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Complex dynamics of interacting fronts in a simple A + B → C reaction-diffusion system
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Pattern interaction has so far been restricted to systems with relatively complex reaction schemes, such as
activator-inhibitor systems, that lead to rich spatio-temporal dynamics. Surprisingly, a simple second-order
chemical reaction is capable of generating similar complex phenomena, such as attractive or repulsive interaction
modes between the localized reaction zones (or fronts). We illustrate the latter statement both analytically and
numerically with two initially separated A + B → C reaction-diffusion fronts when the solution of B is initially
confined between two solutions of A. The nature of the front-front interaction changes from an attractive type
to a repulsive one above a critical distance separating the two fronts initially. The complexity of the pattern
dynamics emerges here due to finite-size effects. A scaling law relating the critical distance dc above which the
repulsion occurs and kinetic parameters gives insights into (i) extracting those parameters from experiments for
bimolecular reactions and (ii) the control strategy of periodic patterns.
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Reaction-diffusion (RD) fronts are localized out-of-
equilibrium structures commonly observed in various phe-
nomena such as disease spreading [1,2], pattern formation
[3–6], and population dynamics [7,8]. A rather simple class
of RD systems capable of sustaining a reaction front is ob-
tained when two species A and B, initially separated, meet by
diffusion and react according to the second-order A + B → C
reaction.

Depending on the nature of the reactants, A + B → C
RD models have been successfully applied to study a wide
variety of fascinating topics as various as particle-antiparticle
annihilation [9], financial markets [10], periodic precipitation
patterns [11,12], and supramolecular chemistry [13]. In par-
ticular, the so-called Liesegang rings are observed experimen-
tally by the precipitation and aggregation of the product (C)
in the wake of a moving A + B → C reaction front [14].

Gálfi and Rácz studied the properties of a single A + B →
C front [15]. They suggested that several quantities can be
used to describe the front properties such as the position of
the reaction zone, x f , defined as the location of maximum
production rate of C. Temporal scaling laws valid in the
long-time limit where the reaction is limited by the sup-
ply of reactants by diffusion (diffusion-limited regime) have
been verified both numerically [16,17] and experimentally
[17–19]. These scalings, together with their extension in the
short-time limit [20–22] and in flow conditions [23], con-
stitute the fundamentals of the A + B → C RD single-front
theory.

That theory formally applies under the assumption that the
system is infinite in either direction. In real experiments, the
solutions of reactants are, however, confined into a limited
region of space leading to finite-size effects when the front
reaches one of the system boundaries. Finite-size effects also
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naturally arise in the context of multiple A + B → C fronts
when, for instance, the solution of one of the reactants is
initially confined between solutions of the other reactant
[24–27]. The formation of two or more localized reaction
zones, randomly separated in space, is indeed expected to be
much more likely than the formation of a single isolated one
in natural environments.

Even though interacting localized patterns (fronts, spots,...)
have been extensively studied, particularly in the framework
of activator-inhibitor models (see [28,29], and references
therein), fewer analyses have been devoted until now to the
case of the simpler and broader class of A + B → C reaction
fronts.

In this context, the aim of this Rapid Communication
is to provide a general theoretical study of the collective
dynamics of two interacting A + B → C reaction fronts. We
show that the single-front properties break down during the
interaction with a second reaction front. More surprisingly, a
repulsion occurs above a critical initial distance between the
fronts. A similar phenomenon happens when a single front is
placed close to one of the system boundaries. We propose an
interpretation of front dynamics to account for such nontrivial
finite-size effects and introduce a control strategy of the front
propagation along with a method to extract kinetic parameters
from experiments. Those results show that interesting out-
of-equilibrium phenomena can also emerge in RD systems
with relatively simple reaction kinetics (with no feedback or
excitable kinetics).

We consider a three-dimensional (3D) domain in which a
solution of reactant B of concentration B0 is initially sand-
wiched between two solutions of reactant A of concentration
A0. The reactants that are initially separated in miscible so-
lutions, meet by diffusion and start to react at each vertical
interface to form two localized reaction zones (or fronts). The
reaction is assumed to occur in gels to avoid any convective
motion [30–32]. The translational invariance of the system
reduces the 3D problem to an effectively one-dimensional one
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described by the closed set of dimensionless RD equations,
namely,

∂a

∂t
= ∂2a

∂x2
− ab, (1)

∂b

∂t
= �b

∂2b

∂x2
− ab, (2)

where a(x, t ) and b(x, t ) are, respectively, the concentrations
of A and B species normalized by A0. We define �b = Db/Da

as the ratio between the diffusion coefficients of B and A. Time
and space have been rescaled by τ = 1/kA0 and l = √

Daτ ,
respectively, where k is the kinetic constant of the bimolecular
reaction.

