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Glassy properties of the Bose-glass phase of a one-dimensional disordered Bose fluid
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We study a one-dimensional disordered Bose fluid using bosonization, the replica method, and a nonper-
turbative functional renormalization-group approach. The Bose-glass phase is described by a fully attractive
strong-disorder fixed point characterized by a singular disorder correlator whose functional dependence assumes
a cuspy form that is related to the existence of metastable states. At nonzero momentum scale, quantum tunneling
between these metastable states leads to a rounding of the nonanalyticity in a quantum boundary layer that
encodes the existence of rare superfluid regions responsible for the ω2 behavior of the (dissipative) conductivity
in the low-frequency limit. These results can be understood within the “droplet” picture put forward for the
description of glassy (classical) systems.
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Introduction. In quantum many-body systems the com-
petition between interactions and disorder may lead to a
localization transition. In an electron system disorder can turn
a metal into an Anderson insulator [1] (or an electron glass
[2–6] in the presence of long-range Coulomb interactions)
as a result of the single-particle wave-function localization.
In a boson system the transition occurs between a super-
fluid phase and a localized phase [7] dubbed Bose glass [8].
These disorder-dominated phases are all characterized by the
absence of transport, i.e., a vanishing conductivity in the
limit of zero frequency. The insulating behavior is, however,
only one of the fundamental properties of these localized
phases. As in disordered classical systems, one also expects
“glassy” properties due to the existence of metastable states.
The understanding of these glassy properties is a key issue in
the physics of disordered quantum many-body systems [9].

Most of our understanding of disordered (glassy) classical
systems comes from the replica approach [10] and Parisi’s
“replica-symmetry-breaking” scheme [11] or the functional
renormalization group (FRG) [12–17]. In the latter approach a
crucial feature is that the disorder correlator assumes a cuspy
functional form whose origin lies in the existence of many
different microscopic, locally stable, configurations [18]. This
metastability leads in turn to a host of effects specific to dis-
ordered systems: nonergodicity, pinning and “shocks” (static
avalanches), depinning transition and avalanches, chaotic be-
havior, slow dynamics and aging, etc. In this Rapid Com-
munication we show that the (nonperturbative version of the)
FRG approach gives a fairly complete description of the Bose-
glass phase of a one-dimensional disordered Bose fluid in
agreement with the phenomenological “droplet” picture put
forward for glassy (classical) systems [19].

The competition between disorder and interactions in one-
dimensional disordered boson systems was first addressed
by Giamarchi and Schulz by means of a perturbative RG
approach [7,20]. They showed that whenever the (dimension-
less) Luttinger parameter K , which characterizes the quantum
fluctuations of the particle density (K → 0 corresponds to
the classical limit), is smaller than 3/2 even an infinitesimal

disorder results in localization and thus destroys the superfluid
phase (see the inset of Fig. 1 for the generic phase diagram of
a one-dimensional disordered Bose fluid). Scaling arguments
have led to the conclusion that the Bose-glass phase also
exists in higher dimension and is generically characterized
by a nonzero compressibility, the absence of a gap in the
excitation spectrum and an infinite superfluid susceptibility
[8]. Experimentally, the superfluid–Bose-glass transition has
regained a considerable interest owing to the observation of a
localization transition in cold atomic gases [21–23] as well as
in magnetic insulators [24–26]. The Bose-glass phase is also
relevant for the physics of one-dimensional Fermi fluids [27],
charge-density waves in metals [28], and superinductors [29].

