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This work addresses the superdiffusive motion of a random walker on a discrete finite-size substrate. It is
shown that, with the inclusion of suitably tuned time-dependent probability of large distance jumps over the
substrate, the mean square displacement (MSD) of the walker has a power-law dependence on time with a
previously chosen exponent γ > 1. The developed framework provides an exact solution to the inverse problem,
i.e., an adequate jump probability function leading to a preestablished solution is evaluated. Using the Markov
Chain (MC) formalism, an exact map for the time dependence of the probability function is derived, which
depends on the topology of the substrate and on the chosen value of γ . While the formalism imposes no
restriction on the substrate, being applicable from ordered Euclidean lattices to complex networks, results for
the cycle graph and two-dimensional torus are highlighted. It is also shown that, based on the previously derived
probability function, MSD values resulting from direct numerical simulations agree quite well with those solely
obtained within the MC framework.
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In real-world complex systems of social, ecological, eco-
nomic, infrastructural, and technological natures, many dy-
namical processes occur in discrete spaces, among which
are diffusion, agents synchronization, and epidemic spread-
ing [1]. Such systems can be represented by networks in
which the nodes and edges indicate, respectively, the entities
of the system and the interactions among them. Dynamical
processes on these networks usually adopt a nearest-neighbor
(NN) strategy of transferring “information” from one node
to another. Random-walk models have widespread use both
in the analysis of diffusion and navigability in networks,
as in exploring their structures to detect their fine-grained
organization [2–4].

Currently, it is well documented that there are dynamical
processes, both in discrete and continuous spaces, which do
not follow this “NN paradigm.” For instance, self-diffusive
processes of atoms and molecules adsorbed on metals include
significant contributions from jumps spanning more distant
sites on the metallic surface [5–8]. In the continuum space,
the use of random Lévy flights and Lévy walks is widely
documented in modeling a variety of processes in which
long-range jumps occur together with short-range ones, as in
the foraging of species in a given environment [9–13]. Sev-
eral theoretical approaches have been used to describe such
processes as nonlinear diffusion equations [14] or fractional
differential equations [15,16] in the continuous space, while
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fractional transport has also been implemented in net-
works [17]. More recently, an elegant mathematical approach
emerged as an alternative to study dynamical processes on
discrete spaces, in which NN and long-distance hops are com-
bined. It is based on the Mellin-transformed d-path Laplacian
operator, corresponding to a generalization of the Laplacian
operator on graphs [18–21]. Indeed, the so-called long-range
interaction (LRI) operator adequately accounts for the effect
of jump probabilities that decay with distance. Despite the
analytical evidence that continuous time superdiffusion can be
induced on continuous and discrete infinite linear substrates
by using Lévy flights [15] and Mellin LRIs (MLRIs) [20],
respectively, the discrete time behavior on finite complex
networks or periodic substrates remains unclear.

The main purpose of this work is to address and ad-
vance beyond the mentioned framework, showing that time-
dependent LRIs (or equivalently long-range navigation or
jumps, following, respectively, [22] and [20]) can lead to
superdiffusive behavior on finite substrates. This step forward
was motivated by our findings that, while the addition of
MLRIs on NN cycle graphs actually enhances the speed of
the diffusive motion, the mean square displacement (MSD ≡
〈r2(t )〉) traveled by the walker still increases linearly with
time. Thus, it is similar to the asymptotic behavior of trun-
cated Lévy flights on the continuous infinite linear substrate
[23,24], and to that of continuous time Lévy walks in finite
systems [25]. In contrast to previous studies, where the mov-
ing particle follows fixed laws for short- and long-range hops,
here we consider time-dependent laws, which substantially
increase the likelihood of new emergent behaviors. Rather
than being a simple mathematical digression, this problem
may appear in social or biological systems where agents are
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not only influenced by their direct acquaintances but also by
certain indirect peer pressure (i.e., LRIs). We can identify
three possible scenarios: (i) LRIs remain constant in time;
(ii) LRIs decay with time; and (iii) LRIs increase with time.
The first situation is the typical one treated in the literature.
Instead, the second and the third scenarios are new and may
correspond to the decay of fashions and their emergence,
respectively. An example of the former can be the case of
smoking in Europe and the USA in the early 2000s, whereas
the latter can be exemplified by the “binge drinking” [26].

