [3]. The nonequilibrium effect is
the source of the dissipation term and thus gives rise to the
viscous stress, excess normal stress, and heat flux. Then, we
use the exponential forms of the viscous stress, excess normal
stress, and heat flux Z1 = − 1

kBT [
∑

X (k) � h(k)] to represent
the nonequilibrium part [4,5],

f = exp(Z0) exp(Z1)

n−1〈exp(Z0) exp(Z1)〉 . (5)

We note that exp(Z0) is the equilibrium term and exp(Z1)
is the nonequilibrium term. The unknown conjugate vari-
ables X (k) can be obtained by generalizing the equilibrium
Gibbs ensemble theory that provides the relationship be-
tween the thermodynamic variables and the partition func-
tions to nonequilibrium processes. Such a nonequilibrium
generalization was previously developed [4]. Then, X (k) can
be calculated in terms of the macroscopic flux 〈h(n) f 〉.
The leading-order approximate solutions are known to be
X (1) = − �

2p , X (2) = − 3
2



p , X (3) = − Q

pCpT . This form of
the nonequilibrium distribution function can be proven to ful-
fill the conservation laws and the positive entropy generation

criterion. The entropy generation σent can be obtained as

σent = −kB〈ln f R[ f ]〉 = 1

T

∑
X (k)�(k). (6)

Additionally, σent can be derived by rewriting the nonequilib-
rium distribution function f as

f = f (e) exp(−x). (7)

Here, exp(−x) = exp(Z1 )〈exp(Z0 )〉
〈exp(Z0 ) exp(Z1 )〉 . If we use subscripts 1 and 2

to denote the collision pair of the molecule, we obtain

σent = −kB〈ln f R[ f ]〉

= 1

4
kB

∫
f (e1 ) f (e2 )(x12 − x∗

12)[exp(x∗
12) − exp(x12)]

= Z2/4T 〈〈(x12−x∗
12)[exp(x∗

12)− exp(x12)]〉〉
= Z2/T κ2q(κ, κ1, κ2, . . . )

= Z2/T κ2q(κ ). (8)

Here, Z2 =
√

2p2d2√
mkBT

. d and m denote the diameter of the

molecule and the molecular mass, respectively. κ = 1
2 〈〈(x12 −

x∗
12)〉〉 1

2 . κi(i � 1) are high-order terms and they can be ne-
glected. If x12 → x∗

12, then we obtain

lim
κ→0

κ2q(κ ) = κ2. (9)

Thus, κ2 should be a Rayleigh-Onsager-type function [6],

κ = 1√
Z2

[
��� : ���

2η
+ γ ′ 


2

ηb
+ Q · Q

λT

]1/2

. (10)

Combining Eqs. (6), (8), and (10), we obtain

∑
X (k)�(k) =

[
��� : ���

2η
+ γ ′ 


2

ηb
+ Q · Q

λT

]
q(κ ) (11)

and we then have⎡
⎢⎣

�(�)

�(
)

�(Q)

⎤
⎥⎦ =

⎛
⎜⎝

− p
η
���q(κ )

− 2
3γ ′ p

ηb

q(κ )

− pCp

λ
Qq(κ )

⎞
⎟⎠ (12)

and

σent = 1

T

[
��� : ���

2η
+ γ ′ 


2

ηb
+ Q · Q

λT

]
q(κ ) � 0. (13)

The η, ηb, and λ are the Chapman-Enskog shear viscosity,
bulk viscosity, and thermal conductivity, respectively. We note
that the molecular-based derivation of the nonlinear entropy
generation Eqs. (13) has been well-developed by Peters [7,8].
The nonlinear nature of the entropy generation follows phe-
nomenological arguments as shown in the textbook by Bird,
Stewart, and Lightfoot [9].

Following Peters’s approach [7,8] to the nonequilibrium
entropy conservation, we introduce the Chapman-Enskog per-
turbation expansion fi = f (e)(1 + φi ), where φi are the pertur-
bation functions. The derivation of the perturbation functions
requires the conservation of mass, momentum, and energy
for the f (e) distribution. The first-order perturbation function,
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φ1, can be expressed in terms of velocity and temperature
gradients as

φ1 = −A : ∇u − 1

T
B · ∇T, (14)

where A and B are obtained by an expansion in series of
Sonine polynomials. According to Peters’s nonequilibrium
entropy conservation [8], we obtain the entropy generation
term in dilute gases,

σent =
∫

(A : ∇u) f (e)([mcc](2) : ∇u)
1

T
dv

−
∫

(B · ∇T ) f (e)

(
5

2
− (mc)2

2kBT

)
(mc · ∇T )

1

T 2
dv.