Whereas the critical behavior at the superfluid–Bose-glass
transition, which is of Berezinskii-Kosterlitz-Thouless type,
is well understood in the weak-disorder limit [30], the per-
turbative RG does not allow one to study the localized phase
where disorder flows to strong coupling. Using bosoniza-
tion, the replica method, and a nonperturbative functional
renormalization-group approach, we find that the Bose-glass
phase is described by a fully attractive strong-disorder fixed
point characterized by a vanishing Luttinger parameter K∗ =
0 and a singular disorder correlator which assumes a cuspy
functional form. At nonzero momentum scale k, as a con-
sequence of quantum fluctuations, the cusp singularity is
rounded in a quantum boundary layer whose size depends
on an effective Luttinger parameter Kk ∼ kθ which vanishes
with an exponent θ = 1/2, thus yielding a dynamical critical
exponent z = 3/2. Many of these results are similar to those
obtained within the FRG approach to classical systems where
temperature plays the role of the Luttinger parameter (the RG
flow is attracted by a zero-temperature fixed point), although
usually in higher space dimensions. This reveals some of
the glassy properties of the Bose-glass phase—metastability,
pinning, and “shocks” (or static avalanches)—but also empha-
sizes the crucial role of quantum tunneling between different
metastable configurations. The latter leads to the existence of
rare superfluid regions that are responsible for a (dissipative)
conductivity vanishing as ω2 in the low-frequency limit.
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FRG approach. We consider one-dimensional interacting
bosons with Hamiltonian Ĥ0 + Ĥdis. In the absence of disor-
der, at low energies the system is described by the Tomonaga-
Luttinger Hamiltonian [27,31,32]

Ĥ0 =
∫

dx
v

2π

{
1

K
(∂xϕ̂)2 + K (∂x θ̂ )2

}
(1)

(we set h̄ = kB = 1), where θ̂ is the phase of the boson
operator ψ̂ (x) = eiθ̂ (x)ρ̂(x)1/2 and ϕ̂ is related to the den-
sity via ρ̂ = ρ0 − 1

π
∂xϕ̂ + 2ρ2 cos(2πρ0x − 2ϕ̂) (ρ0 is the

average density). ϕ̂ and θ̂ satisfy the commutation relations
[θ̂ (x), ∂yϕ̂(y)] = iπδ(x − y). v denotes the sound-mode ve-
locity and the dimensionless quantity K , which encodes the
strength of boson-boson interactions, is the Luttinger parame-
ter. The disorder contributes to the Hamiltonian a term Ĥdis =∫

dxV (x)ρ̂(x) where the random potential V (x) is assumed to
have a Gaussian probability distribution with zero mean and
variance V (x)V (x′) = (D/ρ2

2 )δ(x − x′) (an overline indicates
disorder averaging). The average over disorder can be done
using the replica method, i.e., by considering n copies of the
model. This leads to the following Euclidean action (after
integrating out the field θ ) [7],

S =
∑

a

∫
dx

∫ β

0
dτ

v

2πK

{
(∂xϕa)2 + (∂τϕa)2

v2

}

−D
∑
a,b

∫
dx

∫ β

0
dτ dτ ′ cos[2ϕa(x, τ )−2ϕb(x, τ ′)], (2)

where ϕa(x, τ ) is a bosonic field with τ ∈ [0, β] an imag-
inary time (β = 1/T → ∞) and a, b = 1 . . . n are replica
indices. If we interpret y = vτ as a space coordinate, the
action (2) also describes (two-dimensional) elastic manifolds
in a (three-dimensional) disordered medium [16,33–37], yet
with a periodic structure and a perfectly correlated disorder
in the y direction [38–40]. The Luttinger parameter, which
controls quantum fluctuations in the Bose fluid, defines the
temperature of the classical model.

Most physical quantities can be obtained from the free
energy − lnZ[J] (the logarithm of the partition function) or,
equivalently, from the effective action (or Gibbs free energy)

�[φ] = − lnZ[J] +
∑

a

∫
dx

∫ β

0
dτJaφa, (3)

defined as the Legendre transform of lnZ[J]. Here, Ja is
an external source which couples linearly to the ϕa field
and allows us to obtain the expectation value φa(x, τ ) =
〈ϕa(x, τ )〉 = δ lnZ[J]/δJa(x, τ ). We compute �[φ] using a
Wilsonian nonperturbative FRG approach [41,42] where fluc-
tuation modes are progressively integrated out [43]. This
defines a scale-dependent effective action �k[φ] which incor-
porates fluctuations with momenta (and frequencies) between
a running momentum scale k and a UV scale �. The effective
action of the original model, �k=0[φ], is obtained when all
fluctuations have been integrated out whereas ��[φ] = S[φ].
�k satisfies a flow equation which allows one to obtain �k=0

from �� but which cannot be solved exactly.