The developed framework is based on Markov chain (MC)
formalism. The used strategy consists in solving the inverse
superdiffusion problem on discrete time and space: we esti-
mate the time evolution of the MLRI strength, i.e., the time
evolution of the Lévy random-walks exponent α(t ), which
leads to a superdiffusive behavior (〈r2(t )〉 ∼ tγ ) for a pres-
elected value γ > 1. Although the general framework can be
used in any network topology, for the sake of a clearer exposi-
tion of our procedure, in this work we consider two Euclidean
systems, namely, the cycle graph and the two-dimensional
torus (i.e., a square lattice with periodic boundary conditions).
This choice guarantees that the saturation effect, present in
any finite system, takes place after a sufficiently large time
lapse, so that the role played by time-dependent LRIs can
be emphasized. Most complex networks, like those generated
within the Erdős-Rényi [27] and Barabási-Albert frameworks
[28], are characterized by a short diameter, which favors
saturation in a short timescale. This requires huge systems
in order to precisely characterize superdiffusive behavior. On
the other hand, in the case of cycle graphs, exact analytical
expressions were derived to estimate α(t ) for MLRI walks on
these systems. Indeed, for constant α’s, they provide the exact
evolution of 〈r2(t )〉 ∼ t . For more complex substrates, such as
tori, the time evolution of α(t ) can also be easily obtained by
straightforward numerical evaluation. To draw comparisons to
the one-dimensional system, results for walks on tori are also
reported.

For the sake of definitiveness, the discrete time random
walk on a graph is a random sequence of vertices generated as
follows: given a starting vertex i, the origin of the walk, at each
discrete time step t , the walker jumps with equal probability
to one of the NN nodes of its current place [4,29,30]. In the
MLRI walk, the walker has a distance depending probability
of long-distance jumps. 〈r2(t )〉 is a measure of the ensem-
ble average distance between the position of a walker at a
time t , and the origin. The behavior 〈r2(t )〉 ∼ tγ identifies,
respectively, normal (γ = 1), sub- (γ < 1), or super- (γ > 1)
diffusion. Although 〈r2(t )〉 is just one of the measures used
to analyze general stochastic data [31,32], it is essential to
provide a clear characterization of the diffusive behavior.

From now on, we assume G = (V, E ) is a simple, undi-
rected and connected graph with N nodes, without self-
loops, described by its adjacency matrix A with elements
A(i, j) = A( j, i) = 1 if vertices i and j are connected, and
A(i, j) = 0 otherwise. Given any pair (i, j), i �= j, 1 � di j �
dmax represents the shortest path distance between i and j,
i.e., the smallest number of edges connecting the nodes i and
j. dmax, the maximum shortest path distance in the graph, is
called the graph diameter. The square, symmetric, N × N ,
d-path adjacency matrix of G [21] (or neighborhood matrix

of order d [33]), is defined by (Ad )i j = 1, if di j = d, and 0
otherwise.

Following [21], let us now consider the Mellin transformed
d-path adjacency matrices of G, defined by

Â =
dmax∑
d=1

d−αAd , (1)

where α � 0. Setting α = −1, we recover the neighborhood
matrix M̂ [33]. If α depends on time [α → α(t )], so will be the
transformed d-path adjacency matrices, Â → Â(t ). We define
the strength of a given node i of a transformed d-path graph,
at time t , by

ŝt (i) = (Ât �1)i =
∑
h �=i

d−α(t )
ih , (2)

where �x is an all-x vector. Note that, in the case of α(t ) →
∞, ŝt (i) → ki, where ki = ∑

h∈V A(i, h) denotes the degree
of node i. The probability that at time t , a particle sitting on
node i hops to j �= i, is defined by

Pt (i, j) = Ât (i, j)

ŝt (i)
= d−α(t )

i j∑
h �=i d−α(t )

ih

. (3)

The transition probability Pt (i, j) defines a dynamical pro-
cess where the walker can visit the direct neighbors of node i,
as well as other nodes that are far away from it. When α(t ) →
∞, only NN transitions of a normal random walk are allowed,
i.e., Pt (i, j) = A(i, j)/ki. On the other hand, when α(t ) = 0,
the walker can hop to any other node with equal probability
Pt (i, j) = (1 − δi j )/(N − 1), where δi j is the Kronecker delta.
Finally, in the case of constant α, Pt (i, j) coincides with the
transition probability of the Lévy random walk [22,34].

Let us denote by Ŝt the diagonal matrix with Ŝt (i, i) =
ŝt (i) and let us define the transition stochastic matrix for the
random walk, at time t , as Pt = (Ŝt )−1Ât .