The initial condition leading to the formation of two re-
action fronts is (a, b) = (1, 0) for x � 0 and x > δ, while
(a, b) = (0, β ) for 0 < x � δ, where δ is the initial distance
between the fronts and β = B0/A0. We assume that the left
and right boundaries are sufficiently far from the fronts. In
those conditions, finite-size effects occur only due to the
confinement of the solution of B between the two solutions
of A.

We recall that the front properties are defined through
the production rate of C, R(x, t ) = ab. The front positions,
x(1)

f and x(2)
f , are defined as the locations of maximum R.

Even for the simplest case �b = 1 and β = 1, nontrivial and
rich dynamical behaviors are found to occur during the front
interaction.

Equations (1) and (2) are numerically integrated by using
finite-difference and Runge-Kutta fourth-order methods to
discretize the spatial and temporal partial derivatives, respec-
tively, where dx = 0.01 and dt = 5 × 10−6 are the typical
spatial and temporal step sizes. The concentration profiles a
and b and the production rate R are shown in Fig. 1(a), before
and after the front interaction, for δ = 1.00. The front inter-
action occurs when the solution of B starts to be consumed
simultaneously by the two reaction zones at the position of
the symmetry axis; i.e., b < 1 at x = δ/2 [see Fig. 1(a)]. As
their respective width increases with time, the fronts start to
overlap with each other before totally merging at the position
of the symmetry axis, x = δ/2, leading to a single remaining
front [see Fig. 1(b)].

For relatively short times, the two fronts behave as two
isolated entities and their properties are therefore predicted
by the single-front theory for β = 1 and �b = 1. In that case,
the concentrations of the reactants are the same on each side
of the reaction fronts; for instance, around the first front,
a(−x, t ) = b(x, t ) for 0 � x � δ/2. The diffusive fluxes of
reactants towards each reaction zone are therefore the same
and the front positions, x(1)

f and x(2)
f , remain temporarily at

their initial value x(1)
f = 0 and x(2)

f = δ [see Fig. 1(c)]. At
the moment of the front interaction as defined above, such
diffusive fluxes of reactants become unequal and the fronts
start to move. For δ = 1.00, they move towards each other (B
side), and it follows that x(1)

f � 0 and x(2)
f � δ. The resulting

attraction between the fronts ends at the position of the
symmetry axis where their positions merge [see Fig. 1(c)].
Intuitively, the direction of front propagation observed here is
typically what could be expected from the single-front theory
where the front moves in the direction of the reactant zone that
is the most depleted.

(a)

(b)

(c)

FIG. 1. (a) Numerical concentration profiles a and b, and pro-
duction rate R = ab, before and after the front interaction at times
t = 7.5 × 10−3 and t = 5.0 × 10−2, respectively, for δ = 1.00. The
positions of the two initially separated reaction zones or fronts
are defined as the positions of the two maxima of R. The two
vertical dotted lines denote the initial front positions. (b) Produc-
tion rate R at different times zoomed around the maxima dur-
ing front interaction. The two initially separated fronts overlap
with each other in the course of time. (c) Temporal evolution
of the front positions x(1)

f and x(2)
f . Eventually, the positions of the

fronts merge at the position of the symmetry axis, x = δ/2.

Major differences, however, occur when varying the initial
distance δ between the fronts [see Fig. 2(a)]. In the remainder
of this Rapid Communication, only the position of the first
front, x(1)

f , will be followed in the course of time since the

position of the second one, x(2)
f , can straightforwardly be

deduced through the symmetry relation: x(1)
f (t ) + x(2)

f (t ) =
δ,∀t .
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FIG. 2. (a) Temporal evolution of the first front position x(1)
f

for different initial distances between the fronts δ. Two different
regimes for the front dynamics are noted: (1) the attractive and (2)
the repulsive-attractive regimes. (b) Temporal evolution of the ratio
between the diffusive fluxes of reactants A and B calculated at x = 0,
for the same values of δ, where ja = −∂a/∂x and jb = −∂b/∂x,
respectively. In the single-front limit δ → ∞, ja = | jb|, and hence,
the front is stationary; i.e., x(1)

f (t ) = 0, ∀t (horizontal dashed lines).