A possible approximation scheme is to expand the effective
action

�k[φ] =
∑

a

�1,k[φa] − 1

2

∑
a,b

�2,k[φa, φb] + · · · (4)

in increasing numbers of free replica sums and to truncate the
expansion to a given order [44,45]. In the following, we retain
only �1,k and �2,k and consider the ansatz

�1,k[φa] =
∫

dx
∫ β

0
dτ

{
Zx

2
(∂xφa)2 + 1

2
φa�k (−∂τ )φa

}
,

�2,k[φa, φb] =
∫

dx
∫ β

0
dτ dτ ′ Vk (φa(x, τ ) − φb(x, τ ′)),

(5)

with initial conditions ��(iω) = ω2/πvK and V�(u) =
2D cos(2u). Here, ω ≡ ωn = 2πnT (n integer) is a Matsubara
frequency (we drop the index n since ωn becomes a continuous
variable in the limit T → 0). The π -periodic function Vk (u)
can be interpreted as a renormalized second cumulant of the
disorder. The statistical tilt symmetry (STS) [46,47] implies
that Zx = v/πK remains equal to its initial value and no
higher-order space derivatives are allowed. As for the part
involving time derivatives, we assume a quadratic form with
an unknown “self-energy” �k (iω) satisfying �k (iω = 0) = 0
as required by the STS [48]. By inserting the ansatz (5) into
the (exact) flow equation satisfied by �k[φ] we obtain coupled
RG equations for �k (iω) and Vk (u). We refer to the Supple-
mental Material for more details about the implementation
of the FRG approach and the explicit expression of the flow
equations [49].

In the weak-disorder limit it is sufficient to approxi-
mate �k (iω) = Zxω

2/v2
k and Vk (u) = 2Dk cos(2u). The flow

equations for the velocity vk , the Luttinger parameter Kk =
vk/πZx, and Dk encompass the one-loop equations derived
by Giamarchi and Schulz [7]. One finds an attractive line
of fixed points for D = 0 and K > 3/2 corresponding to the
superfluid phase where the system is a Luttinger liquid. The
line D = 0 becomes repulsive when K < 3/2; Dk then flows
to strong coupling which signals the Bose-glass phase. The
transition between the superfluid and Bose-glass phases is in
the Berezinskii-Kosterlitz-Thouless universality class.

Bose-glass phase. The nonperturbative FRG approach al-
lows us to follow the flow into the strong-disorder regime and
determine the physical properties of the Bose-glass phase. All
trajectories that do not end up in the superfluid phase are at-
tracted by a fixed point characterized by a vanishing Luttinger
parameter K∗ = 0 and a singular potential that exhibits a cusp
at u = nπ (n integer) in its second derivative (written here in
a dimensionless form),

δ∗(u) = −K2

v2
lim
k→0

V ′′
k (u)

k3
= 1

2a2

[(
u − π

2

)2
− π2

12

]
(6)

for u ∈ [0, π ], where a2 is a nonuniversal number. The flow
diagram obtained from the numerical solution of the flow
equation and projected onto the plane (Kk, δ1,k ), where δ1,k

is the first harmonic of δk (u) = ∑∞
n=1 δn,k cos(2nu), is shown

in Fig. 1.
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FIG. 1. Flow diagram projected onto the plane (Kk, δ1,k ) where
Kk is the running Luttinger parameter and δ1,k is the first har-
monic of the dimensionless potential δk (u) = −(K2/v2k3)V ′′

k (u) =∑∞
n=1 δn,k cos(2nu). The thick solid line (Kk � 3/2, δ1,k = 0) shows

the attractive line of fixed points corresponding to the superfluid
phase and the black dot (K∗ = 0, δ∗

1 � 0.159) the attractive fixed
point corresponding to the Bose-glass phase. The inset shows the
schematic phase diagram of a disordered one-dimensional Bose fluid
as a function of the boson repulsion U and the disorder D.