We denote by �pt,i the vector containing the probability of
finding a random walker at a given node of the graph at time
t , when the random walker was initially located at node i. Its
time evolution is described by

�pt+1,i = PT
t �pt,i, (4)

where XT stands for the transpose of matrix X. Therefore, it
is possible to write

�pt,i = PT
t−1 · · ·PT

0 �p0,i =
(

t−1∏
κ=0

PT
κ

)
�p0,i, (5)

where ( �p0,i ) j = δi j . If α is constant, Pt = P , and the MC
formulation proposed in Refs. [21,22,35] is recovered.

With the help of Eq. (5), it is possible to quantify the mean
distance r covered by a typical walker. Given G and �p0,i, at
each time step, we evaluate r2(t, i) with respect to the origin
(node i) as

r2(t, i) =
N∑

j=1

(di j )
2( �pt,i ) j . (6)
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FIG. 1. Collapse of 〈r2(t )〉 for various cycle graphs with con-
stant LRIs, by rescalling the curves in the inset with Eq. (12) and
〈r2(1)〉tγ

x = (N2 − 1)/12, when γ = 1: N = 33 and α = ∞ (red
circles), N = 65 and α = 5 (orange squares), N = 129 and α = 3
(gray triangles), N = 257 and α = 2 (cyan diamonds), and N =
2049 and α = 1 (blue hexagons). The black dashed line indicates
f (x) = x.

To obtain numerical estimates for 〈r2(t )〉, we average over
all the different initial positions of the walker:

〈r2(t )〉 = 1

N

N∑
i=1

r2(t, i) = 1

N

N∑
i=1

N∑
j=1

(di j )
2( �pt,i ) j . (7)

According to Eqs. (5) and (7), 〈r2(t )〉 only depends on the
discrete time step t , the weight of the Mellin transformation
α, and the topology of G ↔ A. When MLRI also depends on
time, 〈r2(t )〉 is also conditioned by the time evolution of α(t ).
For the finite-size systems considered here, 〈r2(t )〉 converges
to a saturation value 〈r2〉sat after a characteristic saturation
time tx.

Results obtained from the above equations show that nei-
ther constant α’s nor arbitrary time-dependent α(t )’s lead to
well-characterized superdiffusive behavior before saturation.
For instance, in Figs. 1 and 2 we show several examples for
one-dimensional and two-dimensional (2D) periodic (finite)
substrates with constant LRIs, respectively. As can be ob-
served, clearly MLRIs speed up the diffusion of random walk-
ers in these ordered Euclidean lattices. However, normal dif-
fusion persists (〈r2(t )〉 ∼ t), before saturation appears. There-
fore, we now show how to find a precise time evolution of α(t )
which, for t < tx, leads to a well-defined superdiffusive behav-
ior. The key step is to look for solutions of the walk satisfying
〈r2(t )〉 = 〈r2(1)〉tγ . Combining Eqs. (5) and (7) we obtain

〈r2(1)〉tγ = 1

N

N∑
i=1

N∑
j=1

(di j )
2

([
t−1∏
κ=0

PT
κ

]
�p0,i

)
j

, (8)

which holds for 1 � t � �tx
. Henceforth we consider always
α0 = α(t = 0) = ∞ ⇒ 〈r2(1)〉 = 1, and tx = 〈r2〉1/γ

sat where
〈r2〉sat represents also the squared minimum distance between

FIG. 2. MC time evolution of 〈r2(t )〉 on N × N tori with constant
LRIs: α = ∞ (blue circles), α = 4.2 (red squares), and α = 3.5
(green triangles). The black dashed line is a guide for the eye to locate
a normal diffusion.

a pair of nodes, which can be written as

〈r2〉sat = 1

N2

N∑
i=1

N∑
j=1

(M̂ ◦ M̂)i j, (9)

where ◦ represents the Hadamard product. If we consider the
particular case t = 2, Eq. (8) becomes an implicit equation
for α(t = 1), once Pt (i, j) in Eq. (3) depends on α(t ). The
same procedure can now be applied to all subsequent integer
values of t , providing a recursive map for the evaluation of
α(t ). Note that its value depends on all the previous values
α(t ′), with 0 � t ′ < t . Therefore, for any choice of γ and α0,
Eq. (8) leads to a single time evolution 〈r2(t )〉 = 〈r2(1)〉tγ

and a unique solution α(t ).
For the cycle graph, we take advantage of the fact that its

transition matrix is circulant. This leads to exact expressions
for 〈r2(t )〉 even for time-dependent α which, for an odd
number of nodes, can be written as (see [36])