(15)

As derived in Eq. 40 in [8], it can be shown that this Boltz-
mann entropy generation yields the phenomenological result

σent = 1

T
(� : ∇u) − 1

T 2
(Q · ∇T ). (16)

Also, it can be expressed as

σent = 1

T

(
� : �

2η
+ Q · Q

λT

)
. (17)

It implies that Chapman-Enskog expansion represents the low
κ limit of Eq. (13). This derivation has been well developed
by Peters, and we refer the reader to Peters’s papers [7,8].

If we use the BGK operator [10] and the approximation
of molecular relaxation time τ0 = η

p , the dissipation term �(k)

can be expressed as

⎡
⎢⎣

�(�)

�(
)

�(Q)

⎤
⎥⎦ =

⎡
⎢⎢⎣

〈
h(1) f (e)− f

τ0

〉
〈
h(2) f (e)− f

τ0

〉
〈
h(3) f (e)− f

τ0

〉
⎤
⎥⎥⎦ =

⎡
⎣ − p

η
���

− 2
3γ ′ p

ηb



− pCp

λ
Q

⎤
⎦. (18)

This also implies that the linear BGK operator represents the
low κ limit of the dissipation term �(k).

The present model [Eqs. (11) and (12)] extends the dissipa-
tion terms �(n) from the linear Rayleigh-Onsager dissipation
to the high nonlinear form by a factor of q(κ ). This form
renders a clear, physical interpretation of entropy production:
entropy production is a direct measure of the stress and heat
dissipation arising from molecular collisions in the system.
The factor q(κ ) in the dissipative terms is defined by the
Rayleigh-Onsager dissipation function

q(κ ) ≡ sinhκ

κ
=

(
1 + 1

3!
κ2 + 1

5!
κ4 + · · ·

)
, (19)

κ plays an important role in connecting the equilibrium and
nonequilibrium and then in connecting molecular-level and
continuum-level fluids. We note that the physical meaning of
q(κ ) is obvious because it denotes the linear “1” and nonlinear
“ 1

3!κ
2 + 1

5!κ
4 + · · · ” parts of the dissipation term.

To show the relevance of the present model to the nonequi-
librium gas flows in the simplest manner, we assume that the
shear stress evolution is not coupled to the evolutions of 


and Q,

ρ
D�/ρ

Dt
= − 2p[∇u](2) − 2[� · ∇u](2) − p

η
�q(κ ),

and we appropriately reduce the variables of the evolution
equation for �, which consequently takes the following
form:

D�

Dt
=Nδ

(
�NSF +

[
�

p
· �NSF

](2)
)

− Nδ�q(κ )

or the dimensionless steady-state form,

� =�NSF + Nδ

(
�NSF +

[
�

p
· �NSF

](2)
)

−Nδ�[q(κ ) − 1],

where �NSF = −2η[∇u](2) is the Newton viscous stress, as

it appears in the NSF framework. Nδ =
√

2γ

π
MaKn, where

Ma is the Mach number and Kn is the Knudsen number.
All variables in the equation are dimensionless reduced vari-
ables, including Rayleigh dissipation function κ . Therefore,
as q(κ ) = 1 + ∑n

i=1
1

(2n+1)!κ
2n [see Eq. (19)], the evolution

equation for � tends to the steady-state form

� = �NSF + Nδ[ f1(�) − o(κ2) f2(�)], (20)

where f1(�) = �NSF + [�
p · �NSF](2) and f2(�) =

�[q(κ ) − 1]. Note that as Kn → ∞, Nδ → ∞, then � → 0.
Meanwhile, as Kn → Kn0, f1(�) → o(κ2) f2(�), then
� → �NSF. In fact, when Kn decreases, the viscous stress
tends to the Newton viscous stress, which shows that the flow
becomes continuum (laminar). This feature is also shown in
Fig. 1.

The balance equations for mass ρ, momentum ρu, and
energy ρe can be derived by differentiating the statistical for-
mulas for these three quantities with time and then substituting
the Boltzmann-Curtiss equation. These processes and equa-
tions are very similar to those in the NSF framework. They do
not have contributions from the Boltzmann collision integral
because the three quantities are conserved variables for which
the molecular expressions are the collisional invariants of the
Boltzmann collision integral. The generalized hydrodynam-
ics [4] can be obtained by the balance equations (21), (22),
and (23) of the conserved variable and constitutive Eqs. (6),

ρ
D(1/ρ)

Dt
= ∇ · u, (21)

ρ
Du
Dt

= −∇ · (� + �), (22)

ρ
De

Dt
= −∇ · Q − (� + �) : ∇u. (23)

III. RESULTS

Direct simulation Monte Carlo (DSMC) models of fluid
flows using simulation molecules that represent a large num-
ber of real molecules in a probabilistic simulation are used to
solve the Boltzmann kinetic equation. DSMC is widely used
to study highly nonequilibrium conditions, such as rarefied
gas dynamics [12,13]. In a typical application, the particle
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FIG. 1. Comparisons of the shear viscous stress (top) and heat
flux (bottom) in the present model; NSF and DSMC results via the
Bird code [11].