The vanishing of Kk ∼ kθ is controlled by an exponent
θ = z − 1 which is related to the dynamical critical exponent z
at the Bose-glass fixed point. It is difficult to predict precisely
the values of z and θ , which turn out to be sensitive to the
RG procedure, but we will argue below that z = 3/2 and θ =
1/2. The vanishing of the Luttinger parameter has important
consequences. First, it implies that the charge stiffness (or
Drude weight) Dk = vkKk = (v/K )K2

k ∼ k2θ , i.e., the weight
of the zero-frequency delta peak in the conductivity, vanishes
for k → 0 in the Bose-glass phase whereas the compressibil-
ity κ = 1/π2Zx = K/πv is unaffected by disorder. Second,
it shows that quantum fluctuations are suppressed at low
energies. We thus expect the phase field ϕ(x, τ ) to have
weak temporal (quantum) fluctuations and to adjust its value
in space so as to minimize the energy due to the random
potential, a hallmark of pinning.

For any nonzero momentum scale k, the cusp singularity is
rounded in a quantum boundary layer as shown in Fig. 2: For
u near 0, δk (0) − δk (u) ∝ |u| except in a boundary layer of
size |u| ∼ Kk ; as a result, the curvature |δ′′

k (0)| ∼ 1/Kk ∼ k−θ

diverges when k → 0.
In the analogy with classical two-dimensional systems

pointed out above, the fixed point describing the Bose-glass
phase is a zero-temperature fixed point since the temperature
Tk ≡ Kk ∼ kθ vanishes with k. In this context, the parabolic
“cuspy” potential (6) and the boundary layer at nonzero scale
k have been obtained previously in the studies of random man-
ifolds in disordered media or the random-field Ising model
[16,33–38,44,45,50,51]. From a physical point of view, the
cusp is due to the existence of metastable states leading to
“shock” singularities (or static avalanches) [18]: When the
system is subjected to an external force, the ground state
varies discontinuously whenever it becomes degenerate with
a metastable state (which then becomes the new ground
state) [34]. At finite temperatures the system has a small but
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FIG. 2. (a) Potential δk (u) = −(K2/v2k3)V ′′
k (u) for various val-

ues of k (K = 0.4 and δ1,� = 0.005). The green curve shows the
initial condition δ�(u) = δ1,� cos(2u) and the red one the fixed-point
solution (6). (b) δk (u) for u near 0 showing the formation of the
quantum boundary layer (k/� � 0.050/0.030/0.018/0.011/0.007
from bottom to top).

nonzero probability to be in two distinct, nearly degenerate,
configurations (the rare excitations with energies of order of
T or smaller are thermally active), which results in a smearing
of the cusp.

A similar interpretation holds in the Bose-glass phase. In
the classical limit K → 0 (corresponding to the T → 0 limit
of the classical model), the cusp in δ∗(u) is due to metastable
states (defined as the minima of the action S[ϕ] derived
from Ĥ0 + Ĥdis, i.e., before disorder averaging) becoming
degenerate with the ground state. A nonzero value of K leads
to the possibility of quantum tunneling between different
metastable configurations (a small number of low-energy
metastable states become quantum-mechanically active) and
a rounding of the cusp in a quantum boundary layer. These
quantum tunneling events allow the system to escape pinning
and one expects the existence of (rare) “superfluid” regions
with significant density fluctuations and therefore reduced
fluctuations (i.e., a nonzero rigidity) of the phase θ̂ of the
boson operator ψ̂ = eiθ̂√ρ̂. (We further elaborate on that
point below.)

The thermal boundary layer of the two-dimensional clas-
sical model is associated with the existence of rare ther-
mal excitations in the statics and activation barriers in the
dynamics [37]. Not surprisingly, we find that the quantum
boundary layer controls the (quantum) dynamics of the ϕ

field in the boson problem [52]. This is readily seen by the
fact that ∂k�k (iω) is proportional to δ′′

k (u = 0) [49]. Results
of the numerical integration of the flow equations are shown
in Fig. 3. For |ω| � vkk �k (iω) varies quadratically with ω:
�k (iω) = Zxω

2/v2
k with vk = πZxKk ∼ kθ when k → 0 [53].

