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We present a theoretical study on pattern formation occurring in miscible fluids reacting by a second-order
reaction A + B → C in a vertical Hele-Shaw cell under constant gravity. We have recently reported that the
concentration-dependent diffusion of species coupled with a frontal neutralization reaction can produce a
multilayer system where low-density depleted zones could be embedded between the denser layers. This leads to
the excitation of chemoconvective modes spatially separated from each other by a motionless fluid. In this Rapid
Communication, we show that the layers can interact via a diffusion mechanism. Since diffusively coupled
instabilities initially have different wavelengths, this causes a long-wave modulation of one pattern by another.
We have developed a mathematical model which includes a system of reaction-diffusion-convection equations.
The linear stability of a transient base state is studied by calculating the growth rate of the Lyapunov exponent
for each unstable layer. Numerical simulations supported by phase portrait reconstruction and Fourier spectra
calculation have revealed that nonlinear dynamics consistently passes through (i) a perfect spatially periodic
system of chemoconvective cells, (ii) a quasiperiodic system of the same cells, and (iii) a disordered fingering
structure. We show that in this system, the coordinate codirected to the reaction front paradoxically plays the
role of time, time itself acts as a bifurcation parameter, and a complete spatial analog of the two-frequency torus
breakup is observed.

DOI: 10.1103/PhysRevE.100.031104

In recent decades, the study of the interaction between
reaction-diffusion phenomena and convective instabilities
brought many surprises. Let us focus on a neutralization
reaction: A second-order A + B → C reaction is distinguished
by a comparatively simple, albeit nonlinear, kinetics. If two
species are initially separated in space, the reaction proceeds
in a frontal manner due to the high value of the reaction rate
constant. In this case, it may result in various buoyancy-driven
instabilities if the reaction occurs either in immiscible two-
layer systems [1–5] or in miscible acid-base systems [6–16].
Among the important effects that have been observed here,
we highlight the pattern convection in the form of a perfectly
periodic system of cellularlike fingers remaining in contact
with the interface when an organic solvent containing an acid
A is in contact with an aqueous solution of an inorganic base B
[3]. At that time, a liquid-liquid interface has been recognized
as the main reason for this unusual regularity of salt fingering
[2,5]. However, a perfectly organized structure of fingers has
been observed already in the miscible system, where two
aqueous solutions of base and acid have been brought into
contact [13,15]. It was shown that this pattern arises due to the
strong dependence of the diffusion coefficients of the initial
reactants and the reaction product on their concentrations.
The effect of concentration-dependent diffusion (hereinafter
CDD) coupled with a fast neutralization reaction has been
demonstrated to produce a spatially localized zone with un-
stable density stratification (figuratively, a density pocket)
in a system with an inherently stable configuration, when
a less dense solution is placed above a more dense one. It
should be noted that such an effect creates a new situation in
fluid mechanics when the convective modes arise in different
parts of the medium and compete on the distance. In this

case, the patterns can be coupled by the diffusion of heat or
matter which transmits a signal through an interlayer of the
motionless fluid.

Generally, the CDD effect means a significant expansion
of the degrees of freedom for the system to produce various
types of instabilities and nonlinear dynamics that do not fit
into the traditional classification [14]. For example, we have
shown recently that when varying initial concentrations of
solutions, the density pocket may collapse suddenly, causing
a density shock wave separating the fluid at rest and the area
with anomalously intense convective mixing [16].

In this Rapid Communication, we study the nonlinear
interaction between two periodic systems of chemoconvective
cells that arise independently inside two different layers low
in density. Although initially the layers are separated by the
motionless fluid, they can nevertheless influence each other
via the mechanism of the nonlinear diffusion of the reactants.
Thus, this configuration reproduces the conditions for the
realization of a spatial analog of the two-frequency torus. As
it is known, Ruelle and Takens mathematically showed that
quasiperiodicity is not generic when nonlinearities are acting
[17]. The Ruelle-Takens-Newhouse theory [17,18] postulates
that the strange attractor replaces the torus in the phase
space after a finite number of bifurcations. In our case, we
demonstrate that a similar transition is reproduced, but the role
of time is played by the spatial horizontal coordinate with time
itself now being a control parameter.