simulators may have internal degrees of freedom. Two rota-
tional degrees of freedom are applied for diatomic gas in this
study. As the first case study, we provide comparisons of one-
dimensional dimensionless viscous stress (one-dimensional
shock for nitrogen gas) in the present study at a steady state,
the classical Navier-Stokes-Fourier (NSF) framework, and the
particle-based DSMC results via the Bird code [11]. The
following observations are made:

(i) The present model shows nonlinear relations of viscous
stress that are quite different from the NSF equation. However,
the present model has the same linear relations as those of
Newton’s laws near the equilibrium state. In other words, the
NSF equation can be regarded as a low-order approximation
of the present model.

(ii) The present model has different nonlinear trends for
viscous stress. This finding was validated by a DSMC model,
as shown in Fig. 1. This feature indicates that the present
model can be used to describe the gas flow in the far-from-
equilibrium state.

(iii) The present model also shows nonlinear relations for
the heat flux, which are similar to those of Fourier’s laws near

NSF
The present study
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FIG. 2. 1D shock structure problem: computed inverse shock
density thickness profile of argon (top) and nitrogen (bottom) gas,
and the experimental data [14–16].

the equilibrium state. By contrast, this result indicates that the
low trends are similar to those of NSF, indicating that NSF
overestimates the heat flux in far-from-equilibrium states.

In physics, a shock is a type of propagating disturbance
that moves faster than the local speed of sound in a medium.
Unlike solitons, the energy and speed of a shock alone dissi-
pate relatively quickly with distance. When a shock passes
through matter, energy is preserved but entropy increases.
Thus, a shock is a strongly irreversible process and a typical
nonequilibrium flow. The shock density thickness is known to
be an important parameter regarding the accuracy of models;
therefore, the solutions of the present model for argon and
nitrogen gas are compared experimentally [14–16] in Fig. 2. It
is shown that the present model can capture the shock density
thickness. Excess studies on the shock density thickness and
shock vortex interaction can also be found in our previous
work [17,18].

The Knudsen number (Kn) is a dimensionless number
defined as the ratio of the molecular mean free path length
to a representative physical length scale. The Knudsen num-
ber helps determine whether the fluid is in a continuum or
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FIG. 3. The drag coefficients of cylinder vs Knudsen numbers at
Ma = 2.0.

rarefied (nonequilibrium) region. We applied the Langmuir
slip boundary conditions [19] in the present approach and the
NSF framework. Figure 3 shows the drag coefficients as a
function of the Knudsen number. In addition, the experiments
of Maslach [20] are also plotted for comparison. The results
of NSF agree well with the experiments at a Knudsen number
less than 0.1. However, it overpredicts the drag coefficients for
the high Knudsen number cases. When the Knudsen number
becomes appreciable and greater than 0.1, the NSF fails to
describe the nonequilibrium gas flows. The agreement from
the present study is expected to be observed with experiments
over the whole studied region.

IV. DISCUSSION

Rayleigh [21] and Onsager [6] showed that the entropy
generation rate is linearly related to the flows, and the flows
are related to the gradient of the forces when the irreversible

process are linear and thus the system is near equilibrium,
which leads to the Rayleigh Onsager dissipation. The sec-
ond law of thermodynamics requires that the matrix in the
relation of the flows and the force gradient be positive-
definite. Statistical mechanics involving microscopic re-
versibility of dynamics implies that this matrix is symmetric.
This fact is the so-called Onsager reciprocal relations. All
known results of linear irreversible thermodynamics follow
the approach based on Rayleigh-Onsager dissipation; how-
ever, the theory is open for nonlinear generalization [22]. This
study extends the Rayleigh-Onsager dissipation to a highly
nonlinear dissipation. This extension fulfills the positive en-
tropy generation criterion. To demonstrate this extension,
we applied it to obtain the generalized hydrodynamics from
the kinetic theory, and we investigated the typical nonlinear
irreversible thermodynamics as represented by nonequilib-
rium flows. The predictions are found to agree well with the
experimental results.

A nonequilibrium gas flow [23–25] is commonly observed
in nature and engineering. A nonequilibrium gas flow is con-
sidered to be one of the challenging problems in physics. For
more than 150 years, flow dynamics has usually been formu-
lated in terms of the Navier-Stokes-Fourier (NSF) framework.
Unfortunately, NSF has serious limitations in capturing the
correct flow physics under high nonequilibrium conditions.
This study reports an alternative option for nonequilibrium
analysis, namely generalized hydrodynamics. This theory is
derived from kinetic theory according to the Eu method [4,5]
in such a manner that it is thermodynamically consistent.
The result implies that it provides a promising alternative to
obtain a unified framework for modeling both equilibrium and
nonequilibrium gas flows.
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