In the opposite limit |ω| � vkk, when k → 0 it is possible to
find an analytical solution, �k (iω) = A + B|ω|(2−θ )/z, where
the positive constants A and B depend on the initial condi-
tions of the flow at scale k = � (see the red dashed line in
Fig. 3). We therefore conclude that the self-energy converges
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FIG. 3. Low-frequency behavior of the self-energy �k (iω) for
k/� � 1/0.223/0.135/0.082/0.050/0.030/0.011 (from bottom to
top) in the case where z = 1 + θ = 3/2 (K = 0.4 and δ1,� = 0.005).
The green dashed-dotted line shows the initial condition ��(iω) =
ω2/πvK and the red dashed line is a guide to the eyes.

nonuniformly towards a singular solution [54],

lim
k→0

�k (iω) =
{

0, if ω = 0,

A + B|ω|(2−θ )/z, if ω �= 0,
(7)

in the low-energy limit.
The conductivity is given by

σ (ω) = − iω

π2�(ω)
= ξ 2κ (−iω + ω2τc) + O(ω3), (8)

where �(ω) ≡ �k=0(iω → ω + i0+) is the retarded self-
energy, ξ = √

Zx/A the pinning (or localization) length, and
τc = B/A the associated timescale. In the classical limit K →
0 the compressibility κ = K/πv vanishes and the conductiv-
ity is O(ω3). At nonzero K , our calculation shows that the
low-frequency transport in the Bose-glass phase is due to
the quantum tunneling events between different metastable
configurations (and thus the rare superfluid regions) encoded
in the quantum boundary layer.

A phenomenological description of glassy classical sys-
tems is provided by the droplet scenario [19,37,55]. The latter
supposes the existence, at each length scale L, of a small
number of excitations above the ground state, drawn from an
energy distribution of width �E ∼ Lθ with a constant weight
∼L−θ near E = 0. The number of thermally active excitations
is therefore ∼T/Lθ , i.e., the system has a probability ∼T/Lθ

to be in two nearly degenerate configurations. Thermal fluctu-
ations are dominated by these rare droplet excitations and one
has [〈ϕ2〉 − 〈ϕ〉2]p ∼ (T/Lθ ) ln L at length scale L [56]. We

have verified that this relation holds for p = 1 and p = 2 in
the Bose-glass phase (with T ≡ K) thus validating the droplet
picture. Although our approach is justified only in the limit of
weak disorder [7], the low-energy physics of the Bose-glass
phase is is expected to be independent of the disorder strength
[57] so that the droplet scenario should hold in the entire
localized phase [58].

Let us finally justify the choice z = 1 + θ = 3/2. The
FRG approach yields a value of θ which is universal, i.e.,
independent of the microscopic parameters of the model,
but strongly dependent on the regulator function Rk (q, iω)
used in the implementation of the RG approach for reasons
discussed in the Supplemental Material [49]. For a generic
value of θ one would find Re[σ (ω)] ∼ |ω|3/z. By choosing
θ = 1/2, which is achieved with a fine tuning of Rk , one
ensures that the exact result Re[σ (ω)] ∼ ω2 ln2 |ω| when K =
1 [27] (corresponding to hard-core bosons or free fermions) is
reproduced up to logarithmic corrections.

Conclusion. We have shown that the FRG description of
classical disordered systems extends to the Bose-glass phase
of one-dimensional Bose fluids. A necessary condition, how-
ever, is to use a nonperturbative approach in order to be able to
reach the strong-disorder RG fixed point which characterizes
the Bose-glass phase. Many of our results, in particular, for
the statics, are similar to those obtained in classical disordered
systems (in which the long-distance physics is controlled by
a zero-temperature fixed point). A key feature is the cuspy
functional form of the disorder correlator which reveals the
existence of metastable states and the ensuing glassy proper-
ties such as the presence of “shocks” (static avalanches). The
presence of a quantum boundary layer rounding the cusp at
nonzero momentum scale k, and encoding the quantum tun-
neling events between different metastable states (i.e., the rare
superfluid regions), is responsible for the ω2 dependence of
the conductivity at low frequencies. These results agree with
the phenomenological droplet picture of glassy systems [19].
It remains to be seen whether the droplet picture also holds in
higher dimensions or is specific to the one-dimensional case.

Numerical studies of disordered systems where the physics
is dominated by rare regions are notoriously difficult. Yet
shocks have been observed in numerical simulations of dis-
ordered systems [59,60] and glassy properties have been
recently numerically demonstrated in a two-dimensional
fermionic Anderson insulator [9]. We expect similar numer-
ical studies to be possible in the Bose-glass phase of a one-
dimensional Bose fluid.
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