Mathematical model. We consider two aqueous solutions
of acid A and base B filling the cavity, which is strongly
compressed in one of directions, so that the Hele-Shaw (HS)
approximation is applied. Right after the process starts, the
reagents with initial concentrations A0, B0 diffuse into each
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other and are neutralized at a rate k with the formation
of salt C. Since both reagents are dissolved in water, their
mixing begins at the contact of initially separated layers. It
is noteworthy that the problem is nonautonomous because
reagents are not replenished during the reaction and concen-
tration profiles change irreversibly. Generally, a neutralization
reaction is known to be exothermic. However, in this Rapid
Communication, the heat release is neglected. In experiments,
one can always achieve such reaction conditions, if the walls
of the HS cell are made quite conductive for heat to dissipate.
In what follows, we assume that A0 = B0.

The system geometry is given by a two-dimensional do-
main defined by 0 � x � L, −H � z � H with the x axis
directed horizontally and the z axis antidirected to gravity.
We scale the problem by using 2d , 4d2/Da0, Da0/2d , and
A0 as the length, time, velocity, and concentration scales,
respectively. Da0, ν, cp, and d stand for acid diffusivity (table
value), kinematic viscosity, and the HS semigap width.

The mathematical model we develop consists in a set of
equations for species coupled to the Navier-Stokes equation
written in the HS approximation [13],

� + ∇2� = 0, (1)

1

Sc

(
∂t� + 6

5
J (�,�)

)
= ∇2� − 12� − ∂xρ, (2)

∂t A + J (�, A) = ∇(Da∇A) − Da AB, (3)

∂t B + J (�, B) = ∇(Db∇B) − Da AB, (4)

∂tC + J (�,C) = ∇(Dc∇C) + Da AB, (5)

ρ = Raa A + Rab B + Rac C, (6)

where J (F, P) ≡ ∂zF∂xP − ∂xF∂zP stands for the Jacobian
determinant. Here, we use a two-field formulation for the
motion equation, and introduce the stream function � and
vorticity �. The diffusion terms in Eqs. (3)–(5) are written in
the most general form, allowing the concentration-dependent
phenomena [19]. The problem involves the following dimen-
sionless parameters,

Sc = ν

Da0
, Da = 4kA0d2

Da0
, Rai = 8gβiA0d3

νDa0
, (7)

which are the Schmidt number, the Damköhler number, and
the set of solutal Rayleigh numbers, where i = {a, b, c}, re-
spectively. Equations (1)–(6) should be supplemented by the
boundary conditions

x = 0, L: � = ∂x� = 0, ∂xA = 0, ∂xB = 0, ∂xC = 0,

z = ± H : � = ∂z� = 0, ∂zA = 0, ∂zB = 0, ∂zC = 0,

(8)

and the initial conditions at t = 0,

z � 0: � = 0, A = 0, B = 1,

z > 0: � = 0, A = 1, B = 0. (9)

We have shown in Refs. [13,15] that the coupling between
a second-order reaction and nonlinear diffusion can transform
an initially stably stratified fluid layer to a multilayered system

FIG. 1. Schematic presentation of two systems of convective
rolls independently arising in a depleted zone low in density.

where the depleted zones low in density are embedded be-
tween the denser layers. This situation is presented schemat-
ically in Fig. 1. The figure shows a vertical density profile
with two local minima, which can be defined as low-density
pockets. It is important to note that the fluid layer shown in
Fig. 1 remains globally stable, since locally unstable fluid
sublayers are not able to set in motion the adjacent immobile
fluid. By changing the type of chemical reaction, the involved
reagents, or their initial concentrations, we can create quite
diverse configurations of the vertical stratification of the sys-
tem. In order to proceed further, it is necessary to specify the
closed-form exact laws of diffusion in (3)–(5). The problem
is that so far the CDD effect has been underestimated in fluid
mechanics. Therefore, data on the concentration dependence
of the diffusion coefficients have appeared to be fragmentary
and incomplete for most substances.