For δ � 3.08, the front propagates in the positive x direc-
tion for all times corresponding to the attraction between the
two fronts already described above [regime (1) in Fig. 2(a)].
When δ � 3.20, the front starts to propagate in the op-
posite direction, indicating an unexpected repulsion of the
fronts, before changing direction and moving in the positive
x direction as time increases [regime (2) in Fig. 2(a)]. We
name this case the repulsive-attractive regime. We comment
that, for a small range of intermediate values of the initial
distances, 3.08 < δ < 3.20, the fronts start to attract with
a relatively small amplitude (�10−5) before the repulsive-
attractive phase. Due to such tiny amplitudes, we can ap-
proximate this initial motion of the fronts as stationary and
thus we assimilate the front dynamics for those values of δ

with the repulsive-attractive regime [regime (2) in Fig. 2(a)].
We can therefore define a critical distance δc = 3.08 above
which the front repulsion occurs. Notice that, within the two
regimes, increasing the initial distance δ between the fronts
leads to an increase in the time t∗ needed for the fronts to start
moving. This time is related to the interaction time at which

the solution of B at x = δ/2 starts to be consumed by the two
reaction fronts as explained above. It is numerically shown
to scale with δ as a typical diffusive process; i.e., t∗ ∼ δ2.
For large enough δ, the repulsion amplitude decreases and in
the limit δ → ∞, the solution of a single stationary front is
recovered (see [33] for details on the front repulsion and its
amplitude).

Physical interpretation of the front dynamics. Without loss
of generality, we keep focusing on the motion of the front
initially located at the origin of the system, x = 0. For all
times before the front interaction, the symmetry of diffusive
fluxes of A and B at x = 0, respectively denoted ja = −∂a/∂x
and jb = −∂b/∂x, imposes that on average the same number
of species A and B diffuse towards the reaction zone. As a
result, the ratio ja/| jb| equals unity before the front interaction
[see Fig. 2(b)]. When the two reaction zones overlap, both
consume particles of B at the position x = δ/2 and fewer
particles of B than particles of A arrive at x = 0 per unit time.
The diffusive flux of A hence becomes larger than that of B
[see Fig. 2(b)].

We note that ja � | jb|, even for distances δ > δc, for which
the front repulsion occurs. This result highlights the failure of
the single-front approach stating that the motion of the front
is always directed towards the side of the reactant with the
smallest diffusive flux [15–19].

In order to facilitate the physical interpretation of the front
dynamics, according to the basis of chemical kinetics, we
can interpret the production rate of C, R(x, t ) = ab, as the
frequency of reactive collisions between A and B. When more
reactive collisions occur on the right side, the front initially
propagates to the right (x(1)

f > 0). On the contrary, the front

propagates in the opposite direction (x(1)
f < 0), when more

reactive collisions occur on the left side.
Before the fronts start to interact, the symmetry relation

a(−x) = b(x) is true for 0 � x � δ/2 [see Fig. 1(a)]. At the
moment of the front interaction, the symmetry is broken
so that a(−δ/2) > b(δ/2). This suggests that it should be
possible to explain the first instants of the front propagation by
introducing two timescales. The first one is the typical time,
td , that the reactants A and B take to diffuse from x = −δ/2
and x = +δ/2, respectively, to x = 0. The second timescale is
the reaction time, tr , which is the typical time it takes for A
and B to react when they meet. Two distinct regimes for the
dynamics of the front can then be predicted.

(i) When td � tr , most of those particles of A and B will
have the time to cross the origin before reacting. Hence,
the larger flux of A leads to more reactive collisions on the
right side (x > 0) than on the left side (x < 0). The front
then initially propagates in the positive x direction and x(1)

f >

0. This situation describes the initial attraction between the
fronts. We note that, in the limit k → 0, reactive effects are
negligible and analytical solutions for the front positions can
be obtained. They show the attraction of the fronts [33], which
is expected from this analysis since tr → ∞.