〈r2(t )〉 = N2 − 1

12
+

(N+1)/2∑
k=2

(−1)k+1

sin
(

θk
2

) cot

(
θk

2

)
Dt−1(k),

(10)

where

Dt−1(k) =
t−1∏
κ=0

(
2H (ακ )

0, N−1
2

)−1

[
(N−1)/2∑

d=1

2

dακ
cos (θkd )

]
, (11)

θk ≡ 2π (k − 1)/N , H (m)
c,n = ∑n

k=1
1

(c+k)m is the generalized
harmonic number for non-negative n, complex order m, and
complex offset c [37]. These expressions were used to evalu-
ate 〈r2(t )〉 for several arbitrary sequences of α(t ), confirming
that (i) if α(t + 1) > α(t ) [α(t + 1) < α(t )], diffusion at time
t + 1 becomes slower (faster) than that at time t ; and (ii) arbi-
trary choices of α(t ) do not lead to superdiffusion. However,
after requiring 〈r2(t )〉 = 〈r2(1)〉tγ as in Eq. (8), proper values
of α(t ) for superdiffusive behavior are obtained for 1 � t �
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FIG. 3. Time evolution of α(t ) for superdiffusive behavior on
cycle graphs. γ = 1.5 and N = 501 (circles), and N = 1001 (di-
amonds). γ = 1.8 and N = 501 (triangles), and N = 1001 (bars).
γ = 2.0 and N = 501 (pentagons), and N = 1001 (hexagons). The
inset shows α when the X axis is normalized with respect to tx . The
black dashed line indicates t∗ ≡ t/tx = 1.

�tx
, where tx = [(N2 − 1)/12]1/γ , 〈r2(t )〉sat = tγ
x , and

〈r2(1)〉 = (−1)α0−2
H (α0−2)

−[(N+1)/2],(N−1)/2

H (α0 )
0,(N−1)/2

. (12)

In Fig. 3 we present the time evolution of α(t ) for cycle
graphs with different values of N and γ . As anticipated,
α(t ) is a decreasing function of t , albeit they do not seem to
follow any simple dependence on t , e.g., linear, exponential,
or power law with a finite cutoff. For a given N , the larger
the value of γ , the smaller the values of both tx and α1. The
diffusion speed increases with γ , and so does the probability
of finding the walker far away from the origin. For that
reason, α(t ) decreases when N is fixed and γ increases. On
the other hand, for a fixed γ , the values of tx and α1 increase
with N , once a larger amount of nodes are far away from the
origin. Consequently, the squared minimum distance between
a pair of nodes (i.e., 〈r2〉sat) also increases. On the other
hand, the probability of reaching nodes that are more distant
from the origin than those of smaller cycles implies that a
weaker MLRI is needed to obtain the same value of 〈r2(2)〉.
The inset of Fig. 3 shows that there is a smooth cutoff for
α(t ) when t∗ ≡ t/tx ≈ 1. Additionally, note that α(1) > 3 if
α0 = ∞. An exact demonstration of this result when N → ∞
is presented in [36].

Figure 4 shows the MC time evolution of 〈r2(t )〉 for all α(t )
series in Fig. 3, clearly showing that time-dependent MLRIs
induce superdiffusion in the cycle graphs. Such behavior is
preserved for tx time steps until t∗ � 1. The smooth cutoff
for α(t ) takes place to compensate the finite size effects that
appear while 〈r2(t )〉 � 〈r2〉sat. The superdiffusive phase in-
creases (decreases) with respect to N (γ ). For the sake of com-
parison, results for constant α’s are also displayed (see Fig. 1),
indicating normal diffusion (γ = 1). Note the sharp (mild)
convergence of 〈r2(t )〉 → 〈r2(t )〉sat when γ > 1 (γ = 1).

FIG. 4. MC time evolution of 〈r2(t )〉 for the series in Fig. 3. γ =
1.5 and N = 501 (circles), and N = 1001 (diamonds). γ = 1.8 and
N = 501 (triangles), and N = 1001 (bars). γ = 2.0 and N = 501
(pentagons), and N = 1001 (hexagons).