Generally, the CDD effect can be observed in ionic sys-
tems, and the diffusion of ions depends on the concentra-
tion gradient of all ions present. Here, we assume that the
diffusion coefficient of each species depends solely on the
concentration of this species itself, as if it diffused in a single-
component solution. In part, this assumption is based on the
consideration of only weak solutions with a concentration of
not higher than 3 mol/l, as well as a good agreement of the
theory with our experimental observations [13,15]. In fact, at
the moment, we have found experimentally the development
of the CDD convection for the homologous series of hydrox-
ides of Na, K, Li, and Cs, as well as for a number of acids. We
believe that the discovered effect is of a general nature and
should be taken into account in reaction-diffusion-convection
problems. The specific pair of reagents, HNO3 and NaOH,
which we consider in this Rapid Communication is used only
because there is a well-developed and experimentally proven
model of nonlinear diffusion for these species. Thus, in what
follows we use the diffusion laws developed recently for the
pair HNO3 and NaOH (for more details, see Ref. [13]),

Da(A) ≈ 0.881 + 0.158A,

Db(B) ≈ 0.594 − 0.087B, (10)

Dc(C) ≈ 0.478 − 0.284C.

The values of the parameters (7) for the pair HNO3 and
NaOH can be estimated as follows: Sc = 317, Da = 103,
Raa = 3.2 × 105, Rab = 3.8 × 105, Rac = 5.1 × 105.

Dynamics of the base state and its stability. The system
of equations (1)–(10) allows the base state that describes the
dynamics of pure reaction-diffusion processes. In this state,
the fluid is at rest all the time. We assume that the fluid
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FIG. 2. Instantaneous base state profiles of the density ρ are
plotted against the vertical axis z at times t = 0, 3, 10.

velocity is zero and concentration fields depend only on the
vertical coordinate z and time t : A0(t, z), B0(t, z), C0(t, z).
Then we obtain

∂t A0 = Da(A0)∂zzA0 + ∂zDa(A0)∂zA0 − Da A0B0,

∂t B0 = Db(B0)∂zzB0 + ∂zDb(B0)∂zB0 − Da A0B0, (11)

∂tC0 = Dc(C0)∂zzC0 + ∂zDc(C0)∂zC0 + Da A0B0.

The problem (8)–(11) can be solved only numerically.
Figure 2 shows the base state profiles of the density ρ(t, z)

defined by (6) for three consecutive times t = 0, 3, 10. The
system starts to evolve from the initial state, in which the
lighter acid solution (z � 0) is above the more dense base
solution (z < 0). Thus, there exists a stable vertical strat-
ification in terms of density, which excludes the develop-
ment of Rayleigh-Taylor instability. As soon as the reaction-
diffusion processes begin, the density profile undergoes dra-
matic changes: Now it has two minima located above and
below the reaction front, implying a possible development of
local instabilities in the depleted zones low in density. Thus,
the formal scheme shown in Fig. 1 is reproduced in practice.
The mechanism of the formation of such a multilayered
system has been discussed in detail in Refs. [13,15]. Here,
we just briefly note that the main reason is that the reaction
product starts to be deposited near the reaction front. Since
the diffusion coefficient of salt decreases with the growth of
its concentration (the CDD effect), it can progressively accu-
mulate near the reaction front, making a local maximum in
the density profile (Fig. 2, t = 3). Since the acid has a higher
value of the diffusion coefficient, over time, this maximum
slowly shifts down (Fig. 2, t = 10). Thus, the diffusion makes
the system nonautonomous, and time is the control parameter
of the system.

Let us analyze the stability of a time-dependent base state
defined by Eqs. (10) and (11) with respect to small monotonic
perturbations,⎛

⎜⎜⎜⎝

�(t, x, z)
�(t, x, z)
A(t, x, z)
B(t, x, z)
C(t, x, z)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0

A0(t, z)
B0(t, z)
C0(t, z)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ϕ(t, z)
ψ (t, z)
a(t, z)
b(t, z)
c(t, z)

⎞
⎟⎟⎟⎠eIkx, (12)

where ϕ,ψ, a, b, c are, respectively, the amplitudes of normal
mode perturbations for the vorticity, stream function, acid,
base, and salt concentrations, while k is their wave number.
Substituting (12) into Eqs. (1)–(6) and linearizing these equa-
tions near the base state (11), we obtain the following system

of time-dependent amplitude equations for the determination
of critical perturbations:

ϕ + ∂zzψ − k2ψ = 0,

1

Sc
∂tϕ = ∂zzϕ − (k2 + 12)ϕ

− k2(Raa a + Rab b + Rac c),

∂t a = Da(A0)(∂zza − k2a)

+ D′
a(2∂zA0∂za + a∂zzA0)

−Da(A0b + aB0) − ψ∂zA0, (13)

∂t b = Db(B0)(∂zzb − k2b)

+ D′
b(2∂zB0∂zb + b∂zzB0)

− Da(A0b + aB0) − ψ∂zB0,

∂t c = Dc(C0)(∂zzc − k2c)

+ D′
c(2∂zC0∂zc + c∂zzC0)

+Da(A0b + aB0) − ψ∂zC0,

where the linearization is carried out by taking into account
the explicit form of the diffusion laws (10).

Generally, there are two main methods of the linear stabil-
ity analysis developed for the case when the base state of a hy-
drodynamic system nonperiodically evolves over time: These
are the quasi-steady-state approximation (QSSA) method and
the initial value problem (IVP) method. It was shown in
Ref. [20] that, excluding short times, there is good agreement
between these two approaches. The difference between the
methods is that at the very beginning of evolution, the growth
rate of disturbances within the IVP calculations is always neg-
ative, because the development of the instability takes time. In
our case, the system becomes unstable only after some critical
period of time and the IVP usage is reasonable [2].

Thus, Eqs. (13) are numerically integrated together with
the base state problem (8)–(11) and the boundary conditions
for disturbances,

z = ±H : φ = 0, ∂za = 0, ∂zb = 0, ∂zc = 0, (14)

to compute the growth rate λ defined very similarly to the
Lyapunov exponent,

λ(t ) = 1

N

N∑
j=1

1

�t
ln

a j (t + �t, zmin)

a j (t, zmin)
, (15)

where �t is the integration time step and N is the number
of independent realizations (typically 10–15). Because the
growth rate λ is sensitive to the given initial data, each
independent integration started from white noise with an
amplitude of less than 10−4. We have fixed the occurrence of
instability to the time when λ(t ) averaged over N realizations
changes sign from negative to positive. The position zmin for
measuring λ was chosen at one of the local minima shown in
Fig. 2. The integration time step was not constant and changed
in accordance with the Courant rule so that the explicit scheme
would be stable. Since the final result should be averaged over
several runs with random initial conditions, the final growth
rate (15) does not depend on the time step.
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FIG. 3. (a) Neutral curves for two instabilities which arise in two
zones low in density shown in Fig. 2. (b) Real part of the growth rate
of modes 1 (lines) and 2 (line points) are illustrated at different times.
(c) Real part of the growth rate of modes 1 (black line and line points)
and 2 (red line points) demonstrates the coupling between modes.
The line points indicated by open squares have been calculated for
the case when only mode 1 develops in the system, while mode 2 has
been artificially suppressed. The same growth rate curve calculated
by taking into account the presence of both modes is indicated by the
solid line.

Figure 3(a) presents neutral curves for two instabilities
which arise independently. Instability 1 below the reaction
front (in fact, the CDD instability) develops first. The min-
imum of the neutral curve corresponds to the wave number
k1 ≈ 4.4 at time t1 ≈ 0.156. Instability 2 starts at k2 ≈ 0.75
and t2 ≈ 0.253. Figure 3(b) presents the instantaneous growth
rates λ as a function of k calculated for both instabilities. Al-
though the sublayers are separated by the immobile fluid, the
instabilities still can influence each other through a diffusion
mechanism [Fig. 3(b), t = 0.5, 1.0]. In order to demonstrate
clearly the mode interaction, we have recalculated the growth
rate curve for mode 1 at t = 1.0 in such a way as to allow
only this type of instability to develop, suppressing instability
2. This is done by zeroing disturbances in the spatial domain
where mode 2 develops. The curve is indicated by open
squares in Fig. 3(c). It is interesting to compare this result with
those derived for the case when both modes are present [it is
indicated by the solid line in Fig. 3(c)]. One can see that the
instability region has significantly expanded due to the longer