(ii) When td > tr , most of those particles of A and B will re-
act before crossing the origin. Hence, the larger concentration
of A induces more reactive collisions on the left side (x < 0)
than on the right side (x > 0), and x(1)

f < 0. This situation
describes the initial repulsion between the fronts, which can
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also be corroborated analytically by a small-time asymptotic
analysis of Eqs. (1) and (2) [33].

In the following, we establish a simple scaling law that
summarizes the complexity of the system by relating the pos-
sible scenarios of front propagation to the initial (dimensional)
distance d separating the two fronts. We estimate the diffusive
time td ∼ d2/4D (where D = Da = Db), as the typical time
needed for particles to travel a distance d/2. The reaction
timescale is estimated as tr ∼ 1/kA0. The equality between
these two characteristic timescales leads to the definition of
the critical distance, dc ∼ 2

√
D/(kA0), or in dimensionless

variable, δc ∼ 2, which is of the same order of magnitude as
the value found numerically, δc = 3.08. With a more precise
definition of the reaction timescale, it is possible to evaluate
semianalytically (SA) the critical distance and obtain δSA

c =
2.93 (within 5% of the numerically observed value) [33]. This
critical distance represents the distance above which the fronts
start to repulse each other.

The above physical interpretation explains the initial mo-
tion of the fronts and the bifurcation from the attractive
solution to the repulsive one when the initial distance δ

between the fronts is increased. However, the long-time evolu-
tion of the front dynamics is independent of δ and corresponds
to an attraction of the fronts (see [33] for more details)]. The
latter ends when the front positions merge at the position of
the symmetry axis x = δ/2.

While the previous theories were limited to systems infinite
in either direction, our approach of the two-front motion can
also be used to describe the propagation of a single front in
finite-size systems where, for instance, a solution B is initially
confined between one of the boundaries and an “infinite”
reservoir of solution A. When DA = DB and A0 = B0, the front
is initially stationary but starts moving after the reaction zone
has reached the boundary. The resulting motion of the front is
also described by regimes (1) and (2). We find that the front
starts to propagate away from the boundary when the initial
distance separating them is above a critical value δ′

c = 1.54.
Similarly to the two-front problem, it is possible to evaluate
semianalytically that δ′SA

c = 1.46 [33].
If the reactants have different diffusion coefficients, which

is more amenable to experiments, the front repulsion may
still be observed provided that �b = O(1). For �b = 0.91,

the maximal (dimensional) amplitude of repulsion ranges
between 0.1 × 10−4 and 0.3 mm, and lasts, respectively,
between 0.003 s and 150 h [33], values that could typically
be observed experimentally [22].

In summary, we have analyzed theoretically the collective
motion of two initially separated A + B → C reaction fronts
for equal initial concentrations A0 = B0 and equal diffusion
coefficients Da = Db, as well as for (Db/Da) = O(1). We
have shown that the predictions of the single-front theory for
the front propagation break down during the front interaction.
A new interpretation of front propagation is developed to
reproduce quantitatively the character of the front-front inter-
action which changes from an attraction to a repulsion above
a critical initial distance between the fronts, dc = (3.08 ±
0.01)

√
D/(kA0). The observed front propagation here is not

the result of attractive and repulsive forces but arises because
one of the reactant reservoirs is spatially confined. Our ap-
proach can also describe the complex topics of finite-size
effects in the single-front dynamics. Moreover, since dc can
easily be controlled by changing the initial concentration of
reactants, this work paves the way to control the motion of
A + B → C fronts and shows a way of extracting kinetic
parameters from experiments [34,35]. It could be of great
interest to revisit Liesegang experiments in the context of
multiple fronts since this work suggests that the spatial orga-
nization of the rings formed behind the moving fronts [11,36]
could be a function of the distance separating them initially.
As a generalization of the present work, the effect of convec-
tive motions could be considered. A first inspection shows
that the front repulsion, in particular, can still be preserved
with convection, which reinforces the possibility to observe
it experimentally. As a conclusion, those results highlight
that rich out-of-equilibrium dynamics of interacting fronts can
also emerge in a simple A + B → C RD system. We hope that
the present Rapid Communication will trigger new theoretical
and experimental investigations on the surprisingly complex
topic of bimolecular RD fronts.
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