To validate the adequacy of the procedure to generate
superdiffusion, in Fig. 5 we illustrate the time evolution
of 〈r2(t )〉 obtained from computer simulations for a MLRI
cycle graph in which we make use of α(t ) obtained within
the MC framework. Average results over 5 00 000 indepen-
dent random realizations are in very good agreement with
those obtained when working exclusively within the MC
framework.

Results were also obtained for a 2D square lattice with
periodic boundary conditions (2D torus). Here, however,
as the transition matrices for tori are not circulant, similar
expressions to Eqs. (10) and (11) cannot be obtained.
Nevertheless, the inverse problem of superdiffusion can be
adequately addressed by numerically estimating the solution
for α(t ) based only on Eq. (8).

FIG. 5. Time evolution of 〈r2(t )〉 on cycle graphs with time-
dependent LRIs (i.e., α) obtained by MC (symbols) and numerical
simulations (lines) for N = 501, when γ = 1.8 (red squares) and
γ = 2.0 (blue circles).
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FIG. 6. Time evolution of α(t ) for superdiffusive behavior on
N × N tori. γ = 1.8 and N = 32 (circles), N = 64 (squares). γ =
2.0 and N = 32 (triangles), N = 64 (bars). The inset shows α when
the X axis is normalized with respect to tx . The black dashed line
indicates t∗ ≡ t/tx = 1.

In Fig. 6 we show the time evolution of α(t ) for tori with
different sizes exhibiting superdiffusion (γ = 1.8 and 2.0).
Like it was observed for cycle graphs, for a given γ , the larger
the value of N , the larger the values of tx and α1. However, in
the case of tori, weaker LRIs are needed to induce superdif-
fusion. This is due to the initial transitory regimen of tori, in
which diffusion is faster than that of cycles (see Figs. 1 and 2).

In Fig. 7 we display 〈r2(t )〉 for the tori described in
Fig. 6. Using the shown α(t ), time-dependent LRIs induce
superdiffusion on the tori, similarly to what was observed
in Fig. 4. Here again, the superdiffusive behavior lasts ap-
proximately tx time steps, during which the smooth cutoff
of α(t ) compensates the finite size effects present as long as
〈r2(t )〉 � 〈r2〉sat. The duration of the superdiffusive regime
can be extended simply by increasing the systems size N ,
as well as reducing γ . Like circle graphs, results from direct
numerical simulations of walks on tori making use of α(t ) (not
shown) are in best agreement with those in Fig. 7.

Finally, we briefly mention the results of two further
random-walk simulations. In first place we considered the
effect of replacing α(t ) by slightly different, randomly chosen
values αN (t ), which might have been caused, for instance, by
small changes in the substrate. Working with cycle graphs,
our results indicate that 〈r2(t )〉 ∼ tγ+O(X ), where Xα(t ) is the
variance of the distribution at time t and X → 0. Next, we
asked whether it is possible to obtain a well-defined function
α(t ) if we require 〈r2(t )〉 to follow an arbitrary function f (t ).
Positive results were obtained when f (t ) represents broken
power laws. Both traits are illustrated in [36].

This work adds important contributions towards a better
understanding of superdiffusive processes on finite discrete

FIG. 7. MC time evolution of 〈r2(t )〉 on N × N tori with time-
dependent α. γ = 1.8 and N = 32 (circles), and N = 64 (squares).
γ = 2.0 and N = 32 (triangles), and N = 64 (bars).

substrates, demonstrating how they can be generated by time-
dependent navigation. The strategy can be applied to general
networks, as well as real case scenarios in which the long-
range interactions vary with time. We decided to discuss in
detail the Euclidean systems with dimension D, because their
diameter dmax and, consequently, saturation time tx increase
according to ∼N1/D, making it easier to clearly illustrate the
superdiffusive behavior. By contrast, identifying such regime
in small-world networks, for which tx ∼ log N , would require
one to consider huge values of N . Time-dependent LRIs can
be used to develop new navigation strategies, and to improve
results for hitting and commute times, among others. On
the other hand, given the attention devoted recently to Lévy
random walks on multiplex networks, the generalization of
this framework to such systems and to weighted or directed
networks can be of great interest. Finally, the proposed ap-
proach can help explain the known superdiffusive behavior of
actual systems using an alternative strategy. Here, covariate
models and machine learning methods might identify other
node properties capable of generating jump rules similar to
the time-dependent α, which differs from the usual approach
looking for physical mechanisms to explain the phenomenon.
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