modes. Mode 2 develops exactly in the same wavelength
range. The curve of the growth rate for mode 2 is shown
for a bit earlier time t = 0.5 by taking into account the time
delay in the signal transmission, which is explained by slow
diffusion. So, the influence of instability 2 on instability 1
looks obvious. It is provided by a relatively mobile acid which
easily penetrates the diffusive zone and invades the spatial
domain of mode 1. Thus, it is the acid flow that is responsible
for the nonlinear coupling between modes. To be precise,
the upper mode 2 develops almost independently, since the
low-mobile salt and base cannot penetrate the diffusive zone
separating the sublayers.

One can see that at times t > 0.5, the lower instability 1
can no longer develop independently: Its range of unstable
waves expands dramatically due to longer waves, which can
be explained by the influence of instability 2 developing in
the same range of long waves. Figure 3 demonstrates also that
the wavelength ratio of the fastest growing disturbances varies
with time, both due to the diffusive expansion of the density
pockets and their mutual influence.

Nonlinear dynamics. We now discuss the results of the
direct numerical simulation of the problem (1)–(10). To see
a nonlinear development of the disturbances, the problem has
been solved numerically by a finite-difference method (for
more details, see Ref. [15]).

We have performed calculations on grids 100 × 201 (L =
20), 150 × 201 (L = 30), 300 × 201 (L = 60), and 625 × 201
(L = 125), each time keeping the vertical resolution constant
(H = 20) and consistently increasing the number of nodes in
the horizontal direction so as to apply the fast Fourier trans-
form (FFT) algorithm with 64, 128, 256, and 512 data points,
respectively. Since the numerical simulations are carried out
with the boundary conditions (8), which exclude the imposed
periodicity of the resulting structure, the edge effects must be
removed from the signal before applying the FFT. At each
iteration, one could observe an obvious improvement in the
resolution of the Fourier spectrum. Since the main goal was
to obtain a clear spectrum for a quasiperiodic signal, the grid
resolution 625 × 201 was considered sufficient (see below).
As the initial condition, we use a random field of the stream
function with an amplitude of less than 10−3.

The nonlinear evolution of the system can be best under-
stood when studying the changes in the terms of the density
given by (6). Figure 4 shows a consecutive restructuring of
the density field over time. At the very beginning, the base
state is absolutely stable, and the fluid convection is absent
(Fig. 4, t = 0.1). However, two zones of low density are
already clearly visible in the figure. The instability in the
lower band is excited first. The pattern is a perfectly periodic
system of chemoconvective cells enclosed between layers of
the motionless fluid (Fig. 4, t = 0.5). At this point in time,
the wave number of the structure is about k1 ≈ 2.46, which
agrees well with the linear stability analysis (see Fig. 3). Then,
instability 2 is excited in the upper density pocket. The wave
number of this structure is much smaller: k2 ≈ 0.5 (Fig. 4, t =
5). When the latter instability develops sufficiently, it starts
to affect the chemoconvection in the lower-density pocket
by injecting fresh acid with a spatial periodicity of 2π/k2.
This leads to the formation of an obvious spatial quasiperi-
odic pattern below the reaction front (Fig. 4, t = 5 and 10).
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FIG. 4. Nonlinear evolution of the total density ρ with time.
The frames from up to down pertain to times t = 0.1, 0.5, 5, 10,
and 15, respectively. The domain of integration is 0 � x � 125,
−20 � z � 20.

Finally, the pattern loses its regularity and is destroyed (Fig. 4,
t = 15).

Let us define the coordinate x as a new effective time and
consider the “dynamics” of the system. In addition to calcu-
lating the power spectrum, we perform the technique of phase
portrait reconstruction including the method of delays [21]
with preprocessing using the singular value decomposition
(SVD) method [22]. In this technique, a multidimensional
embedding space is constructed from the time series data.
The usage of the SVD method allows calculating an optimal
basis for the projection of the reconstructed phase dynamics of
the system. In our case, this analysis can be carried out only
for a limited number of points equal to the number of grid
nodes along x (in fact, even less than 625 grid points taking
into account the edge effects). The signal for such an analysis
was prepared as follows. The density field ρ(t, x, z) has been
spatially averaged across the lower instability band,

ρ̂(t, x) = 1

Hbot

∫ 0

−Hbot

ρ(t, x, z)dz, (16)

to yield the averaged profile ρ̂(t, x) depending on time t being
the governing parameter and the longitudinal coordinate x
playing the role of effective time. Here, Hbot stands for the
width of the lower instability zone.

Figure 5 shows the Fourier spectra and phase portrait
reconstructions calculated for three characteristic points in
time. The dynamic mode in Fig. 5, t = 0.5, can be unam-
biguously characterized as periodic. The first peak of the
power spectrum determines the authentic wave number of

FIG. 5. The power spectra and phase portraits (in the inset)
reconstructed from the averaged density ρ̂(t, x) at three consecutive
times: (a) t = 0.5, (b) t = 5, and (c) t = 15.

the first instability k1 ≈ 2.46, and the second one is simply
the double value of the first peak. Thus, the transition from
a stable base state (Fig. 4, t = 0.1) to a periodic system of
chemoconvective cells (Fig. 4, t = 0.5) can be interpreted as
a spatial Hopf bifurcation giving rise to a limit cycle shown
in the inset of Fig. 5. The following dynamic mode demon-
strates obvious signs of a quasiperiodic behavior (Fig. 5,
t = 5). The effect of instability 2 is expressed in the fact that
the power spectrum now contains two characteristic peaks
and all other peaks are just their linear combinations. The
peak in the long-wave part of the spectrum corresponds to
the wave number k2 ≈ 0.5. Thus, the transition from the
periodic cells (Fig. 4, t = 0.5) to a spatially quasiperiodic
system of chemoconvective cells (Fig. 4, t = 5) can be inter-
preted as a secondary Hopf bifurcation giving rise to a two-
dimensional torus shown in the inset of Fig. 5, t = 5. Since
the “time series” based on ρ̂(t, x) is insufficient for studying
the complex bifurcations that require long data sequences, we
cannot assert whether another Hopf bifurcation to a three-
dimensional torus is occurring reliably. But we can insist that
the torus eventually collapses, giving way to a toroidal strange
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attractor (Fig. 4, t = 15). Here, the spectrum contains already
continuous ranges of the excited waves characteristic of
chaotic behavior.

Discussion and closing remarks. As it is well known,
the Ruelle-Takens-Newhouse theory states that an arbitrar-
ily small perturbation of a quasiperiodic flow on the three-
dimensional (3D) torus can lead to the stochastic regime of
deterministic chaos characterized by long-term unpredictabil-
ity due to sensitivity to initial conditions, i.e., the strange
attractor. Thus, they have showed that quasiperiodicity is
not generic when nonlinearities are acting and the transition
occurs only after a finite and small number of bifurcations.
Notice that the transition from the two-frequency torus to the
strange attractor can occur in different ways studied in the
special literature on nonlinear dynamics [23]. However, all
of these results relate to dynamic systems that evolve over
time. In this Rapid Communication, we demonstrate that the
scenario of the torus breakup can also be realized if the system
evolves over space. This occurs in the physical system of two
miscible solutions of HNO3 and NaOH, in which reaction-

diffusion-convection processes lead to the appearance of
spatially separated chemoconvective instabilities interacting
with each other by means of diffusive signals. Since the insta-
bility wavelengths are independent parameters, the nonlinear
interaction of the two modes leads to the appearance of a spa-
tial quasiperiodic pattern, which is destroyed under the action
of nonlinearity and is replaced by the stochastic regime of de-
terministic chaos characterized by the broadband noise. Since
the spatial window within which we can analyze the nonlinear
dynamics is limited due to natural reasons, we cannot describe
the process of the torus breakup itself in more detail. Any
scenario including either a period doubling cascade or the
birth of 3D tori requires a significantly longer spatial series
in which one basic oscillation should be repeated at least 1000
times. What we have shown in this Rapid Communication that
our spatially evolving dynamic system, apparently, displays
the breakup of an invariant 2D torus into the strange attractor.
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